0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HA17723F

HA17723F

  • 厂商:

    HITACHI(日立)

  • 封装:

  • 描述:

    HA17723F - Precision Voltage Regulator - Hitachi Semiconductor

  • 数据手册
  • 价格&库存
HA17723F 数据手册
HA17723/F/P Precision Voltage Regulator Description The HA17723 high-accuracy general-purpose voltage regulator features a very low stand-by current, (quiescent current) a low temperature drift, and high ripple rejection ratio. If you need over than 150mA output current, adding external PNP or NPN transistor. This voltage regulator is suitable for various applications, for example, series or parallel regulator, switching regulator. Ordering Information Type No. HA17723 HA17723F HA17723P Industrial use Application Commercial use Package DP-14 FP-14DA DP-14 Pin Arrangement NC CURRENT LIMIT CURRENT SENSE VIN (–) VIN (+) VREF VEE 1 2 3 4 5 6 7 (Top View) 14 13 12 11 10 9 8 NC COMP VCC VC VOUT VZ NC HA17723/F/P Circuit Schematic VCC VC VIN (+) VREF VIN (–) VOUT COMP CL CS VZ VEE 2 HA17723/F/P Absolute Maximum Ratings (Ta = 25°C) Item Supply voltage Input/Output voltage differential Differential input voltage Maximum output current Current from VREF Power dissipation Operating temperature Storage temperature Symbol VCC Vdiff (IN-O) VIN (diff) I OUT I REF PT Topr Tstg HA17723/P 40 40 ±5 150 15 830 (Note 1) 0 to +70 / –20 to +75 –55 to +125 HA17723F 40 40 ±5 150 15 625 (Note 2) 0 to +70 –55 to +125 Unit V V V mA mA mW °C °C Notes: 1. Above 25°C derate by 8.3mW/°C 2. Allowable temperature of IC junction part, Tj (max), is as shown below. Tj (max) = θj - a • Pc (max)+Ta (θ j - a is thermal resistance value during mounting, and Pc (max) is the maximum value of IC power dissipation.) Therefore, to keep Tj (max) ≤ 125°C, wiring density and board material must be selected according to the board thermal conductivity ratio shown below. Be careful that the value of Pc (max) does not exceed that PT. Thermal resistance θj–a (°C/W) 240 220 200 180 160 140 120 100 80 SOP14 using paste containing compound 1 2 3 SOP14 without compound 40 mm Board 0.8 t ceramic or 1.5 t epoxy 0.5 (1) (2) (3) 1 2 5 10 20 Board thermal conductivity (W/m°C) Glass epoxy board with 10% wiring density Glass epoxy board with 30% wiring density Ceramic board with 96% alumina coefficient 3 HA17723/F/P Electrical Characteristics (Ta = 25°C) Item Line regulation Symbol δVO Line Min — — — — Load regulation δVO Load — — — Ripple rejection RREJ — — Average temperature coefficient of output voltage δVO/ δT — — Reference voltage Standby current Short circuit current limit VREF I ST I SC 6.80 — — Typ 0.01 0.1 — — 0.03 — — 74 86 0.003 0.003 7.15 — 65 Max 0.1 0.5 0.4 0.3 0.2 0.7 0.6 — — 0.018 0.015 7.50 4.0 — %/°C %/°C V mA mA Unit % % % % % % % dB Test Conditions VIN = 12 to 15V VIN = 12 to 40V VIN = 12 to 15V, TA = –20 to +75°C VIN = 12 to 15V, Ta = 0 to +70°C I OUT = 1 to 50mA VIN = 12 to 15V, TA = –20 to +75°C I OUT = 1 to 50mA, Ta = 0 to +70°C f = 50Hz to 10kHz CREF = 0 CREF = 5µF TA = –20 to +75°C Ta = 0 to +70°C VIN = VCC = VC = 12V, VEE = 0 VIN = 30V, IL = 0 RSC = 10Ω, VOUT = 0 Electrical Characteristics Measuring Circuit VIN VCC VREF VC VOUT CL CS RSC R3 C1 VOUT R1 CREF R2 VIN(+) VIN(+) VEE COMP VIN = VCC = VC = 12V, VEE = 0, VOUT = 5.0V, IL = 1mA, RSC = 0, C1 = 100pF, CREF = 0, R2 ≈ 5kΩ, R3 = R1R2/(R1+R2) 4 HA17723/F/P HA17723 Applications Fixed Voltage Source in Series Low Voltage (2 to 7 V) Regulator: Figure 1 shows the construction of a basic low voltage regulator. The divider (resistors R1 and R2 ) from VREF makes the reference voltage, which will be provided to the noninverted input of the error amplifier, less than output voltage. In the fixed voltage source where the output voltage will be fed back to the error amplifier directly as shown in figure 1. Output voltage will be divided VREF since the output voltage is equal to the reference voltage. Thus, the output voltage VOUT is: VOUT = nVREF, n = R2 R1 + R2 VIN VCC VREF R1 2.15kΩ CREF 1µF R2 4.99kΩ VC VOUT CL CS VIN(+) VIN(–) VEE RSC = 0 VOUT R3 1.5kΩ C1 COMP 100pF Figure 1 Low Voltage (2 to 7 V) Regulator High Voltage (7 to 37 V) Regulator: Figure 2 shows the construction of a regulator whose output voltage is higher than the reference voltage, VREF. VREF is added to the non-inverted input of the error amplifier via a resistor, R3. The feedback voltage is produced by dividing the output voltage with resistors R1 and R2. Thus, the output voltage VOUT is: VOUT = VREF R2 , n= n R1 + R2 VIN VCC VREF R3 3.8kΩ VIN(+) VEE VC VOUT CL CS VIN(–) COMP RSC = 0 VOUT R1 7.87kΩ R2 C1 100pF 7.15kΩ Figure 2 High Voltage (7 to 37 V) Regulator 5 HA17723/F/P Negative Voltage Regulator: Figure 3 shows the construction of a so-called negative voltage regulator, which generates a negative output voltage with regard to GND. Assume that the output voltage, –VOUT, increases in the negative direction. As the voltage across the R 1 is larger than that across the R3, which provides the reference voltage, the output current of the error amplifier increases. In the control circuit, the impedance decreases with the increase of input current, which makes the base current of the external transistor Q approach GND. As a result, the output voltage returns to the established value and output voltage is stable. The output voltage –VOUT of this circuit is: –VOUT = – R1 + R2 R3 × V R3 + R4 R1 REF (R1 + R2) · (R3 + R4) R3 =– V × R2 · (R3 + R4) – R4 · (R1 + R2) R3 + R4 REF R2 11.5kΩ VCC VREF VC VOUT VZ CL R5 2kΩ VIN Q R4 3kΩ CS VIN(+) VIN(–) VEE R3 R1 3kΩ 3.65kΩ C1 COMP 100pF VOUT Figure 3 Negative Voltage Regulator How to Increase the Output Current: To increase the output current, you must increase the current capacity of the control circuit. Figures 4 and 5 show examples with external transistors. VIN VCC VREF VC VOUT CL CS VIN(+) VEE VIN(–) Q RSC 0.7Ω VOUT R1 7.87kΩ R2 C1 500pF 7.15kΩ COMP Figure 4 Increasing Output Current (1) 6 HA17723/F/P VIN R3 60Ω VCC VREF R1 2.15kΩ R2 5.0kΩ VC Q VOUT CL RSC 0.4Ω VOUT CS VIN(+) VIN(–) VEE COMP C1 1nF Figure 5 Increasing Output Current (2) Fixed Voltage Source in Parallel Control Figure 6 shows the circuit of a fixed voltage source in parallel control. VIN VCC VREF R1 2kΩ VC VOUT VZ CL CS VIN(–) VEE COMP C1 5nF R3 100Ω R4 100Ω Q1 VOUT R2 5kΩ Figure 6 Fixed Voltage Source in Shunt Regulator Switching Regulator Figure 7 shows a switching regulator circuit. The error amplifier, control circuit, and forward feedback circuit R4 and R3 operate in together as a comparator, and make the external transistors Q1 and Q 2 to turn on/off. In this circuit, the self-oscillation stabilizes the output voltage and the change in output is absorbed by the changes of the switches conducting period. Figures 8 and 9 show a negative voltage switching regulator circuit and its characteristics. 7 HA17723/F/P VIN R5 100Ω 3kΩ Q1 R6 51Ω Q2 L1 1.2mH VOUT 5V VCC VC VREF VOUT R1 2.15kΩ R3 CL CS D1 C1 0.1µF R2 VIN(+)VIN(–) 1kΩ R4 VEE COMP 5kΩ 1MΩ C2 100µF Figure 7 Positive Voltage Switching Regulator VIN 100Ω Q2 R7 R5 1kΩ R6 220Ω Q1 R2 4kΩ C1 0.1µF R3 1kΩ VCC VC VREF VOUT VZ CL CS D1 L1 1.2mH VOUT C –15V 100µF 2 VIN(+) VIN(–) R4 R1 VEE COMP C1 15pF 3.65kΩ 1MΩ Figure 8 Negative Voltage Switching Regulator 8 HA17723/F/P Input – Output Characteristics –24 Output Voltage VOUT (V) –20 –16 –12 –8 –4 Ta = 25°C –4 –8 –12 –16 –20 –24 –28 Input Voltage VIN (V) Line Regulation –32 –36 –40 –15.360 –15.340 Output Voltage VOUT (V) –15.320 –15.300 –15.280 –15.260 –15.240 –24 IOUT = 0.2A Ta = –25°C 25 75 –28 –32 –36 Input Voltage VIN (V) Load Regulation –40 Output Voltage VOUT (V) –15.600 –15.500 –15.400 –15.300 25 –15.200 –15.100 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Output Current IOUT (A) 75 Ta = –25°C VIN = 25 V Figure 9 Negative Voltage Switching Regulator Operating Characteristics 9 HA17723/F/P Floating-Type Fixed Voltage Source Voltage sources of the floating type or boost type are typically employed when high voltage output is required. Figure 10 shows the circuit of a floating-type fixed voltage source. Considering the stabilization in this circuit, assume that the output voltage increases. At the input terminal of the error amplifier the noninverted input will become low compared with the inverted input, and the output current of the error amplifier decreases. Then, the current from the terminal VZ in the control circuit decreases. As a result the base current of the external resistor Q1 will decrease and collector current will decrease, controlling increase of the output voltage. The output voltage VOUT in the circuit in figure 10 VOUT = R1 + R2 R4 × – 1 VREF R3 + R4 R1 Figure 11 is the circuit diagram of a negative fixed voltage source in floating type. VIN R5 6.2kΩ 2.0W Q RSC 1Ω VCC VREF D 12 V HZ12 H R4 3.0kΩ R1 3.57kΩ R3 3.0kΩ VEE VC VOUT VZ CL CS VIN(+) VIN(–) R2 53.7kΩ C1 COMP 1nF VOUT Figure 10 Positive Voltage Floating Regulator R5 10kΩ D12 V HZ12 H R3 3kΩ VCC VC VREF VOUT VZ CL CS C1 100pF R6 10kΩ VIN Q R2 97.6kΩ R1 3.57kΩ VIN(+) VIN(–) R4 3kΩ VEE COMP VOUT Figure 11 Negative Voltage Floating Regulator 10 HA17723/F/P Fixed Voltage Source with Reduction Type Current Limiter VIN VCC VREF R2 2.15kΩ VC VOUT CL CS VIN(+) VIN(–) C1 1nF RSC 30Ω R3 2.7kΩ R4 5.6kΩ VOUT R1 5.0kΩ VEE COMP Figure 12 Fixed Voltage Source with Reduction Type Current Limiter 6.0 5.0 Output Voltage VOUT (V) 4.0 3.0 2.0 1.0 0 VO IOP IOS = R3 + R4 ⋅ VBE R4 ⋅ RSC R3 ⋅ VO R4 ⋅ RSC IOP = IOS + 0 IOS 100 Output Current IOUT (mA) 200 Figure 13 Current Control Characteristics of Fixed Voltage Source with Reduction Type Current Limiter 11 HA17723/F/P Fixed Voltage Source Switching External Control VIN VCC VREF R1 2.15kΩ VC VOUT CL CS VIN(+) VIN(–) RSC 5Ω Note Note: Insert when VOUT ≥ 10V Control Signal VOUT R3 2SC458 K R2 VEE COMP R4 4.99kΩ C1 2kΩ T1 2kΩ 1nF Figure 14 Fixed Voltage Source Switching External Control 6 Ta = 25°C Output Voltage VOUT (V) 5 4 3 2 1 0 0 4 8 12 16 20 24 Time (sec) 28 32 36 40 Figure 15 Operating Characteristics of Fixed Voltage Source Switching External Control 12 HA17723/F/P Characteristic Curves Load Regulation vs. Output Current-1 VOUT = +5V VIN = +12V RSC = 0 Ta = 75°C 0.1 25 –20 0.2 0.2 Load Regulation vs. Output Current-2 VOUT = +5V VIN = –12V RSC = 10Ω Load Regulation δVO Load (%) Load Regulation δVO Load (%) 0.1 Ta = 75°C 25 –20 0 20 40 60 Output Current IOUT 80 100 0 10 20 Output Current IOUT (mA) 30 1.2 Relative Output Voltage vs. Output Current VOUT = +5V VIN = +12V RSC = 10Ω 5 Stand-by Current vs. Input Voltage VOUT = VREF IOUT = 0 Relative Output Voltage (V/V) 1.0 0.8 0.6 0.4 0.2 Ta = 75°C 25 –20 Stand-by Current IST (mA) 4 Ta = –20°C 25 75 3 2 1 0 20 40 60 80 100 Output Current IOUT (mA) 120 0 10 20 30 Input Voltage VIN (V) 40 50 13 HA17723/F/P Line Regulation vs. Input/Output Voltage Differential-1 0.2 VOUT = +5V RSC = 0 IOUT = 1mA V = +3V 0.2 Line Regulation vs. Input/Output Voltage Differential-2 VOUT = +5V RSC = 0 IOUT = 1mA to 50mA Line Regulation δVO Line (%) 0.1 Line Regulation δVO Line (%) 0.1 0 –5 5 15 25 35 45 Input/Output Voltage Differential Vdiff(IN-O) (V) 0 –5 5 15 25 35 45 Input/Output Voltage Differential Vdiff(IN-O) (V) Current Limiting Characteristics 0.9 Output Voltage Differential VO (dev) (mV) Line Transient Response Input Voltage Differential VIN (dev) (V) 200 0.8 Sense Voltage VSC (V) Limit Current ISC (mA) Input Voltage 0.7 0.6 0.5 0.4 0.3 Sense Voltage 150 6 VIN = +12V VOUT = +5V 4 IOUT = 1mA 2 RSC = 0 0 10 Output Voltage 5 –4 0 –5 –2 Limit Current RSC = 5Ω 100 50 0.2 0.1 –100 RSC = 10Ω 0 100 Junction Temperature Tj(°C) 200 –10 5µs/div Time (µs) 14 HA17723/F/P Load Transient Response Output Voltage Differential VO (dev) (mV) Output Current VIN = +12V VOUT = +5V 10 IOUT = 40mA 5 RSC = 0 0 Output Voltage 5 0 –5 –10 5µs/div Time (µs) –5 Output Current Differential IO (dev) (mA) 10 Output Impedance Zout (Ω) Output Impedance vs. Frequency VOUT = 5V VIN = +12V RSC = 0 IL = 50mA CL = 0 1.0 CL = 1µF 0.1 100 1k 10 k 100 k Frequency f (Hz) 1M 15 HA17723/F/P Package Dimensions Unit: mm 19.20 20.32 Max 14 8 6.30 7.40 Max 1 2.39 Max 1.30 7 7.62 0.51 Min 2.54 Min 5.06 Max 2.54 ± 0.25 0.48 ± 0.10 0.25 – 0.05 0° – 15° + 0.10 Hitachi Code JEDEC EIAJ Mass (reference value) DP-14 Conforms Conforms 0.97 g Unit: mm 10.06 10.5 Max 14 8 5.5 1 7 *0.22 ± 0.05 0.20 ± 0.04 2.20 Max 7.80 – 0.30 1.15 + 0.20 1.42 Max 1.27 *0.42 ± 0.08 0.40 ± 0.06 0.10 ± 0.10 0° – 8° 0.70 ± 0.20 0.15 0.12 M Hitachi Code JEDEC EIAJ Mass (reference value) FP-14DA — Conforms 0.23 g *Dimension including the plating thickness Base material dimension 16 HA17723/F/P Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: (408) 433-1990 Fax: (408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: (2) 2718-3666 Fax: (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: (2) 735 9218 Fax: (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. 17
HA17723F 价格&库存

很抱歉,暂时无法提供与“HA17723F”相匹配的价格&库存,您可以联系我们找货

免费人工找货