0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HA12215F

HA12215F

  • 厂商:

    HITACHI(日立)

  • 封装:

  • 描述:

    HA12215F - Audio Signal Processor for Cassette Deck(Dolby B-type NR with Recording System) - Hitachi...

  • 数据手册
  • 价格&库存
HA12215F 数据手册
HA12215F Audio Signal Processor for Cassette Deck (Dolby B-type NR with Recording System) ADE-207-253D (Z) Target Specification 5th Edition Oct. 1999 Description HA12215F is silicon monolithic bipolar IC providing Dolby noise reduction system* , music sensor system, REC equalizer system and each electronic control switch in one chip. Note: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. 1 Functions • Dolby B-NR • Music sensor • Pass amp. × 2 channel × 1 channel × 2 channel • REC equalizer × 2 channel • Each electronic control switch to change REC equalizer, bias, etc. Features • REC equalizer is very small number of external parts and have 6 types of frequency characteristics built-in. • 2 types of input for PB, 1 type of input for REC. • 70µ - PB equalizer changing system built-in. • Dolby NR with dubbing double cassette decks. Unprocessed signal output available from recording out terminals during PB mode. • Provide stable music sensor system, available to design music sensing time and level. • Controllable from direct micro-computer output. • Bias oscillator control switch built-in. • NR ON / OFF and REC / PB fully electronic control switching built-in. • Normal-speed / high-speed, Normal / Crom / Metal and PB equalizer fully electronic control switching built-in. • Available to reduce substrate-area because of high integration and small external parts. HA12215F Ordering Information Operating Voltage Product HA12215F VCC (V) +6.0 to +7.5 VEE (V) –7.5 to –6.0 Note | VCC + VEE | < 1.0 V Standard Level Product HA12215F Package FP-56 PB-OUT Level 580 mVrms REC-OUT Level 300 mVrms Dolby Level 300 mVrms Function Music Sensor ❍ REC / PB Selection ❍ Product HA12215F Dolby B-NR ❍ REC-EQ ❍ Pass Amp. ❍ ALC ❍ Note: Depending on the employed REC / PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this case, please inquire the responsible agent because the adjustment built-in resistor is necessary. Rev.5, Oct. 1999, page 2 of 69 HA12215F Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) Pin No. 51 Terminal Name AIN (R) Note V = GND Equivalent Circuit Pin Description PB A Deck input V 100k GND 48 53 46 56 43 5 38 1 AIN (L) BIN (R) BIN (L) RIN (R) RIN (L) EQIN (R) EQIN (L) DET (R) V = VEE+2.7V VCC Time constant pin for Dolby-NR V = GND REC equalizer input V = GND REC input V = GND PB B Deck input V VEE 42 2 DET (L) BIAS1 V = VEE+0.6V Dolby bias current input V VEE 41 BIAS2 V = VEE+1.3V REC equalizer bias current input V VEE Rev.5, Oct. 1999, page 3 of 69 HA12215F Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. 3 Terminal Name PBOUT (R) Note V = GND Equivalent Circuit VCC Pin Description PB output V VEE 40 4 39 7 36 28 8 35 52 PBOUT (L) RECOUT (R) RECOUT (L) EQOUT (R) EQOUT (L) MAOUT ROUT (R) ROUT (L) ABO (R) R1 = 15 k R2 = 12 k R1 R2 VCC V = GND REC output V = GND REC equalizer output 1 V = GND V = GND MS Amp. output * Input Amp. output Time constant pin for PB equalizer (70µ) V VEE 47 6 37 31 ABO (L) BOOST (R) BOOST (L) BIAS (M) V = VCC – 0.7V VCC R1 = 4.8 k R2 = 4.8 k Time constant pin for low boost REC bias current output V 32 33 Note: BIAS (C) BIAS (N) 1. MS: Music Sensor Rev.5, Oct. 1999, page 4 of 69 HA12215F Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. 21 49 50 45, 54 15 Terminal Name VCC GND VEE NC ALC ON/OFF Note V = VCC V = 0V V = VEE No connection I = 50 µA V 22 k 100 k GND I Equivalent Circuit Pin Description Power supply GND pin Negative power supply No connection Mode control input 16 17 18 19 20 22 23 25 24 PB A/B A 120/70 NORM/HIGH B NORM/CROM/ METAL BIAS ON/OFF RM ON/OFF NR ON/OFF LM ON/OFF REC/PB/PASS 2.5 V + − 100 k Mode control input 100 k 22 k V 26 MSOUT I = 0 µA V VCC I MSGND MS output (to MPU) * 1 VEE Note: 1. MS: Music Sensor Rev.5, Oct. 1999, page 5 of 69 HA12215F Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. 10 Terminal Name GPCAL Note R = 110 kΩ R 2.5 V Equivalent Circuit Pin Description GP gain calibration terminal 11 12 14 RECCAL ALCCAL MSDET R = 110 kΩ R = 140 kΩ n=6 0 µA n VCC REC gain calibration terminal ALC operation level calibration terminal Time constant pin for 1 MS * VEE 13 27 ALCDET MSIN n=2 R = 50 kΩ VCC 1 MS input * V R GND 9 34 30 ALCIN (R) ALCIN (L) MAI R = 100 kΩ V = GND MS Amp. input * 1 MAOUT 100 k V 8.2 k GND VCC 29 MS GND I = ±100 µA I MS output voltage 1 level control pin * 55 ALC (R) V = GND V Variable impedance for attenuation 44 Note: ALC (L) 1. MS: Music Sensor Rev.5, Oct. 1999, page 6 of 69 HA12215F Block Diagram RECOUT (L) EQOUT (L) BOOST (L) PBOUT (L) ALCIN (L) ROUT (L) BIAS (M) EQIN (L) BIAS (N) BIAS (C) 42 41 40 39 38 37 36 35 34 33 32 31 30 29 RIN (L) ALC (L) 43 44 NC 45 BIN (L) ABO (L) AIN (L) GND VEE AIN (R) ABO (R) BIN (R) 46 47 48 49 + 50 51 52 53 NC 54 ALC (R) RIN (R) 55 56 1 2 3 4 5 Dolby B-NR ALC LPF − + EQ Dolby B-NR BIAS 28 27 MS 26 25 24 23 22 21 20 19 18 17 16 15 7 8 9 10 11 12 13 14 MSOUT LM ON / OFF REC / PB / PASS NR ON / OFF RM ON / OFF VCC BIAS ON / OFF B NORM / CROM / METAL NORM / HIGH A 120 / 70 PB A / B ALC ON / OFF MAOUT MSIN EQ 6 BIAS1 GPCAL DET (R) RECCAL EQIN (R) PBOUT (R) BOOST (R) EQOUT (R) ROUT (R) RECOUT (R) ALCIN (R) ALCDET ALCCAL MSDET MSGND DET (L) BIAS2 MAI Rev.5, Oct. 1999, page 7 of 69 HA12215F Parallel-Data Format Pin No. 15 16 17 22 20 23 24 25 18 19 Note: Pin Name ALC ON/OFF PB A/B A 120/70 RM ON/OFF BIAS ON/OFF NR ON/OFF REC/PB/PASS LM ON/OFF NORM/HIGH B NORM/CROM/ METAL 1. PB EQ logic Lo ALC ON Ain * *1 REC MUTE ON BIAS OFF NR OFF REC MODE LINE MUTE OFF Normal speed REC EQ Normal * Bias Normal 1 1 Mid — — — — — — PB MODE — — REC EQ CROM * Bias CROM 1 Hi ALC OFF Bin * *1 REC MUTE OFF BIAS ON NR ON REC MODE PASS LINE MUTE ON High speed REC EQ METAL * Bias METAL 1 1 MODE “Pin Open” Lo Lo Lo Lo Lo Lo Mid Lo Lo Lo PB EQ Logic PB A 120/70 120 Lo Lo Hi Hi B NORM / CROM / METAL NORM Lo Hi or Mid Lo Hi or Mid Lo FLAT FLAT 70 µ 70 µ Hi FLAT 70 µ FLAT 70 µ Rev.5, Oct. 1999, page 8 of 69 HA12215F Functional Description Power Supply Range HA12215F is designed to operate on split supply. Table 1 Product HA12215F Supply Voltage VCC (V) +6.0 to +7.5 VEE (V) –7.5 to –6.0 Note | VCC + VEE | < 1.0 V Note: The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories. Reference Voltage The reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. 21 VCC 49 VEE 50 VCC GND VEE + − L channel reference + − Music sensor reference + − R channel reference Figure 1 Reference Voltage Rev.5, Oct. 1999, page 9 of 69 HA12215F Operating Mode Control HA12215F provide fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 Pin No. 15, 16, 17, 18, 20, 22, 23, 25 Control Voltage Lo –0.2 to 1.0 Mid — Hi 4.0 to VCC Unit V Test Condition Input Pin Measure 19, 24 –0.2 to 1.0 2.0 to 3.0 4.0 to VCC V Notes: 1. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins are open. But pin 24 is mid-level when it is open. 2. Over shoot level and under shoot level of input signal must be the standardized (High: VCC, Low: –0.2 V). 3. For reduction of pop noise, connect 1 µF to 22 µF capacitor with mode control pins. But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at the same time. Input Block Diagram and Level Diagram The each level shown above is typical value when offering PBOUT level to PBOUT pin. MS 300mVrms REF PASS REC PB PASS/REC, PB=5.7dB/5.7dB PBOUT 580mVrms AIN 21.3dB BIN 25.9mVrms FLAT (120µ) 300mVrms 0dB R3 70µs 12k R4 15k 25.5mVrms C2 4700pF C1 0.1µF R1 15k RIN 200mVrms PB/REC, PASS=0dB/21.4dB 300mVrms PB Dolby B-NR REC PASS 300mVrms ALC RECOUT 300mVrms R2 C3 2.2k 0.1µF Figure 2 Input Block Diagram Rev.5, Oct. 1999, page 10 of 69 HA12215F PB Equalizer By switching logical input level of pin 17 (for Ain) and pin 19 (for Bin), you can equalize corresponding to tape position at play back mode. With the capacity C2 capacitance that we showed for figure 2 70 µs by the way figure seem to 3 they are decided. GV t1 = C2 ⋅ (12k + 15k) t2 = C2 ⋅ 15k t1 t2 f Figure 3 Frequency Characteristic of PB Equalizer The Sensitivity Adjustment of Music Sensor Adjusting MS Amp gain by external resistor, the sensitivity of music sensor can set up. REP VCC C16 1000p PB (L) MAI 100k 8.2k −6dB MA OUT MSIN MS DET RL R13 330k + C13 0.33µ D VCC − + DET MS AMP MS OUT Microcomputer GND LPF 25kHz 50k GND PB (R) Figure 4 Music Sensor Block Diagram Rev.5, Oct. 1999, page 11 of 69 HA12215F The Sensitivity of Music Sensor A standard level of MS input pin 25.9 mVrms, therefore, the sensitivity of music sensor (S) can request it, by lower formulas. A = MS Amp Gain*1 C S = 20log B = PB input Gain × (1/2)*2 25.9 ⋅ A ⋅ B C = Sensed voltage 20log (A × B) = D [dB] S = 14 − D [dB] C = 130 [mVrms] (Intenally voltage in a standard) PB input Gain = 21.3 [dB] [dB] Notes: 1. When there is not a regulation outside. 2. Case of one-sided channel input. But necessary to consider the same attenuation quantity practically, on account of A(B) have made frequency response. GV 37.7dB 1 [Hz] 2π ⋅ C16 ⋅ 50k f2 = 25k [Hz] f1 = f1 f2 f Figure 5 Frequency Characteristic of MSIN Occasion of the external component of figure 4, f1 is 3.18 kHz. Time constant of detection Figure 6(1) generally shows that detection time is in proportion to value of capacitor C13. But, with 2 3 Attack* and Recovery* the detection time differs exceptionally. Notes 2. Attack : Non- music to Music 3. Recovery : Music to Non-music Detection time Detection time Recovery Attack C13 (1) Recovery Attack Detection time Recovery Attack R13 (2) Detection level Input level (3) Figure 6 Function Characteristic of MS Like the figure 6(2), Recovery time is variably possible by value of resistor R13. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency. Rev.5, Oct. 1999, page 12 of 69 HA12215F Music Sensor Output (MSOUT) As for internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type directly, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. Connection with microcomputer, it is requested to use external pull up resistor (RL = 10 kΩ to 22 kΩ) Note: Supply voltage of MSOUT pin must be less than VCC voltage. The Tolerances of External Components For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a few electrolytic-capacitor, it can be applicable to C5 and C23. VEE C23 0.1µ ±10% 42 DET (L) HA12215F DET (R) 1 C5 0.1µ ±10% VEE BIAS1 2 R5 33k ±2% Figure 7 Tolerance of External Components Low-Boost 24.6dB EQIN 4.8k REC EQ 4.8k BOOST C9(C19) 0.47µ EQOUT + Figure 8 Example of Low Boost Circuit External components shown figure 8 gives frequency response to take 6 dB boost. And cut off frequency can request it, by C9 (C19). Rev.5, Oct. 1999, page 13 of 69 HA12215F REC Equalizer The outlines of REC Equalizing frequency characteristics are shown by figure 9. Those peak level can be set up by supplying voltage. (0 V to 5 V, GND = 0 V) to pin 10 (GPCAL). And whole band gain can be set up by supplying voltage (0 V to 5 V, GND = 0 V) to pin 11 (RECCAL). Both setting up range are ±4.5 dB. In case that you do not need setting up, pin 10, pin 11 should be open bias. Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this care, please inquire the responsible agent because of the adjustment of built-in resistor is necessary. RECCAL GPCAL Gain (dB) Frequency (Hz) Figure 9 Frequency Characteristics of REC Equalizer Bias Switch HA12215F built-in DC voltage generator for bias oscillator and its bias switches. External resistor R19, R20, R21 which corresponded with tape positions and bias out voltage are relater with below. . Vbias = . R22 × (VCC − VEE − 0.7) + VEE [V] (R19 or R20 or R21) + R22 Bias switch follows to a logic of pin 19 (B / Norm / Crom / Metal). Note: A current that flows at bias out pin, please use it less than 5 mA. Rev.5, Oct. 1999, page 14 of 69 HA12215F BIAS (N) Pin 33 BIAS (C) Pin 32 BIAS (M) Pin 31 R21 R20 R19 R22 VEE Vbias Figure 10 External Components of Bias Block Automatic Level Control ALC is the input decay rate variable system. It has internal variable resistors of pin 55 (pin 44) by RECOUT signal that is inputted to pin 9 (pin 34). The operation is similitude to MS, detected by pin 13. The signal input pin is pin 56 (pin 43). Resistor R1, R2 and capacitor C2, external components, for the input circuit are commended as figure 12. There are requested to use value of the block diagram figure for performance maintenance of S/N, T.H.D. etc. Figure 11 shows the relation with R1 front RIN point and ROUT. ALC operation level acts for the center of +4.5 dB at tape position TYPE I, IV and the center of +2.5 dB at tape position TYPE II, to standard level (300 mVrms). Then, adopted maximum value circuit, ALC is operated by a large channel of a signal. ALC ON/OFF can switch it by pin 15. Please do ALC ON, after it does for one time ALC OFF inevitably, for ALC time to start usefully (when switching PB → PASS, when switching PB → PASS), in order to reset ALC circuit. ROUT 300mV TYPE II 2.5dB TYPE I, IV 4.5dB RIN Figure 11 ALC Operation Level Rev.5, Oct. 1999, page 15 of 69 HA12215F R1 15k Input C2 0.1µ R2 2.2k RIN 56 55 ROUT 300mV 8 Output C4 ALC 25.5mV ALC 21.4dB 9 13 ALCIN ALCDET R12 VCC C12 + Figure 12 ALC Block Diagram ALC Operation Level Necessary ALC operation level is variable to pin 12 bias (ALC-CAL: 0 to 5 V), and its range is ±4.0 dB. Unnecessary, pin 12 is unforced. ALC-CAL = 5V ROUT ALC-CAL = 0V RIN Figure 13 ALC-CAL Characteristics Rev.5, Oct. 1999, page 16 of 69 HA12215F Absolute Maximum Ratings Item Max supply voltage Power dissipation Operating temperature Storage temperature Symbol VCC max Pd Topr Tstg Rating 16 625 –40 to +75 –55 to +125 Unit V mW °C °C Ta ≤ 75°C Note Rev.5, Oct. 1999, page 17 of 69 (Ta = 25°C, VCC = ±7 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB) Test Condition Input fin RECOUT (Hz) level (dB) Other No signal IC Condition *1 NR REC/PB 120µ/ LINE B ON/OFF /PASS A/B 70µ MUTE N/C/M Output Application Terminal HA12215F Item Quiescent current Input AMP. gain A A/B A A A A A A A 120 120 120 120 120 120 120 120 120 NORM NORM NORM NORM NORM NORM NORM NORM NORM THD=1% Rg=5.1kΩ, CCIR/ARM  70.0 70.0 70.0 70.0 0.05 0.3 80.0  85.0  80.0  80.0  % 56 dB 51/53 56 dB 51/53 51/56 NORM NORM NORM NORM NORM 1k 1k 1k 1k 1k NORM NORM NORM NORM NORM/ CROM Rev.5, Oct. 1999, page 18 of 69 OFF OFF OFF ON ON ON ON ON ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0 +12 +12 +12 +12 43 48/46 43 48/46 48/43 4 3 3 3 3 39 40 40 40 40      ON REC OFF PB OFF REC OFF PB OFF REC/PB 120 120 120 120 120 A A/B A A/B A PB PB REC REC REC REC REC REC REC  1k 1k 2k 2k 5k 5k 1k 1k  0 0 −20 −30 −20 −30   Min  25.5 25.0 2.8 7.0 1.7 6.7 12.0 64.0 Typ  27.0 26.5 4.3 8.5 3.2 8.2 13.0 70.0 Max Unit R L R  35.0 mA  28.5 dB 51/53 48/46 3 28.0 3 56 43 5.8 dB 56 43 4 56 43 4 10.0 56 43 4 4.7 56 43 4 9.7 dB 56 43  4 dB 56 43  4 L COM Remark   40  40  39  39  39  39  2 39  39  NORM NORM NORM NORM, METAL Electrical Characteristics B-type Encode boost Signal handling Signal to noise ratio Symbol IQ GV PB GV REC ENC 2k (1) ENC 2k (2) ENC 5k (1) ENC 5k (2) Vo max S/N Total Harmonic Distortion THD Channel separation CTRL (1) CTRL (2) Crosstalk CT A/B CT R/P Pass AMP. gain Gain deviation MUTE ATT. 70µ EQ gain MS sensing level MS output low level MS output leak current ALC operate level CROM GV PA ∆GV MUTE GV EQ 1k GV EQ 10k VON VOL IOH ALC (1) ALC (2) 1k 1k 1k 1k 10k 5k   1k 1k OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF PASS PASS PB PB PB PB PB PB REC REC A/B A/B A A/B A/B A A A A A 120 120 120 70 70 120 120 120 120 120 OFF OFF ON OFF OFF OFF OFF OFF OFF OFF 0 0 +12 0 0    +12 +12 GV PA − GV PB 25.5 27.0 28.5 −1.0 0.0 1.0 70.0 80.0  24.0 25.5 27.0 20.8 22.3 23.8 −26.0 −22.0 −18.0  1.0 1.5   2.0 2.0 4.5 7.0 0.0 2.5 5.0 dB 51/53 48/46 3 dB 51/53 48/46 3 dB 51 48 3 dB 51/53 48/46 3 51/53 48/46 3 dB 51 48  51 48  V  µA  dB 56 43 4 56 43 4 40 40 40 40 40    39 39           3 Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF 2. VCC = ±6.0 V 3. For inputting signal to one side channel (Ta = 25°C, VCC = ±7 V) Item Equalizer S/N SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF 10.5 12.5 dB 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 19.9 23.4 19.9 23.7 26.9 21.4 22.0 23.5 60 21.9 25.9 21.4 25.7 29.4 22.9 24.0 26.0 70 23.9 dB 28.4 dB 22.9 dB 27.7 dB 31.9 dB 24.4 dB 26.0 dB 28.5 dB dB  5 5 5 5 5 5 5 38 38 38 38 38 38 38 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 7 7 7 7 7 7 7 7 7 7 7 7 7 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 38 38 7 7 36 36              0.2 0.2 0 20.3 25.9 32.6 24.8 30.5 36.5 25.6 27.9 30.8 16.5 0.5 % % 0.5 500 mV 21.8 dB 27.9 dB 35.1 dB 26.3 dB 32.5 dB 39.0 dB 27.1 dB 29.9 dB 33.3 dB 18.0 dB          SW22 (L), SW23 (R) OFF  SW22 (L), SW23 (R) OFF  SW22 (L), SW23 (R) OFF −500 SW22 (L), SW23 (R) OFF 18.8 SW22 (L), SW23 (R) OFF 23.9 SW22 (L), SW23 (R) OFF 30.1 SW22 (L), SW23 (R) OFF 23.3 SW22 (L), SW23 (R) OFF 28.5 SW22 (L), SW23 (R) OFF 34.0 SW22 (L), SW23 (R) OFF 24.1 SW22 (L), SW23 (R) OFF 25.9 SW22 (L), SW23 (R) OFF 28.3 SW22 (L), SW23 (R) OFF 15.0 SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF  5 38 7 36  Min Typ Max Unit dB 55 58  Electrical Characteristics (cont) Test Condition TAPE SPEED NORM NORM Rg = 5.1kΩ, A-WTG Filter (0dB = −5dBs at EQOUT) Equalizer maximum input Vin max (EQ) NORM NORM f = 1kHz, THD = 1%, Vin = −26dBs = 0dB Equalizer total harmonic T.H.D.1 (EQ) NORM NORM f = 1kHz, Vin = −26dBs distortion f = 1kHz, Vin = −30dBs T.H.D.2 (EQ) Equalizer offset voltage Vofs (EQ) NORM NORM No-Signal Equalizer GVEQ-NN1 NORM NORM f = 3kHz, Vin = −46dBs frequency response f = 8kHz, Vin = −46dBs GVEQ-NN2 (NORM - NORM) f = 12kHz, Vin = −46dBs GVEQ-NN3 GVEQ-CN1 Equalizer CROM NORM f = 3kHz, Vin = −46dBs frequency response f = 8kHz, Vin = −46dBs GVEQ-CN2 (CROM - NORM) f = 12kHz, Vin = −46dBs GVEQ-CN3 METAL NORM f = 3kHz, Vin = −46dBs Equalizer GVEQ-MN1 frequency response f = 8kHz, Vin = −46dBs GVEQ-MN2 (METAL - NORM) GVEQ-MN3 f = 12kHz, Vin = −46dBs Equalizer GVEQ-NH1 NORM HIGH f = 5kHz, Vin = −46dBs frequency response f = 15kHz, Vin = −46dBs GVEQ-NH2 (NORM - High) f = 20kHz, Vin = −46dBs GVEQ-NH3 Equalizer GVEQ-CH1 CROM HIGH f = 5kHz, Vin = −46dBs frequency Response f = 15kHz, Vin = −46dBs GVEQ-CH2 (CROM - High) f = 20kHz, Vin = −46dBs GVEQ-CH3 METAL HIGH f = 5kHz, Vin = −46dBs Equalizer GVEQ-MH1 frequency response f = 15kHz, Vin = −46dBs GVEQ-MH2 (METAL - High) GVEQ-MH3 f = 20kHz, Vin = −46dBs REC-MUTE attenuation REC-MUTE NORM NORM f = 1kHz, Vin = −14dBs Symbol S/N (EQ) Application Terminal Input Output R L R L COM Remark 5 38 7 36  Rev.5, Oct. 1999, page 19 of 69 HA12215F (Ta = 25°C, VCC = ±7 V) Test Condition HA12215F Item REC CAL response VREC-CAL = 5V VREC-CAL = 0V VGP-CAL = 0V VGP-CAL = 5V GP CAL response ALC CAL response Vin = −46dBs, Vin = −46dBs, Vin = −46dBs, Vin = −46dBs, VALC-CAL = 0V VALC-CAL = 5V                     31 to 33 15 to 20 22 to 25 Min GV EQ-NN1 = 0dB 3.0 −6.0 GV EQ-NN3 = 0dB 3.0 −6.0 ALC (1) = 0dB  3.0 Typ 4.5 −4.5 4.5 −4.5 −4.0 4.0 Rev.5, Oct. 1999, page 20 of 69 TAPE SPEED NORM NORM f = 3kHz, f = 3kHz, NORM NORM f = 12kHz, f = 12kHz, NORM NORM f = 1kHz, f = 1kHz, RL = 2.4kΩ + 270Ω RL = 2.4kΩ + 270Ω −0.2  1.0 3.0 5.3 V V V 2.0 4.0   Application Terminal Input Output R L R L COM Remark 5 38 7 36  5 38 7 36  5 38 7 36  5 38 7 36  56 43 4 39  56 43 4 39      31 to 33 Max Unit 6.0 dB −3.0 dB 6.0 dB −3.0 dB −3.0 dB  dB VCC VCC V −1.4 −0.7  VEE VEE −0.1 VEE +0.1 V 19, 24 15 to 20 22 to 25 Bias out maximum level Symbol R-CAL1 R-CAL2 GP-CAL1 GP-CAL2 ALC-CAL1 ALC-CAL2 Bias on Bias out offset Bias off Electrical Characteristics (cont) Control voltage VIL VIM VIH Lch SW5 PB BIAS EQ SW20 Rch EQ REC REC SW7 PB Test Circuit DC VM1 R26 7.5k R24 5.1k ALCIN (L) ROUT (L) R28 10k C22 C18 2.2µ C17 0.47µ R21 2k Rch R20 910 R19 270 Lch 42 41 40 39 38 37 36 35 34 33 32 31 30 29 R30 13k RIN (L) DC −7V SOURCE2 C29 100µ C24 0.1µ R B R31 2.2k C16 1000p MSIN MSOUT ON R18 3.9k 43 MAOUT SW3 EQ 44 45 46 47 24 SW17 C15 22µ A BIN (L) R32 10k C26 0.0047µ C27 0.47µ C25 0.47µ AIN (L) R33 10k SW1 VEE ON SW2 + Lch 49 + LPF 21 VCC ON C14 22µ − + 22 + 48 Audio SG OFF AIN (R) C1 0.47µ Rch 50 51 52 19 SW13 ALC Dolby B-NR 18 SW12 17 SW11 16 SW10 15 7 ON GPCAL RECCAL AC VM1 + R1 10k C2 0.0047µ BIN (R) 53 54 55 56 EQ 1 C5 0.1µ R5 33k R6 10k R7 20k R10 5.1k R11 10k REC REC PB SW6 EQ PB SW8 EQ ROUT (R) ALCIN (R) R2 10k C3 0.47µ R3 2.2k ALC (R) B R RIN (R) R4 13k C4 0.1µ SW4 A EQ 2 + C7 2.2µ 0.47µ JP1 R9 16k OFF + C10 C9 2.2µ 0.47µ C6 2.2µ 3 + C8 + SW 23 + C11 0.47µ 4 5 R8 7.5k Rev.5, Oct. 1999, page 21 of 69 6 8 9 ALCCAL HA12215F Notes: 1. Resistor tolerance are ±1%. 2. Capacitor tolerance are ±1%. 3. Unit R: Ω, C: F. + + + C23 0.1µ + + 2.2µ 0.47µ 2.2µ JP3 OFF SW 22 ON EQ 28 27 MS 26 25 SW18 DC VM2 Dolby B-NR + R25 16k C21 C20 + R29 22k SW20 R27 20k C19 0.47µ C R22 2.4k M SW21 N AC VM2 Distortion analyzer Oscillo scope BIAS + + DC +5V SOURCE4 DC +2.5V SOURCE3 Noise meter noise meter with ccir/arm filter and a-wtg filter 23 + OFF LM ON / OFF PASS PB REC REC / PB / PASS R17 ON 22k SW16 OFF NR ON / OFF R16 OFF 22k RM ON / OFF SW15 ON 20 SW14 BIAS ON / OFF B NORM / CROM / METAL N 70 120 A B OFF NORM / HIGH A 120 / 70 PB A / B ON ALC ON / OFF R15 10k OFF M C N H JP2 + R14 10k SW9 10 11 12 13 14 R12 1M ALCDET MSDET C12 10µ R13 330k C13 0.33µ C28 100µ DC +7V + SOURCE1 HA12215F Characteristic Curves Quiescent Current vs. Split Supply Voltage (REC mode) 35 RECmode NR-OFF, ALC ON, REC-MUTE ON, BIAS OFF NR-OFF, ALC ON, REC-MUTE OFF, BIAS OFF NR-ON, ALC OFF, REC-MUTE OFF, BIAS ON Other switch is all Low Quiescent Current IQ (mA) 30 25 20 5 6 7 8 Split Supply Voltage (V) 9 Quiescent Current vs. Split Supply Voltage (PB mode) 35 PBmode NR-OFF, LINE-MUTE OFF, BIAS OFF NR-ON, LINE-MUTE ON, BIAS OFF NR-ON, LINE-MUTE OFF, BIAS ON Other switch is all Low Quiescent Current IQ (mA) 30 25 20 5 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 22 of 69 HA12215F Input Amp. Gain vs. Frequency (1) 40 VS = ±7.0V AIN → RECOUT BIN 30 Gain (dB) 20 NR-ON NR-OFF 10 0 −10 10 100 1k 10k Frequency (Hz) Input Amp. Gain vs. Frequency (2) 100k 1M 40 VS = ±7.0V AIN → PBOUT BIN 30 PASSmode Gain (dB) 20 PBmode 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M Rev.5, Oct. 1999, page 23 of 69 HA12215F Input Amp. Gain vs. Frequency (3) 40 VS = ±7.0V RECmode 30 PBOUT RECOUT Gain (dB) 20 10 0 −10 10 100 1k 10k Frequency (Hz) Input Amp. Gain vs. Frequency (4) 100k 1M 40 VS = ±7.0V AIN → PBOUT BIN 120µ 70µ 30 Gain (dB) 20 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M Rev.5, Oct. 1999, page 24 of 69 HA12215F Encode Boost vs. Frequency 12 VS = ±7.0V Dolby B-NR −40dB 10 Encode Boost (dB) 8 −30dB 6 4 −20dB 2 −10dB 0dB 0 100 1k Frequency (Hz) Decode Cut vs. Frequency 10k 20k 0 0dB −10dB −2 −20dB Decode Cut (dB) −4 −6 −30dB −8 −10 VS = ±7.0V Dolby B-NR 1k Frequency (Hz) −40dB −12 100 10k 20k Rev.5, Oct. 1999, page 25 of 69 HA12215F Signal Handling (1) 30 RECmode Rin → RECOUT = 300mVrms = 0dB f = 1kHz, T.H.D. ⋅ ⋅ 1% = NR-OFF NR-ON 25 Vomax (dB) 20 15 5 6 7 8 Split Supply Voltage (V) Signal Handling (2) 25 AIN → PBOUT = 580mVrms = 0dB BIN f = 1kHz, T.H.D. ⋅ ⋅ 1% = NR-OFF PBmode NR-ON PASSmode 20 Vomax (dB) 9 15 10 5 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 26 of 69 HA12215F Signal to Noise Ratio vs. Split Supply Voltage (1) 85 Signal to Noise Ratio (dB) 80 f = 1kHz, RECmode Rin → RECOUT = 300mVrms = 0dB Rin → PBOUT = 580mVrms = 0dB NR-OFF RECOUT NR-ON NR-OFF PBOUT NR-ON CCIR/ARM filter 75 70 65 5 6 7 8 Split Supply Voltage (V) 9 Signal to Noise Ratio vs. Split Supply Voltage (2) 85 Signal to Noise Ratio (dB) 80 75 70 65 5 f = 1kHz, PBmode AIN → PBOUT = 580mVrms = 0dB BIN AIN, NR-OFF BIN, NR-OFF AIN, NR-ON BIN, NR-ON CCIR/ARM filter 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 27 of 69 HA12215F Signal to Noise Ratio vs. Split Supply Voltage (3) 85 Signal to Noise Ratio (dB) 80 75 70 65 5 f = 1kHz, PBmode AIN → RECOUT = 300mVrms = 0dB BIN AIN, NR-OFF BIN, NR-OFF AIN, NR-ON BIN, NR-ON CCIR/ARM filter 6 7 8 Split Supply Voltage (V) 9 Signal to Noise Ratio vs. Split Supply Voltage (4) 85 Signal to Noise Ratio (dB) 80 75 70 65 5 f = 1kHz, PASSmode AIN → PBOUT = 580mVrms = 0dB BIN AIN, Lch BIN, Lch AIN, Rch BIN, Rch CCIR/ARM filter 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 28 of 69 HA12215F Total Harmonic Distortion vs. Split Supply Voltage (1) (RECmode, NR-OFF) RECmode, NR-OFF RIN → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) RIN → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) T.H.D. (%) 1.0 0.1 0.01 5 6 7 8 Split Supply Voltage (V) 9 1.0 Total Harmonic Distortion vs. Split Supply Voltage (2) (RECmode, NR-ON) RECmode, NR-ON RIN → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) RIN → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) T.H.D. (%) 0.1 0.01 5 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 29 of 69 HA12215F Total Harmonic Distortion vs. Split Supply Voltage (3) (PBmode, NR-OFF) PBmode, NR-OFF AIN → PBOUT = 580mVrms BIN 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) AIN → RECOUT = 300mVrms BIN 1kHz (400Hz HPF + 30kHz LPF) 0.1 1.0 T.H.D. (%) 0.01 5 6 7 8 Split Supply Voltage (V) 9 1.0 Total Harmonic Distortion vs. Split Supply Voltage (4) (PBmode, NR-ON) PBmode, NR-ON AIN → PBOUT = 580mVrms BIN 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) AIN → RECOUT = 300mVrms BIN 1kHz (400Hz HPF + 30kHz LPF) T.H.D. (%) 0.1 0.01 5 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 30 of 69 HA12215F Total Harmonic Distortion vs. Split Supply Voltage (5) (PASSmode, NR-OFF) PASSmode, NR-OFF AIN → PBOUT = 580mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) 1.0 T.H.D. (%) 0.1 0.01 5 6 7 8 Split Supply Voltage (V) 9 10 Total Harmonic Distortion vs. Output Level (1) (RECmode, NR-OFF) RECmode, NR-OFF VS = ±7.0V 100Hz 1kHz 10kHz RIN → RECOUT = 300mVrms = 0dB 1.0 T.H.D. (%) 0.1 0.01 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Rev.5, Oct. 1999, page 31 of 69 HA12215F Total Harmonic Distortion vs. Output Level (2) (RECmode, NR-ON) RECmode, NR-ON VS = ±7.0V 100Hz 1kHz 10kHz RIN → RECOUT = 300mVrms = 0dB 1.0 T.H.D. (%) 10 0.1 0.01 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 10 Total Harmonic Distortion vs. Output Level (3) (PBmode, NR-OFF) PBmode, NR-OFF VS = ±7.0V 100Hz 1kHz 10kHz AIN → PBOUT = 580mVrms = 0dB BIN 1.0 T.H.D. (%) 0.1 0.01 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Rev.5, Oct. 1999, page 32 of 69 HA12215F Total Harmonic Distortion vs. Output Level (4) (PBmode, NR-ON) PBmode, NR-ON VS = ±7.0V 100Hz 1kHz 10kHz AIN → PBOUT = 580mVrms = 0dB BIN 10 1.0 T.H.D. (%) 0.1 0.01 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 10 Total Harmonic Distortion vs. Output Level (5) (PASSmode, NR-OFF) PASSmode, NR-OFF VS = ±7.0V 100Hz 1kHz 10kHz AIN → PBOUT = 580mVrms = 0dB BIN 1.0 T.H.D. (%) 0.1 0.01 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Rev.5, Oct. 1999, page 33 of 69 HA12215F Total Harmonic Distortion vs. Frequency (1) RECmode, NR-OFF, VS = 7.0V RIN RECOUT = 300mVrms 10dB 0dB 10dB 0.1 T.H.D. (%) 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (2) RECmode, NR-ON, VS = 7.0V RIN RECOUT = 300mVrms 10dB 0dB 10dB 0.1 T.H.D. (%) 0.01 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 34 of 69 HA12215F Total Harmonic Distortion vs. Frequency (3) PBmode, NR-OFF, VS = ±7.0V AIN → PBOUT = 580mVrms BIN 10dB 0dB −10dB 0.1 T.H.D. (%) 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (4) PBmode, NR-ON, VS = ±7.0V AIN → PBOUT = 580mVrms BIN 10dB 0dB −10dB 0.1 T.H.D. (%) 0.01 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 35 of 69 HA12215F Total Harmonic Distortion vs. Frequency (5) PASSmode, NR-OFF, VS = ±7.0V AIN → PBOUT = 580mVrms BIN 10dB 0dB −10dB 0.1 T.H.D. (%) 0.01 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R→L) (1) −20 VS = ±5.0V, ±7.0V, ±8.0V RIN → RECOUT, Vin = +12dB RECmode, R → L −40 Channel Separation (dB) −60 −80 NR-ON NR-OFF −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 36 of 69 HA12215F Channel Separation vs. Frequency (R→L) (2) −20 VS = ±5.0V, ±7.0V, ±8.0V RIN → PBOUT, Vin = +12dB RECmode, R → L −40 Channel Separation (dB) −60 −80 NR-ON / OFF −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L→R) (3) −20 VS = ±5.0V, ±7.0V, ±8.0V RIN → RECOUT, Vin = +12dB RECmode, L → R −40 Channel Separation (dB) −60 NR-ON −80 NR-OFF −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 37 of 69 HA12215F Channel Separation vs. Frequency (L→R) (4) −20 VS = ±5.0V, ±7.0V, ±8.0V RIN → PBOUT, Vin = +12dB RECmode, L → R −40 Channel Separation (dB) −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R→L) (1) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → PBOUT, Vin = +10dB R→L −20 Channel Separation (dB) −40 −60 NR-OFF NR-ON −80 −100 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 38 of 69 HA12215F Channel Separation vs. Frequency (R→L) (2) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → RECOUT, Vin = +10dB R→L −20 Channel Separation (dB) −40 −60 NR-ON / OFF −80 −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R→L) (3) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → PBOUT, Vin = +10dB R→L −20 Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 39 of 69 HA12215F Channel Separation vs. Frequency (R→L) (4) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → RECOUT, Vin = +10dB R→L −20 Channel Separation (dB) −40 −60 NR-ON / OFF −80 −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L→R) (5) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → PBOUT, Vin = +10dB L→R −20 Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 40 of 69 HA12215F Channel Separation vs. Frequency (L→R) (6) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → RECOUT, Vin = +10dB L→R −20 Channel Separation (dB) −40 −60 −80 NR-ON / OFF −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L→R) (7) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → PBOUT, Vin = +10dB L→R −20 Channel Separation (dB) −40 −60 −80 NR-OFF NR-ON −100 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 41 of 69 HA12215F Channel Separation vs. Frequency (L→R) (8) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → RECOUT, Vin = +10dB L→R −20 Channel Separation (dB) −40 −60 −80 NR-ON / OFF −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R→L) (1) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → PBOUT, Vin = +10dB PASSmode, R → L −20 Channel Separation (dB) −40 −60 −80 −100 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 42 of 69 HA12215F Channel Separation vs. Frequency (R→L) (2) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → PBOUT, Vin = +10dB PASSmode, R → L −20 Channel Separation (dB) −40 −60 −80 −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L→R) (3) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → PBOUT, Vin = +10dB PASSmode, L → R −20 Channel Separation (dB) −40 −60 −80 −100 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 43 of 69 HA12215F Channel Separation vs. Frequency (L→R) (4) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → PBOUT, Vin = +10dB PASSmode, L → R −20 Channel Separation (dB) −40 −60 −80 −100 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (AIN→BIN) (1) −20 VS = ±5.0V, ±7.0V, ±8.0V PBmode, PBOUT Vin = +12dB, AIN → BIN −40 NR-OFF Crosstalk (dB) −60 −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 44 of 69 HA12215F Crosstalk vs. Frequency (BIN→AIN) (2) −20 VS = ±5.0V, ±7.0V, ±8.0V PBmode, PBOUT Vin = +12dB, BIN → AIN −40 Crosstalk (dB) −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (AIN→BIN) (3) −20 VS = ±7.0 PBmode, RECOUT Vin = +12dB, AIN → BIN −40 Crosstalk (dB) −60 NR-ON / OFF −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 45 of 69 HA12215F Crosstalk vs. Frequency (BIN→AIN) (4) −20 VS = ±7.0 PBmode, RECOUT Vin = +12dB, BIN → AIN −40 Crosstalk (dB) −60 NR-ON / OFF −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PBmode→PASSmode) (1) −20 VS = ±5.0, ±7.0, ±8.0 AIN → RECOUT Vin = +12dB PBmode → PASSmode −40 Crosstalk (dB) −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 46 of 69 HA12215F Crosstalk vs. Frequency (PBmode→PASSmode) (2) −20 VS = ±5.0, ±7.0, ±8.0 BIN → RECOUT Vin = +12dB PBmode → PASSmode −40 Crosstalk (dB) −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PASSmode→PBmode) (3) −20 VS = ±5.0, ±7.0, ±8.0 RIN → RECOUT, Lch Vin = +12dB PASSmode → PBmode −40 Crosstalk (dB) −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 47 of 69 HA12215F Crosstalk vs. Frequency (RECmode→PASSmode) (Rch) (1) −20 VS = ±5.0, ±7.0, ±8.0 RIN → PBOUT, Rch Vin = +12dB RECmode → PASSmode −40 Crosstalk (dB) −60 8V 5V −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (RECmode→PASSmode) (Lch) (2) −20 VS = ±5.0, ±7.0, ±8.0 RIN → PBOUT, Lch Vin = +12dB RECmode → PASSmode −40 Crosstalk (dB) −60 −80 5V 8V −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 48 of 69 HA12215F Crosstalk vs. Frequency (PASSmode→RECmode) (Rch) (1) −20 VS = ±5.0, ±7.0, ±8.0 AIN → PBOUT, Rch Vin = +12dB PASSmode → RECmode −40 Crosstalk (dB) −60 5V −80 8V −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PASSmode→RECmode) (Rch) (2) −20 VS = ±5.0, ±7.0, ±8.0 BIN → PBOUT, Rch Vin = +12dB PASSmode → RECmode −40 Crosstalk (dB) −60 8V −80 5V −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 49 of 69 HA12215F Crosstalk vs. Frequency (PASSmode→RECmode) (Lch) (3) −20 VS = ±5.0, ±7.0, ±8.0 AIN → PBOUT, Lch Vin = +12dB PASSmode → RECmode −40 Crosstalk (dB) −60 5V 8V −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PASSmode→RECmode) (Lch) (4) −20 VS = ±5.0, ±7.0, ±8.0 BIN → PBOUT, Lch Vin = +12dB PASSmode → RECmode −40 Crosstalk (dB) −60 5V −80 8V −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 50 of 69 HA12215F Line Mute vs. Frequency −20 VS = ±7.0V AIN → PBOUT BIN Vin = +12dB −40 PBmode Line Mute (dB) −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k REC Mute Attenuation vs. Frequency −20 VS = ±7.0V EQIN → EQOUT Norm speed, Norm tape Vin = +14dB −40 REC Mute Attenuation (dB) −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 51 of 69 HA12215F Ripple Rejection Ratio vs. Frequency (RECmode) (1) 20 VS = ±7.0V VCC in RECmode EQOUT(NN) Ripple Rejection Ratio R.R.R. (dB) 0 −20 RECOUT NR-ON PBOUT −40 RECOUT NR-OFF −60 −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (RECmode) (2) 20 VS = ±7.0V VEE in RECmode EQOUT(NN) Ripple Rejection Ratio R.R.R. (dB) 0 −20 RECOUT NR-ON RECOUT NR-OFF PBOUT −40 −60 −80 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 52 of 69 HA12215F Ripple Rejection Ratio vs. Frequency (PBmode) (1) 20 VS = ±7.0V VCC in PBmode EQOUT(NN) Ripple Rejection Ratio R.R.R. (dB) 0 −20 PBOUT NR-OFF −40 PBOUT NR-ON RECOUT −60 −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (PBmode) (2) 20 VS = ±7.0V VEE in PBmode EQOUT(NN) Ripple Rejection Ratio R.R.R. (dB) 0 PBOUT NR-OFF −20 PBOUT NR-ON −40 −60 RECOUT −80 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 53 of 69 HA12215F Ripple Rejection Ratio vs. Frequency (PASSmode) (1) 20 VS = ±7.0V VCC in PASSmode EQOUT(NN) Ripple Rejection Ratio R.R.R. (dB) 0 −20 RECOUT NR-ON −40 RECOUT NR-OFF −60 PBOUT −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (PASSmode) (2) 20 VS = ±7.0V VEE in PASSmode EQOUT(NN) Ripple Rejection Ratio R.R.R. (dB) 0 −20 RECOUT NR-ON −40 PBOUT −60 RECOUT NR-OFF −80 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 54 of 69 HA12215F Equalizer Amp. Gain vs. Frequency (1) 55 50 45 40 REC-EQ Gain (dB) VS = ±7.0V Norm speed Crom 35 Metal 30 25 20 Norm 15 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (2) 55 50 45 40 REC-EQ Gain (dB) VS = ±7.0V High speed Crom 35 30 25 20 15 10 5 10 Norm Metal 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 55 of 69 HA12215F Equalizer Amp. Gain vs. Frequency (RECcal) 55 VS = ±7.0V REC-cal 50 Norm speed, Norm tape 45 40 REC-EQ Gain (dB) 35 30 25 20 15 10 5 10 REC-cal = 5.0V REC-cal = 2.5V REC-cal = 0V 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (GPcal) 55 VS = ±7.0V GP-cal 50 Norm speed, Norm tape 45 40 REC-EQ Gain (dB) GP-cal = 0V GP-cal = 2.5V 35 30 25 20 15 10 5 10 GP-cal = 5.0V 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 56 of 69 HA12215F Equalizer Total Harmonic Distortion vs. Output Level (1) 100 NNmode EQIN → EQOUT VS = ±7.0V 20Hz 1kHz 5kHz 10kHz add BOOST C REC-EQ T.H.D. (%) 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Equalizer Total Harmonic Distortion vs. Output Level (2) 100 NCmode EQIN → EQOUT VS = ±7.0V 20Hz 1kHz 5kHz 10kHz add BOOST C REC-EQ T.H.D. (%) 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Rev.5, Oct. 1999, page 57 of 69 HA12215F Equalizer Total Harmonic Distortion vs. Output Level (3) 100 NMmode EQIN → EQOUT VS = ±7.0V 20Hz 1kHz 5kHz 10kHz add BOOST C REC-EQ T.H.D. (%) 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Equalizer Total Harmonic Distortion vs. Output Level (4) 100 HNmode EQIN → EQOUT VS = ±7.0V 20Hz 2kHz 10kHz 20kHz add BOOST C REC-EQ T.H.D. (%) 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Rev.5, Oct. 1999, page 58 of 69 HA12215F Equalizer Total Harmonic Distortion vs. Output Level (5) 100 HCmode EQIN → EQOUT VS = ±7.0V 20Hz 2kHz 10kHz 20kHz add BOOST C REC-EQ T.H.D. (%) 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Equalizer Total Harmonic Distortion vs. Output Level (6) 100 HMmode EQIN → EQOUT VS = ±7.0V 20Hz 2kHz 10kHz 20kHz add BOOST C REC-EQ T.H.D. (%) 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Rev.5, Oct. 1999, page 59 of 69 HA12215F Equalizer Signal to Noise Ratio vs. Split Supply Voltage (1) 70 REC-EQ S/N (dB) 65 60 f = 1kHz A-WTG filter Norm speed NN NC NM 5 6 7 8 Split Supply Voltage (V) 9 55 Equalizer Signal to Noise Ratio vs. Split Supply Voltage (2) 70 REC-EQ S/N (dB) 65 60 f = 1kHz A-WTG filter High speed HN HC HM 5 6 7 8 Split Supply Voltage (V) 9 55 Rev.5, Oct. 1999, page 60 of 69 HA12215F Equalizer Vomax vs. Split Supply Voltage (1) 20 f = 1kHz add BOOST C NN NC NM 15 REC-EQ Vomax (dB) 10 5 0 5 6 7 8 Split Supply Voltage (V) 9 Equalizer Vomax vs. Split Supply Voltage (2) 20 f = 1kHz add BOOST C HN HC HM 15 REC-EQ Vomax (dB) 10 5 0 5 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 61 of 69 HA12215F RECcal Correction vs. VREC-cal 5 4 3 RECcal Correction (dB) f = 3kHz GP-cal OPEN VS = ±7V Norm speed Norm tape 2 1 0 −1 −2 −3 −4 −5 0 1 2 3 VREC-cal (V) GPcal Correction vs. VGP-cal 4 5 5 4 3 GPcal Correction (dB) 2 1 0 −1 −2 −3 −4 −5 f = 12kHz REC-cal OPEN VS = ±7V Norm speed Norm tape 5 6 7 VGP-cal (V) 8 9 Rev.5, Oct. 1999, page 62 of 69 HA12215F ALC Operate Level vs. Input Level 10 Output Level RECOUT (dB) 0dB = 300mVrms 8 f = 1kHz, VS ±7.0V, Both channel input (L, Rch) RIN → RECOUT, RIN = 192.8mVrms = 0dB cal = 5V TYPE I, IV TYPE II cal = 5V 6 cal = 2.5V 4 cal = 2.5V 2 0dB = 192.8mVrms cal = 0V 0 cal = 0V −2 −5 Vin R4 13k C4 0.1µ R3 2.2k 56 RIN 55 ALC 0 10 20 5 15 25 Input Level Vin (dB) RIN = 192.8mVrms = 0dB ALC Total Harmonic Distortion vs. Input Level (1) 30 35 f = 1kHz, VS = ±7.0V TYPE I,IV (Norm tape, Metal tape) 1.0 Cal = 0V Cal = 2.5V Cal = 5V T.H.D. (%) 0.1 0.01 −5 0 5 10 15 20 Input Level Vin (dB) 25 30 Rev.5, Oct. 1999, page 63 of 69 HA12215F ALC Total Harmonic Distortion vs. Input Level (2) f = 1kHz, VS = ±7.0V TYPE II (Crom tape) 1.0 Cal = 0V Cal = 2.5V Cal = 5V T.H.D. (%) 0.1 0.01 −5 0 5 10 15 20 Input Level Vin (dB) 25 30 ALC Operate Level vs. Frequency 10 Operate Level RECOUT (dB) 0dB = 300mVrms 8 ALC-CAL = 5V 6 4 ALC-CAL = 2.5V 2 0 ALC-CAL = 0V −2 −4 Vin = ±12dB, Both channel input (L, Rch), RIN → RECOUT TYPE I, IV (Norm tape, Metal tape) TYPE II (Crom tape) 100 1k Frequency (Hz) 10k 50k Rev.5, Oct. 1999, page 64 of 69 HA12215F Bias Output Voltage vs. Load Current 8 VS = ±7.0V Bias ON 31 V I 270Ω Bias Output Voltage (V) 7 6 5 0 1 2 3 4 5 Load Current I (mA) 6 7 MS Sensing Level vs. Frequency 0 VS = ±7.0V, MSOUT AIN → PBOUT = 580mVrms = 0dB Lo → Hi Hi → Lo MS Sensing Level (dB) −10 −20 −30 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 65 of 69 HA12215F MS Amp. Gain vs. Frequency 40 MAOUT 30 VS = ±7.0V Gain (dB) 20 MSIN 10 0 −10 10 100 1k Frequency (Hz) 10k 100k No-Signal Sensing Time vs. Resistance 500 VS = ±7.0V, f = 5kHz, MSOUT AIN → PBOUT = 580mVrms 0dB −10dB −20dB No-Signal Sensing Time (ms) 100 10 PBOUT MSOUT C13 0.33µ 14 VCC R13 1 100k Resistance R13 (Ω) 1M Rev.5, Oct. 1999, page 66 of 69 HA12215F Signal Sensing Time vs. Capacitance 100 VS = ±7.0V, f = 5kHz, MSOUT AIN → PBOUT = 580mVrms 0dB −10dB −20dB Signal Sensing Time (ms) 10 PBOUT MSOUT 1 14 C13 VCC R13 330k 0.01 0.1 Capacitance C13 (µF) 0.5 Rev.5, Oct. 1999, page 67 of 69 HA12215F Package Dimensions 12.8 ± 0.3 10.0 42 29 28 Unit: mm 43 12.8 ± 0.3 56 1 *0.32 ± 0.08 0.30 ± 0.06 0.13 M 15 14 2.54 Max 0.65 0.775 0.35 *0.17 ± 0.05 0.15 ± 0.04 2.20 0.775 1.40 0° − 8° 0.1 +0.1 −0.09 0.10 0.60 ± 0.15 Hitachi Code JEDEC EIAJ Weight (reference value) FP-56   0.5 g *Dimension including the plating thickness Base material dimension Rev.5, Oct. 1999, page 68 of 69 HA12215F Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : -538-6533/538-8577 Fax : -538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : -(2)-2718-3666 Fax : -(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : -(2)-735-9218 Fax : -(2)-730-0281 URL : http://www.hitachi.com.hk Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: (408) 433-1990 Fax: (408) 433-0223 Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.5, Oct. 1999, page 69 of 69
HA12215F 价格&库存

很抱歉,暂时无法提供与“HA12215F”相匹配的价格&库存,您可以联系我们找货

免费人工找货