HA17902 Series
Quad Operational Amplifier
Description
The HA17902 is an internal phase compensation quad operational amplifier that operates on a singlevoltage power supply and is appropriate for use in a wide range of general-purpose control equipment.
Features
• Wide usable power-supply voltage range and single-voltage supply operation • Internal phase compensation • Wide common-mode voltage range and operation for inputs close to the 0 level
Ordering Information
Type No. HA17902PJ HA17902FPJ HA17902FPK HA17902P HA17902FP HA17902 Commercial use Industrial use Application Car use Package DP-14 FP-14DA FP-14DA DP-14 FP-14DA DP-14
HA17902 Series
Pin Arrangement
Vout1 Vin(–)1 Vin(+)1 VCC Vin(+)2 Vin(–)2 Vout2
1 2 3 4 5 6 7 (Top view)
– + + – –
14 Vout4 1
+ +
4
–
13 Vin(–)4 12 Vin(+)4 11 GND 10 Vin(+)3 9 8 Vin(–)3 Vout3
2
3
Circuit Structure (1/4)
Q5 Q2 Vin(–) Q1 Q3 Q4 Q6 C Q7 R1 Vin(+) Q11 Q10 Q8 Q9 Q12 Q13 Vout
2
HA17902 Series
Absolute Maximum Ratings (Ta = 25°C)
Item Power supply voltage Sink current Allowable power dissipation Common-mode input voltage Differential-mode input voltage Operating temperature Storage temperature Symbol VCC Io sink PT VCM Vin(diff) Topr Tstg HA17902/ P 28 50 625*
1
HA17902 PJ 28 50 625*
1
HA17902 FP 28 50 625*
2
HA17902 FPJ 28 50 625*
2
HA17902 FPK 28 25 625*
2
Unit V mA mW V V °C °C
–0.3 to VCC ±VCC –20 to +75 –55 to +125
–0.3 to VCC ±VCC –40 to +85 –55 to +125
–0.3 to VCC ±VCC –20 to +75 –55 to +125
–0.3 to VCC ±VCC –40 to +85 –55 to +125
–0.3 to VCC ±VCC –40 to +125 –55 to +150
Notes: 1. These are the allowable values up to Ta = 50°C. Derate by 8.3mW/°C above that temperature. 2. See notes on SOP Package Usage in Reliability section.
3
HA17902 Series
Electrical Characteristics 1 (VCC = + 15V, Ta = 25°C)
Item Input offset voltage Input offset current Input bias current Power-supply rejection ratio Voltage gain Common-mode rejection ratio Common-mode input voltage range Maximum output voltage amplitude Output voltage Symbol VIO I IO I IB PSRR AVD CMR VCM VOP-P VOH1 VOH2 VOL1 VOL2 Output source current Output sink current Supply current Slew rate Channel separation Io source Io sink I CC SR CS Min — — — — 75 — –0.3 — 13.2 12 — — 15 3 — — — Typ 3 5 30 93 90 80 — 13.6 13.6 13.3 0.8 1.1 — 9 0.8 0.19 120 Max 8 50 500 — — — 13.5 — — — 1 1.8 — — 2 — — Unit mV nA nA dB dB dB V V V V V V mA mA mA V/ µs dB Test Conditions VCM = 7.5V, RS = 50Ω, Rf = 5kΩ I IO = | II– – I I+ |, VCM = 7.5V VCM = 7.5V f = 100Hz, RS = 1kΩ, Rf = 100kΩ RS = 1kΩ, Rf = 100kΩ, RL = ∞ RS = 50Ω, Rf = 5kΩ RS = 1kΩ, Rf = 100kΩ, f = 100Hz f = 100Hz, RS = 1kΩ, Rf = 100kΩ, RL = 20kΩ I OH = –1mA I OH = –10mA I OL = 1mA I OL = 10mA VOH = 10V VOL = 1V Vin = GND, RL = ∞ f = 1.5kHz, VCM = 7.5V, RL = ∞ f = 1kHz
Electrical Characteristics 2 (VCC = + 15V, Ta = – 40 to 125°C)
Item Input offset voltage Input offset current Input bias current Common-mode input voltage range Output voltage Symbol VIO I IO I IB VCM VOH VOL Supply current I CC Min — — — 0 13.0 — — Typ — — — — — — — Max 8 200 500 13.0 — 1.3 4 Unit mV nA nA V V V mA Test Conditions VCM = 7.5V, RS = 50Ω, Rf = 5kΩ VCM = 7.5V , IIO = | II– – I I+ | VCM = 7.5V RS = 1kΩ, Rf = 100kΩ, f = 100Hz I OH = –1mA I OL = 1mA Vin = GND, RL = ∞
4
HA17902 Series
Test Circuits
1. Input offset voltage (VIO), input offset current (IIO), and Input bias current (IIB) test circuit
Rf 5k SW1 RS 50 RS 50 R 10k R 10k SW2
–
VCC Vout
+
Rf 5k VCM
V
SW1 On Off On Off
SW2 On Off Off On
VO VO1 VO2 VO3 VO4
VCM =
1 V 2 CC
VIO =
VO1 1 + Rf / RS VO2 – VO1 R(1 + Rf / RS) | VO4 – VO3 | 2 · R(1 + Rf / RS)
(mV)
IIO =
(nA)
IIB =
(nA)
2. Common-mode rejection ratio (CMR) test circuit
CMR = 20 log VIN · Rf VO · RS (dB)
Rf 5.0k RS 50 VCC
– +
Vout
Vin
RS 50
Rf 5.0k
3. Supply current (ICC) test circuit
A – Vout + VCC
5
HA17902 Series
4. Voltage gain (AVD), slew rate (SR), common-mode input voltage range (VCM), and maximum output voltage amplitude (VOP-P) test circuit.
Vin Rf 100k 40dB 47µ
–+
R 51k
VCC
– D.U.T +
Vout SW1 Rf 20k
Vin
RS 1k V2
RS 1k
Rf 100k
V1 + + – 47µ – 47µ
(1) AVD: RS = 1kΩ , Rf = 100k Ω , R L = ∞, V1 = V2 = 1/2 VCC V AVD = 20 log O + 40 (dB) VIN
(2) SR: f = 1.5kHz, RL = ∞, V1 = V2 = 1/2 VCC
V
SR = V [V/µs] T T
(3) VCM: R S = 1kΩ , Rf = 100k Ω , f = 100Hz, V1 = 1/2 VCC, RL = ∞, and the value of V2 just slightly prior to the point where the output waveform changes. (4) VOP-P:RS = 1kΩ , Rf = 100k Ω , R L : 20kΩ, f = 100Hz, VOP-P = VOH ↔ VOL [VP-P] 5. Output source current (Iosource) test circuit Io source: VOH = 10V
10k + – A VCC VOH
6. Output sink current (Iosink) test circuit Io sink: VOL = 1V
10k – + A VCC VOH
6
HA17902 Series
Characteristics Curve
Input Bias Current vs. Power-Supply Voltage Characteristics
100 Ta = 25°C Vin = 7.5 V 75 90 80
Input Bias Current vs. Ambient Temperature Characteristics
Input Bias Current IIB (nA)
Input Bias Current IIB (nA)
30
70 60 50 40 30 20 10
50
25
0
10
20
0 –55 –35 –15
5
25
45
65
85 105 125
Power-Supply Voltage VCC (V)
Ambient Temperature Ta (°C)
Output Sink Current vs. Ambient Temperature Characteristics
90 90
Output Source Current vs. Ambient Temperature Characteristics Output Sink Current Io source (mA)
80 70 60 50 40 30 20 10 0 –55 –35 –15 5 25 45 65 85 105 125 VCC = 15 V VOH = 10 V
Output Sink Current Io sink (mA)
80 70 60 50 40 30 20 10 0 –55 –35 –15 5 25 45 65
VCC = 15 V VOH = 1 V
85 105 125
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
7
HA17902 Series
Voltage Gain vs. Frequency Characteristics
160 140 VCC = 15 V Ta = 25°C 160 140 Ta = 25°C
Voltage Gain vs. Power-Supply Voltage Characteristics
Voltage Gain AVD (dB)
120 100 80 60 40 20 0 1 10 100 1k 10 k 100 k 1M
Voltage Gain AVD (dB)
120 100 80 60 40 20 0 10 20 30
Frequency f (Hz)
Power-Supply Voltage VCC (V)
Maximum Output Voltage Amplitude vs. Frequency Characteristics
20 4
Supply Current vs. Power-Supply Voltage Characteristics
Ta = 25°C Vin = GND
Maximum Output Voltage Amplitude VOP-P (VP-P)
Supply Current ICC (mA)
15
3
10
2
5
1
0 1k
0 10 k 100 k 1M
10
20
30
Frequency f (Hz)
Power-Supply Voltage VCC (V)
8
HA17902 Series
Slew Rate vs. Power-Supply Voltage Characteristics
0.8 V1 = V2 = 1/2 VCC f = 1.5 kHz 120
Common-Mode Rejection Ratio vs. Frequency Characteristics Common-Mode Rejection Ratio CMR (dB)
VCC = 15 V Ta = 25°C RS = 50 Ω
100 80 60 40 20 0 100
Slew Rate SR (V/µs)
0.6
0.4
0.2
0
10
20
30
1k
10 k
100 k
1M
Power-Supply Voltage VCC (V)
Frequency f (Hz)
9
HA17902 Series
Slew Rate vs. Power-Supply Voltage Characteristics
0.8 V1 = V2 = 1/2 VCC f = 1.5 kHz 120
Common-Mode Rejection Ratio vs. Frequency Characteristics Common-Mode Rejection Ratio CMR (dB)
VCC = 15 V Ta = 25¡C RS = 50 Ω
100 80 60 40 20 0 100
Slew Rate SR (V/ s)
0.6
0.4
0.2
0
10
20
30
1k
10 k
100 k
1M
Power-Supply Voltage VCC (V)
Frequency f (Hz)
10
HA17902 Series
HA17902 Application Examples
The HA17902 is a quad operational amplifier, and consists of four operational amplifier circuits and one bias current circuit. It features single-voltage power supply operation, internal phase compensation, a wide zero-cross bandwidth, a low input bias current, and a high open-loop gain. Thus the HA17902 can be used in a wide range of applications. This section describes several applications using the HA17902. 1. Noninverting Amplifier Figure 1 shows the circuit diagram for a noninverting amplifier. The voltage gain of this amplifier is given by the following formula.
R2 Vout =1+ R1 Vin
+Vin
10k
+ Vout – R2 1M
10k
R1
Figure 1 Noninverting Amplifier 2. Summing Amplifier Since the circuit shown in figure 2 applies +V1 and +V2 to the noninverting input and +V3 and +V4 to the inverting input, the total output will be Vout = V1 + V2 – V3 – V4.
R 100k R 100k R 100k R 100k Vin(+) 100k +
HA17902
+V1 +V2
VCC Vout
– Vin(–) R 100 k
+V3 +V4
Figure 2 Summing Amplifier
11
HA17902 Series
3. High Input Impedance DC Differential Amplifier The circuit shown in figure 3 is a high input impedance DC differential amplifier. This circuit’s common-mode rejection ratio (CMR) depends on the matching between the R1/R2 and R4/R3 resistance ratios. This amplifier’s output is given by the following formula.
Vout = 1 + R4 R3 (V2 – V1)
R2 R1 100kΩ V1 V2 100kΩ – + R3 100kΩ – +
R4 100kΩ Vout
Figure 3 High Input Impedance DC Differential Amplifier 4. Voltage Controlled Oscillator Figure 4 shows an oscillator circuit in which the amplifier A 1 is an integrator, the amplifier A 2 is a comparator, and transistor Q1 operates as a switch that controls the oscillator frequency. If the output Vout1 is at the low level, this will cut off transistor Q1 and cause the A1 inverting input to go to a higher potential than the noninverting input. Therefore, A1 will integrate this negative input state and its output level will decrease. When the A1 integrator output becomes lower than the A2 comparator noninverting input level (VCC/2) the comparator output goes high. This turns on transistor Q 1 causing the integrator to integrate a positive input state and for its output to increase. This operation generates a square wave on Vout1 and a triangular wave on Vout2.
C 0.05µF 100k +VC R 100k 51k R/2 50k Q1 VCC
– +
A1
– +
VCC A2 VCC/2 HA17902 Vout1 Vout2
HA17902
51k 10k
Figure 4 Voltage Controlled Oscillator
12
HA17902 Series
Package Dimensions
Unit: mm
19.20 20.32 Max 14 8
6.30 7.40 Max
1 2.39 Max
1.30
7 7.62
0.51 Min
2.54 Min 5.06 Max
2.54 ± 0.25
0.48 ± 0.10
0.25 – 0.05 0° – 15°
+ 0.10
Hitachi Code JEDEC EIAJ Mass (reference value)
DP-14 Conforms Conforms 0.97 g
Unit: mm
10.06 10.5 Max 14 8
5.5
1
7
*0.22 ± 0.05 0.20 ± 0.04 2.20 Max
7.80 – 0.30 1.15
+ 0.20
1.42 Max
1.27 *0.42 ± 0.08 0.40 ± 0.06
0.10 ± 0.10
0° – 8°
0.70 ± 0.20
0.15 0.12 M
Hitachi Code JEDEC EIAJ Mass (reference value) FP-14DA — Conforms 0.23 g
*Dimension including the plating thickness Base material dimension
13
HA17902 Series
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: (408) 433-1990 Fax: (408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: (2) 2718-3666 Fax: (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: (2) 735 9218 Fax: (2) 730 0281 Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
14