0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HT32F53231

HT32F53231

  • 厂商:

    HOLTEK(合泰)

  • 封装:

    QFN32

  • 描述:

    QFN32

  • 数据手册
  • 价格&库存
HT32F53231 数据手册
HT32F53231/HT32F53241 HT32F53242/HT32F53252 Datasheet 32-Bit Arm® Cortex®-M0+ 5V CAN Microcontroller, up to 128 KB Flash and up to 16 KB SRAM with 2 Msps ADC, CMP, CAN, PDMA, DIV, USART, UART, SPI, I2C, GPTM, MCTM, PWM, BFTM, EBI, LEDC, CRC, UID, RTC and WDT Revision: V1.00 Date: March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Table of Contents 1 General Description................................................................................................. 6 2 Features.................................................................................................................... 7 3 Overview................................................................................................................. 16 Device Information................................................................................................................ 16 Block Diagram...................................................................................................................... 17 Memory Map......................................................................................................................... 19 Clock Structure..................................................................................................................... 22 Rev. 1.00 2 of 56 March 06, 2024 Table of Contents Core........................................................................................................................................ 7 On-Chip Memory.................................................................................................................... 7 Flash Memory Controller – FMC............................................................................................. 7 Reset Control Unit – RSTCU.................................................................................................. 7 Clock Control Unit – CKCU..................................................................................................... 8 Power Management Control Unit – PWRCU.......................................................................... 8 External Interrupt / Event Controller – EXTI........................................................................... 8 Comparator – CMP (HT32F53242/HT32F53252 Only).......................................................... 9 Analog to Digital Converter – ADC......................................................................................... 9 I/O Ports – GPIO..................................................................................................................... 9 Motor Control Timer – MCTM .............................................................................................. 10 General-Purpose Timer – GPTM.......................................................................................... 10 Pulse-Width-Modulation Timer – PWM................................................................................. 10 Basic Function Timer – BFTM.............................................................................................. 11 Watchdog Timer – WDT........................................................................................................ 11 Real-Time Clock – RTC........................................................................................................ 11 Inter-integrated Circuit – I2C................................................................................................. 11 Serial Peripheral Interface – SPI.......................................................................................... 12 Universal Synchronous Asynchronous Receiver Transmitter – USART............................... 12 Universal Asynchronous Receiver Transmitter – UART....................................................... 13 Controller Area Network – CAN............................................................................................ 13 Cyclic Redundancy Check – CRC........................................................................................ 13 Peripheral Direct Memory Access – PDMA.......................................................................... 14 Hardware Divider – DIV........................................................................................................ 14 LED Controller – LEDC......................................................................................................... 14 External Bus Interface – EBI (HT32F53242/HT32F53252 Only).......................................... 15 Unique Identifier – UID......................................................................................................... 15 Debug Support...................................................................................................................... 15 Package and Operation Temperature................................................................................... 15 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 4 Pin Assignment...................................................................................................... 23 5 Electrical Characteristics...................................................................................... 38 6 Package Information............................................................................................. 51 SAW Type 32-pin QFN (4mm × 4mm × 0.75mm) Outline Dimensions................................. 52 SAW Type 46-pin QFN (6.5mm × 4.5mm × 0.75mm) Outline Dimensions........................... 53 48-pin LQFP (7mm × 7mm) Outline Dimensions.................................................................. 54 64-pin LQFP (7mm × 7mm) Outline Dimensions.................................................................. 55 Rev. 1.00 3 of 56 March 06, 2024 Table of Contents Absolute Maximum Ratings.................................................................................................. 38 Recommended DC Operating Conditions............................................................................ 38 On-Chip LDO Voltage Regulator Characteristics.................................................................. 38 Power Consumption............................................................................................................. 39 Reset and Supply Monitor Characteristics............................................................................ 41 External Clock Characteristics.............................................................................................. 41 Internal Clock Characteristics............................................................................................... 43 System PLL Characteristics.................................................................................................. 43 Memory Characteristics........................................................................................................ 43 I/O Port Characteristics......................................................................................................... 44 ADC Characteristics............................................................................................................. 45 Internal Reference Voltage Characteristics.......................................................................... 46 Comparator Characteristics.................................................................................................. 46 GPTM / MCTM / PWM Characteristics................................................................................. 47 I2C Characteristics................................................................................................................ 47 SPI Characteristics............................................................................................................... 48 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 List of Tables Table 1. Features and Peripheral List...................................................................................................... 16 Table 2. Register Map.............................................................................................................................. 20 Table 3. HT32F53242/HT32F53252 Pin Assignment ............................................................................. 30 Table 4. HT32F53231/HT32F53241 Pin Assignment.............................................................................. 32 Table 6. HT32F53231/HT32F53241 Pin Description............................................................................... 36 Table 7. Absolute Maximum Ratings........................................................................................................ 38 Table 8. Recommended DC Operating Conditions.................................................................................. 38 Table 9. LDO Characteristics................................................................................................................... 38 Table 10. HT32F53242/HT32F53252 Power Consumption Characteristics............................................ 39 Table 11. HT32F53231/HT32F53241 Power Consumption Characteristics............................................ 40 Table 12. VDD Power Reset Characteristics............................................................................................. 41 Table 13. LVD / BOD Characteristics....................................................................................................... 41 Table 14. High Speed External Clock (HSE) Characteristics................................................................... 41 Table 15. Low Speed External Clock (LSE) Characteristics.................................................................... 42 Table 16. High Speed Internal Clock (HSI) Characteristics..................................................................... 43 Table 17. Low Speed Internal Clock (LSI) Characteristics....................................................................... 43 Table 18. System PLL Characteristics..................................................................................................... 43 Table 19. Flash Memory Characteristics.................................................................................................. 43 Table 20. I/O Port Characteristics............................................................................................................ 44 Table 21. ADC Characteristics................................................................................................................. 45 Table 22. Internal Reference Voltage Characteristics.............................................................................. 46 Table 23. Comparator Characteristics..................................................................................................... 46 Table 24. GPTM / MCTM / PWM Characteristics.................................................................................... 47 Table 25. I2C Characteristics.................................................................................................................... 47 Table 26. SPI Characteristics................................................................................................................... 48 Rev. 1.00 4 of 56 March 06, 2024 List of Tables Table 5. HT32F53242/HT32F53252 Pin Description............................................................................... 33 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 List of Figures Figure 1. HT32F53242/HT32F53252 Block Diagram.............................................................................. 17 Figure 2. HT32F53231/HT32F53241 Block Diagram.............................................................................. 18 Figure 3. Memory Map............................................................................................................................. 19 Figure 4. Clock Structure......................................................................................................................... 22 Figure 6. HT32F53242/HT32F53252 46-pin QFN Pin Assignment......................................................... 24 Figure 7. HT32F53242/HT32F53252 48-pin LQFP Pin Assignment....................................................... 25 Figure 8. HT32F53242/HT32F53252 64-pin LQFP Pin Assignment....................................................... 26 Figure 9. HT32F53231/HT32F53241 32-pin QFN Pin Assignment......................................................... 27 Figure 10. HT32F53231/HT32F53241 46-pin QFN Pin Assignment....................................................... 28 Figure 11. HT32F53231/HT32F53241 48-pin LQFP Pin Assignment...................................................... 29 Figure 12. ADC Sampling Network Model............................................................................................... 45 Figure 13. I2C Timing Diagram................................................................................................................. 48 Figure 14. SPI Timing Diagram – SPI Master Mode................................................................................ 49 Figure 15. SPI Timing Diagram – SPI Slave Mode with CPHA = 1.......................................................... 50 Rev. 1.00 5 of 56 March 06, 2024 List of Figures Figure 5. HT32F53242/HT32F53252 32-pin QFN Pin Assignment......................................................... 23 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 1 General Description The Holtek HT32F53231/HT32F53241/HT32F53242/HT32F53252 devices are high performance, low power consumption 32-bit microcontrollers based around an Arm ® Cortex®-M0+ processor core. The Cortex®-M0+ is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer and including advanced debug support. The above features ensure that the devices are suitable for use in a wide range of applications, especially in areas such as consumer products, handheld equipment, automotive, industrial automation control, battery management system, electronic equipment and so on. Rev. 1.00 6 of 56 March 06, 2024 1 General Description The devices operate at a frequency of up to 60 MHz with a Flash accelerator to obtain maximum efficiency. It provides up to 128 KB of embedded Flash memory for code/data storage and up to 16 KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as Hardware Divider DIV, PDMA, ADC, I2C, UART, USART, SPI, MCTM, CMP, GPTM, PWM, BFTM, LEDC, EBI, CAN, CRC-16/32, 96-bit Unique ID, RTC, WDT, SWDP (Serial Wire Debug Port), etc., are also implemented in the devices. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 2 Features Core 32-bit Arm® Cortex®-M0+ processor core ▆ Up to 60 MHz operating frequency ▆ Single-cycle multiplication ▆ Integrated Nested Vectored Interrupt Controller (NVIC) ▆ 24-bit SysTick timer ▆ On-Chip Memory Up to 128 KB on-chip Flash memory for instruction/data and option byte storage Up to 16 KB on-chip SRAM ▆ Supports multiple boot modes ▆ ▆ The Arm® Cortex®-M0+ processor access and debug access share the single external interface to external AHB peripherals. The processor access takes priority over debug access. The maximum address range of the Cortex®-M0+ is 4 GB since it has a 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex®-M0+ processor to reduce the software complexity of repeated implementation by different device vendors. However, some regions are used by the Arm® Cortex®-M0+ system peripherals. Refer to the Arm® Cortex®-M0+ Technical Reference Manual for more information. Figure 3 in the Overview chapter shows the memory map of the HT32F53231/HT32F53241 and HT32F53242/HT32F53252 series of devices, including code, SRAM, peripheral and other pre-defined regions. Flash Memory Controller – FMC Flash accelerator to obtain maximum efficiency 32-bit word programming with In System Programming (ISP) and In Application Programming (IAP) ▆ Flash protection capability to prevent illegal access ▆ ▆ The Flash Memory Controller, FMC, provides all the necessary functions and pre-fetch buffer for the embedded on-chip Flash Memory. Since the access speed of the Flash Memory is slower than the CPU, a wide access interface with a pre-fetch buffer is provided for the Flash Memory in order to reduce the CPU waiting time which will cause CPU instruction execution delays. Flash Memory word programming/page erase functions are also provided. Reset Control Unit – RSTCU ▆ Rev. 1.00 Supply supervisor ● Power On Reset / Power Down Reset – POR / PDR ● Brown-out Detector – BOD ● Programmable Low Voltage Detector – LVD 7 of 56 March 06, 2024 2 Features The Cortex®-M0+ processor is a very low gate count, highly energy efficient processor that is intended for microcontroller and deeply embedded applications that require an area optimized, low-power processor. The processor is based on the ARMv6-M architecture and supports Thumb® instruction sets, single-cycle I/O ports, hardware multiplier and low latency interrupt respond time. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 The Reset Control Unit, RSTCU, has three kinds of reset, a power on reset, a system reset and an APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller. The resets can be triggered by external signals, internal events and the reset generators. Clock Control Unit – CKCU ▆ The Clock Control Unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), a Phase Lock Loop (PLL), an HSE clock monitor, clock pre-scalers, clock multiplexers, APB clock divider and gating circuitry. The AHB, APB and Cortex®-M0+ clocks are derived from the system clock (CK_SYS) which can come from HSI, HSE, LSI, LSE or system PLL. The Watchdog Timer and Real-Time Clock (RTC) use either the LSI or LSE as their clock source. Power Management Control Unit – PWRCU Flexible power supply: VDD power supply (2.5 V ~ 5.5 V), VDDIO for I/Os (1.8 V ~ 5.5 V) Integrated 1.5 V LDO regulator for MCU core, peripherals and memories power supply ▆ Two power domains: VDD and VCORE. ▆ Three power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2 ▆ ▆ Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in the device provides many types of power saving modes such as Sleep, Deep-Sleep1 and Deep-Sleep2 modes. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption. External Interrupt / Event Controller – EXTI Up to 16 EXTI lines with configurable trigger source and type All GPIO pins can be selected as EXTI trigger source ▆ Source trigger type includes high level, low level, negative edge, positive edge or both edges ▆ Individual interrupt enable, wakeup enable and status bits for each EXTI line ▆ Software interrupt trigger mode for each EXTI line ▆ Integrated deglitch filter for short pulse blocking ▆ ▆ The External Interrupt/Event Controller, EXTI, comprises 16 edge detectors which can generate a wake-up event or interrupt requests independently. Each EXTI line can also be masked independently. Rev. 1.00 8 of 56 March 06, 2024 2 Features External 4 to 16 MHz crystal oscillator External 32.768 kHz crystal oscillator ▆ Internal 8 MHz RC oscillator trimmed to ±1 % accuracy at 5.0 V operating voltage and 25 °C operating temperature ▆ Internal 32 kHz RC oscillator ▆ Integrated system clock PLL ▆ Independent clock divider and gating bits for peripheral clock sources ▆ 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Comparator – CMP (HT32F53242/HT32F53252 Only) Rail-to-rail comparators Configurable negative inputs used for flexible voltage selection ● External CN pin ● Internal 8-bit CVR output ● Internal voltage reference (VREF) ▆ Programmable hysteresis ▆ Programmable respond speed and consumption ▆ Comparator output can be routed to I/O pin, to multiple timers or ADC trigger inputs ▆ 8-bit CVR can be configurable to dedicated I/O for voltage reference ▆ Interrupt generation capability with wakeup from Sleep, Deep-Sleep1 or Deep-Sleep2 mode through the EXTI controller ▆ ▆ Analog to Digital Converter – ADC 12-bit SAR ADC engine Up to 2 Msps conversion rate ▆ Up to 12 external analog input channels ▆ ▆ A 12-bit multi-channel Analog to Digital Converter is integrated in the devices. There are multiplexed channels, which include 12 external channels on which the external analog signal can be supplied and 2 internal channels. If the input voltage is required to remain within a specific threshold window, the Analog Watchdog function will monitor and detect the signals. An interrupt will then be generated to inform the device that the input voltage is higher or lower than the preset thresholds. There are three conversion modes to convert an analog signal to digital data. The A/D conversion can be operated in one shot, continuous and discontinuous conversion mode. The internal voltage reference (VREF) which can provide a stable reference voltage for the A/D Converter and Comparators is internally connected to the ADC_IN12 input channel. The precise voltage of the VREF is individually measured for each part by Holtek during production test. I/O Ports – GPIO Up to 54 GPIOs Port A, B, C, D are mapped to 16-line EXTI interrupts ▆ Almost all I/O pins have configurable output driving current ▆ ▆ There are up to 54 General Purpose I/O pins, GPIO, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15 and PD0 ~ PD5 for the implementation of logic input/output functions. Each of the GPIO ports has a series of related control and configuration registers to maximize flexibility and to meet the requirements of a wide range of applications. The GPIO ports are pin-shared with other alternative functions to obtain maximum functional flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the input or output pins. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit, EXTI. Rev. 1.00 9 of 56 March 06, 2024 2 Features The two general purpose comparators, CMP, are implemented within the device. They can be configured either as standalone comparators or combined with the different kinds of peripheral IP. Each comparator is capable of asserting interrupts to the NVIC or waking up the CPU from the Sleep, Deep-Sleep1 or Deep-Sleep2 mode through the EXTI wakeup event management unit. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Motor Control Timer – MCTM 16-bit up, down, up/down auto-reload counter Up to 4 independent channels ▆ 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency ▆ Input Capture function ▆ Compare Match Output ▆ PWM waveform generation with Edge-aligned and Center-aligned Counting Modes ▆ Single Pulse Mode Output ▆ Complementary Outputs with programmable dead-time insertion ▆ Supports 3-phase motor control and hall sensor interface ▆ Break input signals to assert the timer output signals in reset state or in a known state ▆ ▆ General-Purpose Timer – GPTM 16-bit up, down, up/down auto-reload counter Up to 4 independent channels ▆ 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency ▆ Input Capture function ▆ Compare Match Output ▆ PWM waveform generation with Edge-aligned and Center-aligned Counting Modes ▆ Single Pulse Mode Output ▆ Encoder interface controller with two inputs using quadrature decoder ▆ ▆ The General-Purpose Timer Module, GPTM, consists of one 16-bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR) and several control/ status registers. They can be used for a variety of purposes including general time measurement, input signal pulse width measurement, output waveform generation such as single pulse generation or PWM output generation. The GPTM supports an Encoder Interface using a decoder with two inputs. Pulse-Width-Modulation Timer – PWM 16-bit up, down, up/down auto-reload counter Up to 4 independent channels for each timer ▆ 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency ▆ Compare Match Output ▆ PWM waveform generation with Edge-aligned and Center-aligned Counting Modes ▆ Single Pulse Mode Output ▆ ▆ Rev. 1.00 10 of 56 March 06, 2024 2 Features The Motor Control Timer Module, MCTM, consists of a single 16-bit up/down counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR), one 8-bit repetition counter and several control/status registers. It can be used for a variety of purposes which include input signal pulse width measurement, output waveform generation for signals such as compare match outputs, PWM outputs or complementary PWM outputs with dead-time insertion. The MCTM is capable of offering full functional support for motor control, hall sensor interfacing and break input. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 The Pulse-Width-Modulation Timer, PWM, consists of one 16-bit up/down-counter, four 16-bit Compare Registers (CRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. It can be used for a variety of purposes including general timer and output waveform generation such as single pulse generation or PWM output. Basic Function Timer – BFTM 32-bit compare match up-counter – no I/O control One shot mode – counter stops counting when compare match occurs ▆ Repetitive mode – counter restarts when compare match occurs ▆ The Basic Function Timer Module, BFTM, is a simple 32-bit up-counting counter designed to measure time intervals and generate one shots or generate repetitive interrupts. The BFTM can operate in two functional modes, repetitive and one shot modes. In the repetitive mode, the counter will restart at each compare match event. The BFTM also supports a one shot mode which will force the counter to stop counting when a compare match event occurs. Watchdog Timer – WDT 12-bit down-counter with 3-bit prescaler Provides reset to the system ▆ Programmable watchdog timer window function ▆ Register write protection function ▆ ▆ The Watchdog Timer is a hardware timing circuit that can be used to detect a system lock-up due to software trapped in a deadlock. It includes a 12-bit down-counter, a prescaler, a WDT delta value register, WDT operation control circuitry and a WDT protection mechanism. If the software does not reload the counter value before a Watchdog Timer underflow occurs, a reset will be generated when the counter underflows. In addition, a reset is also generated if the software reloads the counter before it reaches a delta value. It means that the counter reload must occur when the Watchdog timer value has a value within a limited window using a specific method. The Watchdog Timer counter can be stopped when the processor is in the debug mode. The register write protection function can be enabled to prevent an unexpected change in the Watchdog Timer configuration. Real-Time Clock – RTC 24-bit up-counter with a programmable prescaler Alarm function ▆ Interrupt and Wake-up event ▆ ▆ The Real-Time Clock, RTC, circuitry includes the APB interface, a 24-bit up-counter, a control register, a prescaler, a compare register and a status register. The RTC circuits are located in the VCORE power domain. When the device enters the power-saving mode, the RTC counter is used as a wakeup timer to let the system resume from the power saving mode. Inter-integrated Circuit – I2C Supports both master and slave modes with a frequency of up to 1 MHz Provides an arbitration function and clock synchronization ▆ Supports 7-bit and 10-bit addressing modes and general call addressing ▆ Supports slave multi-addressing mode using address mask function ▆ ▆ The I2C module is an internal circuit allowing communication with an external I2C interface which is an industry standard two-wire serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I2C module Rev. 1.00 11 of 56 March 06, 2024 2 Features ▆ 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 provides three data transfer rates: 100 kHz in the Standard mode, 400 kHz in the Fast mode and 1 MHz in the Fast plus mode. The SCL period generation register is used to setup different kinds of duty cycle implementations for the SCL pulse. The SDA line which is connected directly to the I2C bus is a bidirectional data line between the master and slave devices and is used for data transmission and reception. The I2C also has an arbitration detect function and clock synchronization function to prevent the situations where more than one master attempts to transmit data to the I2C bus at the same time. Supports both master and slave modes Frequency of up to (fPCLK/2) MHz for the master mode and (fPCLK/3) MHz for the slave mode ▆ FIFO Depth: 8 levels ▆ Multi-master and multi-slave operation ▆ ▆ The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive function in both master and slave modes. The SPI interface uses 4 pins, among which are serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master device which controls the data flow using the SEL and SCK signals to indicate the start of data communication and the data sampling rate. To receive a data byte, the streamlined data bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried out in a similar way but in a reverse sequence. The mode fault detection provides a capability for multi-master applications. Universal Synchronous Asynchronous Receiver Transmitter – USART Supports both asynchronous and clocked synchronous serial communication modes Programmable baud rate clock frequency up to (fPCLK/16) MHz for asynchronous mode and (fPCLK/8) MHz for synchronous mode ▆ Full duplex communication ▆ Supports LIN (Local Interconnect Network) mode ▆ Supports single-wire mode ▆ Fully programmable serial communication characteristics including: ● Word length: 7, 8 or 9-bit character ● Parity: Even, odd or no-parity bit generation and detection ● Stop bit: 1 or 2 stop bits generation ● Bit order: LSB-first or MSB-first transfer ▆ Error detection: Parity, overrun and frame error ▆ Auto hardware flow control mode – RTS, CTS ▆ IrDA SIR encoder and decoder ▆ RS485 mode with output enable control ▆ FIFO Depth: 8-level for both receiver and transmitter ▆ ▆ The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous data transfer. The USART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The USART peripheral function supports four types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt and Time Out Interrupt. The USART module includes an 8-level transmitter FIFO, (TX_FIFO) and an 8-level receiver FIFO (RX_FIFO). The software can detect a USART error status by reading USART Status & Interrupt Flag Register, USRSIFR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events. Rev. 1.00 12 of 56 March 06, 2024 2 Features Serial Peripheral Interface – SPI 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Universal Asynchronous Receiver Transmitter – UART Asynchronous serial communication operating baud-rate clock frequency up to (fPCLK/16) MHz Full duplex communication ▆ Supports LIN (Local Interconnect Network) mode ▆ Supports single-wire mode ▆ Fully programmable serial communication characteristics including: ● Word length: 7, 8 or 9-bit character ● Parity: Even, odd or no-parity bit generation and detection ● Stop bit: 1 or 2 stop bits generation ● Bit order: LSB-first or MSB-first transfer ▆ Error detection: Parity, overrun and frame error ▆ ▆ Controller Area Network – CAN Conform to ISO11898-1, 2003 32 Message Objects ▆ Each Message Object has its own identifier mask ▆ Programmable FIFO mode (concatenation of Message Objects) ▆ Maskable interrupt ▆ Programmable loop-back mode for self-test operation ▆ ▆ The CAN_Core performs communication according to the CAN protocol version 2.0 A, B and ISO 11898-1. The internal State Machine controls the data transfer between the RX/TX Shift Register of the CAN_Core and the Message RAM as well as the generation of interrupts as programmed in the Control and Configuration Registers. Cyclic Redundancy Check – CRC Supports CRC16 polynomial: 0x8005, X16 + X15 + X2 + 1 ▆ Supports CCITT CRC16 polynomial: 0x1021, X16 + X12 + X5 + 1 ▆ Supports IEEE-802.3 CRC32 polynomial: 0x04C11DB7, X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1 ▆ Supports 1’s complement, byte reverse & bit reverse operation on data and checksum ▆ Supports byte, half-word & word data size ▆ Programmable CRC initial seed value ▆ CRC computation executed in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32bit data ▆ Supports PDMA to complete a CRC computation of a block of memory ▆ The CRC calculation unit is an error detection technique test algorithm and is used to verify data transmission or storage data correctness. A CRC calculation takes a data stream or a block of data as Rev. 1.00 13 of 56 March 06, 2024 2 Features The Universal Asynchronous Receiver Transceiver, UART, provides a flexible full duplex data exchange using asynchronous transfer. The UART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The UART peripheral function supports Line Status Interrupt. The software can detect a UART error status by reading the UART Status & Interrupt Flag Register, URSIFR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 its input and generates a 16-bit or 32-bit output remainder. Ordinarily, a data stream is suffixed by a CRC code and used as a checksum when being sent or stored. Therefore, the received or restored data stream is calculated by the same generator polynomial as described above. If the new CRC code result does not match the one calculated earlier, that means the data stream contains a data error. Peripheral Direct Memory Access – PDMA 6 channels with trigger source grouping 8-bit, 16-bit and 32-bit width data transfer ▆ Supports linear address, circular address and fixed address modes ▆ 4-level programmable channel priority ▆ Auto reload mode ▆ Supports trigger source: ADC, SPI, UART, USART, I2C, MCTM, GPTM, PWM and software request 2 Features ▆ ▆ The Peripheral Direct Memory Access circuitry, PDMA, moves data between the peripherals and the system memory on the AHB bus. Each PDMA channel has a source address, destination address, block length and transfer count. The PDMA can exclude the CPU intervention and avoid interrupt service routine execution. It improves system performance as the software does not need to connect each data movement operation. Hardware Divider – DIV Signed/unsigned 32-bit divider Calculate in 8 clock cycles, load in 1 clock cycle ▆ Division by zero error Flag ▆ ▆ The divider is the truncated division and requires a software triggered start signal by controlling the “START” bit in the control register. The divider calculation complete flag will be set to 1 after 8 clock cycles, however, if the divisor register data is zero during the calculation, the division by zero error flag will be set to 1. LED Controller – LEDC Supports 8-segment digital displays up to a maximum of N ● For the HT32F53231/HT32F53241, N = 8 ● For the HT32F53242/HT32F53252, N = 12 ▆ Supports 8-segment digital displays with common anode or common cathode ▆ Support frame interrupt ▆ Three clock sources: LSI, LSE and PCLK ▆ The LED light on/off times can be controlled using the dead time setting ▆ The LED controller is used to drive 8-segment digital displays. The HT32F53231/HT32F53241 can driver 8-segment digital displays up to 8. The HT32F53242/HT32F53252 can driver 8-segment digital displays up to 12. Users can flexibly configure the pin position and number of the COMs according to the digital displays in the application. In a complete frame period, the enabled COMs will be scanned from the lower to the higher. Taking an example of where four 8-segment LEDs are used and where COM0, COM5, COM6 and COM7 are enabled. Here COM0, COM5, COM6 and the COM7 will be scanned successively in this sequence within a complete frame period. The scanning time of each COM port is equal to 1/4 frame, which is subdivided into the dead time duty and the COM duty. Users can adjust the dead time duty to change the LED brightness. Rev. 1.00 14 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 External Bus Interface – EBI (HT32F53242/HT32F53252 Only) Programmable interface for various memory types Translate the AHB transactions into the appropriate external device protocol ▆ Individual chip select signal for per memory bank ▆ Programmable timing to support a wide range of devices ▆ Automatic translation when AHB transaction width and external memory interface width is different ▆ Write buffer to decrease the stalling of the AHB write burst transaction ▆ Multiplexed and non-multiplexed address and data line configurations ● Up to 21 address lines ● Up to 16-bit data bus width ▆ ▆ Unique Identifier – UID ▆ ▆ Total 96-bit UID is unique and not duplicate with other HT32 MCU devices It is unchangeable and determined by MCU manufacturer Debug Support Serial Wire Debug Port – SW-DP 4 comparators for hardware breakpoint or code / literal patch ▆ 2 comparators for hardware watch points ▆ ▆ Package and Operation Temperature 32/46-pin QFN and 48-pin LQFP packages for the HT32F53231/HT32F53241 32/46-pin QFN and 48/64-pin LQFP packages for the HT32F53242/HT32F53252 ▆ Operation temperature range: -40 °C to 105 °C ▆ ▆ Rev. 1.00 15 of 56 March 06, 2024 2 Features The external bus interface is able to access external parallel interface devices such as SRAM, Flash and LCD modules. The interface is memory mapped into the CPU internal address map. The data and address lines are multiplexed in order to reduce the number of pins required to connect to the external devices. The read/write timing of the bus can be adjusted to meet the timing specification of the external devices. Note the interface only supports asynchronous 8-bit or 16-bit bus interface. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 3 Overview Device Information Table 1. Features and Peripheral List Main Flash (KB) HT32F53231 HT32F53241 32 63 Option Bytes Flash (KB) SRAM (KB) Timers 1 GPTM 1 2 1 RTC 1 CAN 1 SPI 2 Communication UART 1 2 2 PDMA 6 Channels — 1 8 × 8-segment 12 × 8-segment — 2 Hardware Divider 1 CRC-16/32 1 EXTI 16 1 12-bit 2 Msps ADC Number of channels GPIO 12 external channels 40 (Max.) 54 (Max.) CPU frequency Up to 60 MHz Operating voltage 2.5 V ~ 5.5 V Operating temperature Package Rev. 1.00 16 2 I2C CMP 8 2 WDT LED Controller   127 1 BFTM EBI 64 8 MCTM USART HT32F53252 1 4 PWM HT32F53242 -40 °C ~ 105 °C 32/46-pin QFN and 48-pin LQFP 16 of 56 32/46-pin QFN and 48/64-pin LQFP March 06, 2024 3 Overview Peripherals 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Block Diagram PA ~ PC[15:0], PD[5:0] SWCLK SWDIO BOOT AF AF Powered by VCORE VDD HSE XTALIN XTALOUT VSS FMC Control Registers Bus Matrix Interrupt request SRAM Controller Divider SRAM DMOS VCORE Clock and reset control AHB Peripherals CKCU&RSTCU Control Registers CLDO LDO CAP. VCORE BOD LVD External Bus Interafce (EBI) 6 Channels AF DMA request AHB to APB Bridge AD0~AD15 A0~A20 CS0~CS3 OE, WR, ALE VCORE POR fMax: 60 MHz HSI AF TX, RX PLL AF TX, RX RTS/TXE CTS/SCK 8 MHz AF AF Power control SDA SCL AF CH0~CH3 MOSI, MISO SCK, SEL AF AF CH0~CH3 PWRCU AF LSI Analog~1 CMP0 CMP 32 kHz LSE VDDA VSSA Powered by VDDA Powered by VDD 32,768 Hz Powered by VCORE RTCOUT AF RTC 12-bit SAR ADC AF ADC_IN11 CN0, CP0 COUT0 CN1, CP1 COUT1 APB ... AF ADC_IN0 CH0~CH2 CH0N~CH2N CH3, BRK AF LED_SEG0~7, LED_COM0~11 AF CAN_TX, CAN_RX WAKEUP nRST VDD VSS AF X32KIN X32KOUT Power supply: Bus: Control signal: Alternate function: AF Figure 1. HT32F53242/HT32F53252 Block Diagram Rev. 1.00 17 of 56 March 06, 2024 3 Overview PDMA PDMA POR /PDR 4 ~ 16 MHz Control Registers System NVIC IO Port Cortex®-M0+ Processor Flash Memory AF Flash Memory Interface SW-DP Powered by VDD 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 PA ~ PC[15:0] SWCLK SWDIO BOOT AF AF Powered by VCORE POR /PDR VDD HSE XTALIN XTALOUT VSS 4 ~ 16 MHz FMC Control Registers Bus Matrix Interrupt request SRAM Controller Divider SRAM PDMA CLDO LDO VCORE Clock and reset control AHB Peripherals DMOS VCORE CKCU&RSTCU Control Registers CAP. BOD LVD 6 Channels DMA request AHB to APB Bridge VCORE POR fMax: 60 MHz HSI AF TX, RX PLL AF TX, RX RTS/TXE CTS/SCK 8 MHz AF AF Power control AF APB AF CAN_TX, CAN_RX SDA SCL AF CH0~CH3 MOSI, MISO SCK, SEL AF Powered by VDD PWRCU VSSA Powered by VDDA nRST LSE VDD Power supply: Bus: Control signal: Alternate function: 32,768 Hz Powered by VCORE WAKEUP LSI 32 kHz VDDA RTCOUT AF ADC_IN11 RTC 12-bit SAR ADC AF ... AF ADC_IN0 CH0~CH3 AF LED_SEG0~7 ~LED_COM0~7 CH0~CH2 CH0N~CH2N CH3, BRK VSS AF X32KIN X32KOUT AF Figure 2. HT32F53231/HT32F53241 Block Diagram Rev. 1.00 18 of 56 March 06, 2024 3 Overview PDMA Control Registers System NVIC IO Port Cortex®-M0+ Processor Flash Memory AF Flash Memory Interface SW-DP Powered by VDD 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Memory Map 0x400F_FFFF 0x400C_C000 0x400C_A000 0xFFFF_FFFF Reserved 0xE000_0000 0x7000_0000 Private peripheral bus Reserved EBI Selection Bank 64 MB × 4 0x6000_0000 Reserved 0x4010_0000 Peripheral 0x4008_0000 0x4000_0000 AHB peripherals APB peripherals 512 KB 512 KB Reserved SRAM 0x2000_4000 Up to 16 KB on-chip SRAM Up to 16 KB 0x2000_0000 0x1FF0_0400 0x1FF0_0000 0x1F00_0800 0x1F00_0000 Code 0x0002_0000 Reserved Option byte alias 1 KB Reserved Boot loader 2 KB Reserved Up to 128 KB on-chip Flash Up to 128 KB DIV 0x400B_8000 Reserved 0x400B_0000 GPIO A ~ D(Note) 0x4009_A000 Reserved 0x4009_8000 EBI(Note) 0x4009_2000 Reserved 0x4009_0000 PDMA 0x4008_C000 Reserved 0x4008_A000 CRC 0x4008_8000 CKCU & RSTCU 0x4008_2000 Reserved 0x4008_0000 FMC 0x4007_8000 0x4007_7000 0x4007_6000 Reserved AHB BFTM1 0x4007_2000 BFTM0 Reserved 0x4007_1000 PWM1(Note) 0x4006_F000 Reserved 0x4006_E000 GPTM 0x4006_B000 Reserved 0x4006_A000 RTC & PWRCU 0x4006_9000 Reserved 0x4006_8000 WDT 0x4005_B000 Reserved 0x4005_A000 LEDC 0x4005_9000 Reserved 0x4005_8000 CMP(Note) 0x4004_A000 Reserved 0x4004_9000 I2C1 0x4004_8000 I2C0 0x4004_5000 Reserved 0x4004_4000 SPI1 0x4004_2000 Reserved 0x4004_1000 UART1 0x4004_0000 USART1(Note) 0x4003_2000 Reserved 0x4003_1000 PWM0 0x4002_D000 Reserved 0x4002_C000 MCTM 0x4002_5000 Reserved 0x4002_4000 EXTI 0x4002_3000 Reserved 0x4002_2000 AFIO 0x4001_1000 Reserved 0x4001_0000 ADC 0x4000_E000 Reserved 0x4000_C000 CAN 0x4000_5000 Reserved 0x4000_4000 SPI0 0x4000_2000 Reserved 0x4000_1000 UART0 0x4000_0000 USART0 APB 0x0000_0000 Note: These functions and GPIO D are only available for the HT32F53242/HT32F53252 only, since there is only one USART and one PWM in the HT32F53231/HT32F53241 devices, their corresponding descriptions do not have serial number "0". Figure 3. Memory Map Rev. 1.00 19 of 56 March 06, 2024 3 Overview 0xE010_0000 Reserved 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Table 2. Register Map End Address Peripheral 0x4000_0000 0x4000_0FFF USART0 0x4000_1000 0x4000_1FFF UART0 0x4000_2000 0x4000_3FFF Reserved 0x4000_4000 0x4000_4FFF SPI0 0x4000_5000 0x4000_BFFF Reserved 0x4000_C000 0x4000_DFFF CAN 0x4000_E000 0x4000_FFFF Reserved 0x4001_0000 0x4001_0FFF ADC 0x4001_1000 0x4002_1FFF Reserved 0x4002_2000 0x4002_2FFF AFIO 0x4002_3000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF EXTI 0x4002_5000 0x4002_BFFF Reserved 0x4002_C000 0x4002_CFFF MCTM 0x4002_D000 0x4003_0FFF Reserved 0x4003_1000 0x4003_1FFF PWM0 0x4003_2000 0x4004_0FFF Reserved 0x4004_0000 0x4004_0FFF USART1 (Note) 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_3FFF Reserved 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I2C0 0x4004_9000 0x4004_9FFF I2C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP (Note) 0x4005_9000 0x4005_9FFF Reserved 0x4005_A000 0x4005_AFFF LEDC 0x4005_B000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FFF Reserved 0x4006_A000 0x4006_AFFF RTC & PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_EFFF GPTM 0x4006_F000 0x4007_0FFF Reserved 0x4007_1000 0x4007_1FFF PWM1 (Note) 0x4007_2000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1 0x4007_8000 0x4007_FFFF Reserved 20 of 56 Bus 3 Overview Rev. 1.00 Start Address APB March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Start Address End Address Peripheral 0x4008_0000 0x4008_1FFF FMC 0x4008_2000 0x4008_7FFF Reserved 0x4008_8000 0x4008_9FFF CKCU & RSTCU 0x4008_BFFF CRC 0x400A_FFFF Reserved 0x4009_0000 0x4009_1FFF PDMA 0x4009_2000 0x4009_7FFF Reserved 0x4009_8000 0x4009_9FFF EBI (Note) 0x4009_A000 0x400A_FFFF Reserved 0x400B_0000 0x400B_1FFF GPIO A 0x400B_2000 0x400B_3FFF GPIO B 0x400B_4000 0x400B_5FFF GPIO C 0x400B_6000 0x400B_7FFF GPIO D (Note) 0x400B_8000 0x400C_9FFF Reserved 0x400C_A000 0x400C_BFFF DIV 0x400C_C000 0x400F_FFFF Reserved AHB Note: These functions are only available for the HT32F53242/HT32F53252 only. Rev. 1.00 21 of 56 March 06, 2024 3 Overview 0x4008_A000 0x4008_C000 Bus 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Clock Structure CK_LSE HSI Auto Trimming Controller CKREFPRE Prescaler ÷ 1 ~ 32 CKREFEN Divider ÷2 CK_REF CK_IN(2) STCLK (to SysTick) ÷ 8 8 MHz HSI RC FCLK ( free running clock) PLLSRC PLLEN 1 HSIEN CK_PLL SW[2:0] PLL 0 4 ~ 16 MHz HSE XTAL 00x CK_HSI HSEEN HCLKC ( to Cortex®-M0+) CM0PEN (control by HW) HCLKD ( to PDMA) PDMAEN fCK_SYS,max = 60 MHz 011 CK_HSE 010 CK_SYS AHB Prescaler ÷ 1,2,4,8,16,32 CRCEN CK_CRC ( to CRC) EBIEN CK_EBI ( to EBI) DIVEN CK_DIV ( to DIV) 111 CK_AHB 110 Clock Monitor 32.768 kHz LSE OSC CK_LSE WDTSRC LSEEN(1) 32 kHz LSI RC 1 0 CK_LSI CK_WDT CM0PEN RTCSRC(1) SRAMEN CK_RTC RTCEN(1) CKOUT HCLKBM ( to Bus Matrix) CM0PEN BMEN HCLKAPB ( to APB Bridge) CKOUTSRC[2:0] 000 001 FMCEN HCLKS ( to SRAM) WDTEN 1 0 HCLKF ( to Flash) CM0PEN CM0PEN CK_REF 010 HCLKC/16 CK_SYS/16 011 CK_HSE/16 100 101 CK_HSI/16 110 CK_LSI CK_LSE APBEN CK_AHB Peripherals Clock Prescaler ÷ 1,2,4,8 Legend: HSE = High Speed External clock HSI = High Speed Internal clock LSE = Low Speed External clock LSI = Low Speed Internal clock Note: 1. These control bits are located in RTC Control Register (RTCCR). 2. The CK_IN signal is sourced from the external CKIN pin. 00 CK_AHB/2 CK_AHB/4 CK_AHB/8 PCLK (AFIO, ADC, CMP, USARTx, UARTx, SPIx, I2Cx, GPTM, MCTM, PWMx, BFTMx, EXTI, LEDC, RTC, PWRCU, WDT, CAN) 01 10 11 SPIxEN I2CxEN ADC Prescaler ÷ 1,2,3,4,8... CK_ADC IP ADCEN Figure 4. Clock Structure Rev. 1.00 22 of 56 March 06, 2024 3 Overview CK_GPIO ( to GPIO port) PAEN PDEN 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 4 Pin Assignment HT32F53242/HT32F53252 32 QFN-A PB4 PB3 PB2 31 30 29 28 27 26 25 AP AP VDD AF1 VDD VDD VDD VDD VDD VDD VDD PVDD AF0 (Default) 4 Pin Assignment PB5 32 AF0 (Default) PB7 2 PB8 PA1 1 VDDA PA0 VSSA AF0 (Default) VDD Digital Power Pad AP Analog Power Pad VDD 24 PB1 VDD 23 PB0 VDD 22 PA15 PA2 3 VDD PA3 4 VDD P15 1.5 V Power Pad VDD 21 PA14 PA4 5 VDD VDD VDD Digital & Analog I/O Pad VDD 20 SWDIO PA13 PA5 6 VDD VDD VDD Digital I/O Pad VDD 19 SWCLK PA12 PC4 7 VDD VDD VDD Domain Pad VDD 18 PA9_BOOT PC5 8 VDD VDD 17 XTALOUT PB14 P15 PVDD PVDD VDD VDD VDD VDD VDD 9 10 11 12 13 14 15 16 CLDO VDD_1 VSS_1 nRST X32KIN X32KOUT RTCOUT XTALIN AF0 (Default) PB10 PB11 PB12 PB13 AF1 Figure 5. HT32F53242/HT32F53252 32-pin QFN Pin Assignment Rev. 1.00 23 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 HT32F53242/HT32F53252 46 QFN-A PC4 6 VDD PC5 7 VDD PC6 8 VDD PC7 9 VDD 45 44 43 42 41 40 39 38 37 36 35 34 33 VDD AP AP AF1 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD PVDD VDD Power Pad PIO VDDIO Power Pad AP Analog Power Pad VDDIO VDDIO Digital I/O Pad P15 1.5 V Power Pad VDD VDD Digital & Analog I/O Pad PVDD AF0 (Default) 4 Pin Assignment VDD 46 AF0 (Default) 5 VSS_2 PA5 PB2 VDD PB3 4 PB4 PA4 PB5 VDD PC1 3 PC2 PA3 PC3 VDD PB6 2 PB7 PA2 PB8 VDD VDDA 1 VSSA PA1 PA0 AF0 (Default) VDD VDD Digital I/O Pad VDD VDD Domain Pad P15 PVDD PVDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDDIO VDDIO 12 13 14 15 16 17 18 19 20 21 22 23 VDDIO VDDIO 31 PB1 VDDIO 30 PB0 VDDIO 29 PA15 VDDIO 28 PA14 VDDIO 27 SWDIO PA13 VDDIO 26 SWCLK PA12 VDDIO 25 PA11 VDDIO 24 PA10 CLDO VDD_1 VSS_1 nRST PB9 X32KIN X32KOUT RTCOUT XTALIN XTALOUT PB15 PC0 PA8 PA9_BOOT PB10 PB11 PB12 PB13 PB14 AF1 11 32 AF0 (Default) 10 PIO Figure 6. HT32F53242/HT32F53252 46-pin QFN Pin Assignment Rev. 1.00 24 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 HT32F53242/HT32F53252 48 LQFP-A 5 47 46 45 44 43 42 41 40 39 38 37 AP AP AF0 (Default) AF1 4 Pin Assignment PA4 48 AF0 (Default) VDD PB2 4 PB3 PA3 PB4 VDD PB5 3 PC1 PA2 PC2 VDD PC3 2 PB6 PA1 PB7 VDD PB8 1 VDDA PA0 VSSA AF0 (Default) VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD PVDD VDD Power Pad AP Analog Power Pad P15 1.5 V Power Pad VDD VDD Digital & Analog IO Pad VDD PA5 6 VDD PA6 7 VDD VDD VDD Digital I/O Pad PA7 8 VDD VDD VDD Domain Pad PC4 9 VDD PIO VDDIO Power Pad PC5 10 VDD VDDIO VDDIO Digital I/O Pad PVDD 36 VSS_2 PIO 35 VDDIO VDDIO 34 PB1 VDDIO 33 PB0 VDDIO 32 PA15 VDDIO 31 PA14 VDDIO 30 SWDIO PA13 VDDIO 29 SWCLK PA12 VDDIO 28 PA11 VDDIO 27 PA10 PC6 11 VDD VDDIO 26 PA9_BOOT PC7 12 VDD VDDIO 25 PA8 P15 PVDD PVDD VDD VDD VDD VDD VDD VDD VDD VDD VDD 15 16 17 18 19 20 21 22 23 24 CLDO VDD_1 VSS_1 nRST PB9 X32KIN X32KOUT RTCOUT XTALIN XTALOUT PB15 PC0 PB10 PB11 PB12 PB13 PB14 AF1 14 AF0 (Default) 13 Figure 7. HT32F53242/HT32F53252 48-pin LQFP Pin Assignment Rev. 1.00 25 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 HT32F53242/HT32F53252 64 LQFP-A VDDA PB8 PB7 PB6 PC3 PC2 PC1 VSS_3 VDD_3 PC15 PC14 PB5 PB4 PB3 PB2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AP AP AF0 (Default) VSSA AF0 (Default) AF0 (Default) AF1 4 Pin Assignment VDD VDD VDD VDD VDD VDD PVDD PVDD VDD VDD VDD VDD VDD VDD PA0 1 VDD VDDIO 48 PD3 PA1 2 VDD VDDIO 47 PD2 PA2 3 VDD VDDIO 46 PD1 PA3 4 VDD VDDIO 45 PB1 PA4 5 VDD VDDIO 44 PB0 PA5 6 VDD PVDD 43 VSS_2 PIO 42 VDDIO VDDIO 41 PA15 VDDIO 40 PA14 VDDIO 39 SWDIO PA13 VDDIO 38 SWCLK PA12 VDDIO 37 PA11 PA6 PA7 7 8 PVDD VDD VDD PD4 9 VDD PD5 10 VDD PC4 11 VDD PC5 12 VDD VDD Power Pad AP Analog Power Pad P15 1.5 V Power Pad VDD VDD Digital & Analog I/O Pad VDD VDD Digital I/O Pad VDD VDD Domain Pad PIO VDDIO Power Pad VDDIO VDDIO Digital I/O Pad PC8 13 VDD VDDIO 36 PA10 PC9 14 VDD VDDIO 35 PA9_BOOT PC6 15 VDD VDDIO 34 PA8 PC7 16 VDD VDD 33 PC13 P15 PVDD PVDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD PB9 X32KIN X32KOUT RTCOUT PB10 PB11 PB12 29 30 31 32 AF1 nRST 28 AF0 (Default) VSS_1 27 PC12 VDD_1 26 PC11 CLDO 25 PC10 24 PC0 23 PB15 22 PB14 21 XTALOUT 20 PB13 19 XTALIN 18 PD0 17 Figure 8. HT32F53242/HT32F53252 64-pin LQFP Pin Assignment Rev. 1.00 26 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 HT32F53231/HT32F53241 32 QFN-A PB4 PB3 PB2 31 30 29 28 27 26 25 AP AP VDD AF1 VDD VDD VDD VDD VDD VDD VDD PVDD AF0 (Default) 4 Pin Assignment PB5 32 AF0 (Default) PB7 2 PB8 PA1 1 VDDA PA0 VSSA AF0 (Default) VDD Digital Power Pad AP Analog Power Pad VDD 24 PB1 VDD 23 PB0 VDD 22 PA15 PA2 3 VDD PA3 4 VDD P15 1.5 V Power Pad VDD 21 PA14 PA4 5 VDD VDD VDD Digital & Analog I/O Pad VDD 20 SWDIO PA13 PA5 6 VDD VDD VDD Digital I/O Pad VDD 19 SWCLK PA12 PC4 7 VDD VDD VDD Domain Pad VDD 18 PA9_BOOT PC5 8 VDD VDD 17 XTALOUT PB14 P15 PVDD PVDD VDD VDD VDD VDD VDD 9 10 11 12 13 14 15 16 CLDO VDD_1 VSS_1 nRST X32KIN X32KOUT RTCOUT XTALIN AF0 (Default) PB12 PB13 AF1 Figure 9. HT32F53231/HT32F53241 32-pin QFN Pin Assignment Rev. 1.00 27 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 HT32F53231/HT32F53241 46 QFN-A PC4 6 VDD PC5 7 VDD PC6 8 VDD PC7 9 VDD 45 44 43 42 41 40 39 38 37 36 35 34 33 VDD AP AP AF1 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD PVDD VDD Power Pad PIO VDDIO Power Pad AP Analog Power Pad VDDIO VDDIO Digital I/O Pad P15 1.5 V Power Pad VDD VDD Digital & Analog I/O Pad PVDD AF0 (Default) 4 Pin Assignment VDD 46 AF0 (Default) 5 VSS_2 PA5 PB2 VDD PB3 4 PB4 PA4 PB5 VDD PC1 3 PC2 PA3 PC3 VDD PB6 2 PB7 PA2 PB8 VDD VDDA 1 VSSA PA1 PA0 AF0 (Default) VDD VDD Digital I/O Pad VDD VDD Domain Pad P15 PVDD PVDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDDIO VDDIO 12 13 14 15 16 17 18 19 20 21 22 23 VDDIO VDDIO 31 PB1 VDDIO 30 PB0 VDDIO 29 PA15 VDDIO 28 PA14 VDDIO 27 SWDIO PA13 VDDIO 26 SWCLK PA12 VDDIO 25 PA11 VDDIO 24 PA10 CLDO VDD_1 VSS_1 nRST PB9 X32KIN X32KOUT RTCOUT XTALIN XTALOUT PB15 PC0 PA8 PA9_BOOT PB10 PB11 PB12 PB13 PB14 AF1 11 32 AF0 (Default) 10 PIO Figure 10. HT32F53231/HT32F53241 46-pin QFN Pin Assignment Rev. 1.00 28 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 HT32F53231/HT32F53241 48 LQFP-A 47 46 45 44 43 42 41 40 39 38 37 AP AP VDD Power Pad AP Analog Power Pad P15 1.5 V Power Pad PA4 5 VDD PA5 6 VDD VDD VDD Digital & Analog IO Pad PA6 7 VDD VDD VDD Digital I/O Pad PA7 8 VDD VDD VDD Domain Pad PC4 9 VDD PIO VDDIO Power Pad VDDIO VDDIO Digital I/O Pad PC5 10 VDD PC6 11 VDD PC7 12 VDD AF1 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD PVDD VDD AF0 (Default) 4 Pin Assignment 48 AF0 (Default) PB2 4 PB3 PA3 PB4 VDD PB5 3 PC1 PA2 PC2 VDD PC3 2 PB6 PA1 PB7 VDD PB8 1 VDDA PA0 VSSA AF0 (Default) PVDD 36 VSS_2 PIO 35 VDDIO VDDIO 34 PB1 VDDIO 33 PB0 VDDIO 32 PA15 VDDIO 31 PA14 VDDIO 30 SWDIO PA13 VDDIO 29 SWCLK PA12 VDDIO 28 PA11 VDDIO 27 PA10 VDDIO 26 PA9_BOOT VDDIO 25 PA8 P15 PVDD PVDD VDD VDD VDD VDD VDD VDD VDD VDD VDD 15 16 17 18 19 20 21 22 23 24 CLDO VDD_1 VSS_1 nRST PB9 X32KIN X32KOUT RTCOUT XTALIN XTALOUT PB15 PC0 PB10 PB11 PB12 PB13 PB14 AF1 14 AF0 (Default) 13 Figure 11. HT32F53231/HT32F53241 48-pin LQFP Pin Assignment Rev. 1.00 29 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Table 3. HT32F53242/HT32F53252 Pin Assignment Alternate Function Mapping Packages AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 64 LQFP 48 LQFP 46 QFN 32 QFN System Default GPIO ADC CMP MCTM /GPTM SPI USART /UART I2C N/A EBI N/A N/A CAN PWM LEDC System Other 1 1 46 1 PA0 ADC_ IN0 GT_ CH0 SPI1_ SCK USR0_ RTS I2C1_ SCL LED_ SEG0 VREF GT_ CH1 SPI1_ MOSI USR0_ CTS I2C1_ SDA LED_ SEG1 2 1 2 PA1 3 3 2 3 PA2 ADC_ IN2 GT_ CH2 SPI1_ MISO USR0_ TX LED_ SEG2 4 4 3 4 PA3 ADC_ IN3 GT_ CH3 SPI1_ SEL USR0_ RX LED_ SEG3 5 5 4 5 PA4 ADC_ IN4 GT_ CH0 SPI0_ SCK USR1_ TX I2C0_ SCL LED_ SEG4 6 6 5 6 PA5 ADC_ IN5 GT_ CH1 SPI0_ MOSI USR1_ RX I2C0_ SDA LED_ SEG5 7 7 PA6 ADC_ IN6 GT_ CH2 SPI0_ MISO USR1_ RTS CAN_ TX LED_ SEG6 8 8 PA7 ADC_ IN7 GT_ CH3 SPI0_ SEL USR1_ CTS CAN_ RX LED_ SEG7 9 PD4 ADC_ IN8 USR1_ TX EBI_ A2 LED_ SEG4 10 PD5 ADC_ IN9 USR1_ RX EBI_ A3 LED_ SEG5 11 9 6 7 PC4 ADC_ IN10 GT_ CH0 SPI1_ SEL USR0_ TX I2C1_ SCL EBI_ A19 CAN_ TX PWM1_ CH0 LED_ COM4 12 10 7 8 PC5 ADC_ IN11 GT_ CH1 SPI1_ SCK USR0_ RX I2C1_ SDA EBI_ A20 CAN_ RX PWM1_ CH1 LED_ COM5 13 PC8 MT_ CH2 SPI1_ MOSI UR0_ TX EBI_ A0 LED_ COM6 14 PC9 MT_ CH2N SPI1_ MISO UR0_ RX EBI_ A1 LED_ COM7 15 11 8 PC6 GT_ CH2 SPI1_ MOSI UR1_ TX I2C0_ SCL CAN_ TX PWM1_ CH2 LED_ COM10 16 12 9 PC7 GT_ CH3 SPI1_ MISO UR1_ RX I2C0_ SDA CAN_ RX PWM1_ CH3 LED_ COM11 17 13 10 9 CLDO 18 14 11 10 VDD_1 19 15 12 11 VSS_1 20 16 13 12 nRST 21 17 14 22 18 15 13 X32KIN PB10 GT_ CH0 SPI1_ SEL USR1_ TX LED_ SEG4 23 19 16 14 X32KOUT PB11 GT_ CH1 SPI1_ SCK USR1_ RX LED_ SEG5 24 20 17 15 RTCOUT PB12 SPI0_ MISO UR0_ RX MT_ CH3 PB9 25 UR0_ TX WAKEUP1 WAKEUP0 I2C0_ SDA PD0 EBI_ A18 26 21 18 16 XTALIN PB13 PWM1_ CH1 LED_ SEG6 27 22 19 17 XTALOUT PB14 PWM1_ CH2 LED_ SEG7 28 23 20 PB15 MT_ CH0 SPI0_ SEL USR1_ TX I2C1_ SCL EBI_ A16 PWM0_ CH2 29 24 21 PC0 MT_ CH0N SPI0_ SCK USR1_ RX I2C1_ SDA EBI_ A17 PWM0_ CH3 30 PC10 GT_ CH0 SPI1_ SEL EBI_ AD13 CAN_ TX LED_ SEG0 31 PC11 GT_ CH1 SPI1_ SCK EBI_ AD14 CAN_ RX LED_ SEG1 32 PC12 GT_ CH2 SPI1_ MOSI UR1_ TX I2C0_ SCL EBI_ AD15 PWM0_ CH2 LED_ SEG2 33 PC13 GT_ CH3 SPI1_ MISO UR1_ RX I2C0_ SDA EBI_ CS3 PWM0_ CH3 LED_ SEG3 PWM1_ CH3 LED_ COM1 34 25 Rev. 1.00 22 PA8 USR0_ TX 30 of 56 4 Pin Assignment 2 ADC_ IN1 LED_ COM0 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Alternate Function Mapping Packages AF0 64 LQFP 48 LQFP 46 QFN 32 QFN System Default 35 26 23 18 PA9_ BOOT AF1 GPIO AF2 ADC AF3 AF4 CMP MCTM /GPTM AF5 AF6 SPI USART /UART AF7 I2C SPI0_ MOSI N/A AF9 EBI AF10 N/A AF11 N/A AF12 CAN EBI_ A1 PWM AF14 AF15 LEDC System Other PWM1_ CH0 27 24 PA10 37 28 25 PA11 MT_ CH1N SPI0_ MISO 38 29 26 19 SWCLK PA12 39 30 27 20 SWDIO PA13 40 31 28 21 PA14 MT_ CH0 SPI1_ SEL USR0_ RTS I2C1_ SCL EBI_ AD0 PWM0_ CH0 LED_ COM0 41 32 29 22 PA15 MT_ CH0N SPI1_ SCK USR0_ CTS I2C1_ SDA EBI_ AD1 PWM0_ CH1 LED_ COM1 42 35 32 43 36 33 44 33 30 23 PB0 MT_ CH1 SPI1_ MOSI USR0_ TX I2C0_ SCL EBI_ AD2 CAN_ TX 45 34 31 24 PB1 MT_ CH1N SPI1_ MISO USR0_ RX I2C0_ SDA EBI_ AD3 CAN_ RX 46 PD1 MT_ CH2 USR1_ RTS EBI_ AD10 CAN_ TX 47 PD2 MT_ CH2N USR1_ CTS EBI_ AD11 CAN_ RX 48 PD3 MT_ CH3 EBI_ A0 PWM0_ CH1 CAN_ RX LED_ COM2 LED_ COM3 4 Pin Assignment 34 CAN_ TX CKOUT 36 37 USR0_ RX AF13 MT_ CH1 49 SPI0_ MOSI AF8 VDDIO VSS_2 25 PB2 LED_ SEG0 PWM1_ CH2 LED_ SEG1 LED_ SEG6 EBI_ AD12 LED_ SEG7 COUT0 MT_ CH2 SPI0_ SEL UR0_ TX EBI_ AD4 CAN_ TX PWM0_ CH2 LED_ SEG2 COUT1 MT_ CH2N SPI0_ SCK UR0_ RX EBI_ AD5 CAN_ RX PWM0_ CH0 LED_ SEG3 PWM0_ CH1 LED_ COM2 50 38 35 26 PB3 51 39 36 27 PB4 MT_ BRK SPI0_ MOSI UR1_ TX EBI_ AD6 52 40 37 28 PB5 GT_ CH2 SPI0_ MISO UR1_ RX EBI_ AD7 LED_ COM3 I2C0_ SCL EBI_ AD8 LED_ COM8 I2C0_ SDA EBI_ AD9 LED_ COM9 53 PC14 COUT0 54 PC15 COUT1 55 VDD_3 56 MT_ CH3 CKIN VSS_3 57 41 38 PC1 CN0 MT_ CH0 SPI1_ SEL 58 42 39 PC2 CP0 MT_ CH0N SPI1_ SCK 59 43 40 PC3 COUT0 MT_ BRK SPI1_ MOSI 60 44 41 PB6 CN1 GT_ CH3 SPI1_ MISO 61 45 42 29 PB7 CP1 MT_ CH1 SPI0_ MISO UR0_ TX I2C1_ SCL EBI_ CS1 PWM0_ CH3 LED_ SEG4 62 46 43 30 PB8 COUT1 MT_ CH1N SPI0_ SEL UR0_ RX I2C1_ SDA EBI_ CS2 PWM1_ CH3 LED_ SEG5 63 47 44 31 VDDA 64 48 45 32 VSSA Rev. 1.00 UR1_ TX UR1_ RX EBI_ OE PWM0_ CH0 LED_ COM4 EBI_ CS0 PWM1_ CH0 LED_ COM5 EBI_ WE PWM1_ CH1 LED_ COM6 EBI_ ALE 31 of 56 LED_ COM7 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Table 4. HT32F53231/HT32F53241 Pin Assignment Alternate Function Mapping Packages AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 GPIO ADC N/A MCTM /GPTM SPI USART /UART I2C N/A N/A N/A N/A CAN PWM LEDC System Other VREF 46 QFN 32 QFN System Default 1 46 1 PA0 ADC_ IN0 GT_ CH0 SPI1_ SCK USR_ RTS I2C1_ SCL LED_ SEG0 2 1 2 PA1 ADC_ IN1 GT_ CH1 SPI1_ MOSI USR_ CTS I2C1_ SDA LED_ SEG1 3 2 3 PA2 ADC_ IN2 GT_ CH2 SPI1_ MISO USR_ TX LED_ SEG2 4 3 4 PA3 ADC_ IN3 GT_ CH3 SPI1_ SEL USR_ RX LED_ SEG3 5 4 5 PA4 ADC_ IN4 GT_ CH0 SPI0_ SCK USR_ TX I2C0_ SCL LED_ SEG4 6 5 6 PA5 ADC_ IN5 GT_ CH1 SPI0_ MOSI USR_ RX I2C0_ SDA LED_ SEG5 7 PA6 ADC_ IN6 GT_ CH2 SPI0_ MISO USR_ RTS CAN_ TX LED_ SEG6 8 PA7 ADC_ IN7 GT_ CH3 SPI0_ SEL USR_ CTS CAN_ RX LED_ SEG7 9 6 7 PC4 ADC_ IN8 GT_ CH0 SPI1_ SEL USR_ TX I2C1_ SCL CAN_ TX PWM_ CH0 LED_ COM4 10 7 8 PC5 ADC_ IN9 GT_ CH1 SPI1_ SCK USR_ RX I2C1_ SDA CAN_ RX PWM_ CH1 LED_ COM5 11 8 PC6 ADC_ IN10 GT_ CH2 SPI1_ MOSI UR1_ TX I2C0_ SCL CAN_ TX PWM_ CH2 LED_ COM6 12 9 PC7 ADC_ IN11 GT_ CH3 SPI1_ MISO UR1_ RX I2C0_ SDA CAN_ RX PWM_ CH3 LED_ COM7 13 10 9 CLDO 14 11 10 VDD_1 15 12 11 VSS_1 16 13 12 nRST 17 14 PB9 MT_ CH3 UR0_ TX SPI1_ SEL USR_ TX LED_ SEG4 SPI1_ SCK USR_ RX LED_ SEG5 SPI0_ MISO UR0_ RX WAKEUP1 18 15 13 X32KIN PB10 GT_ CH0 19 16 14 X32KOUT PB11 GT_ CH1 20 17 15 RTCOUT PB12 21 18 16 XTALIN PB13 PWM_ CH1 LED_ SEG6 22 19 17 XTALOUT PB14 PWM_ CH2 LED_ SEG7 23 20 PB15 MT_ CH0 SPI0_ SEL USR_ TX I2C1_ SCL PWM_ CH2 24 21 PC0 MT_ CH0N SPI0_ SCK USR_ RX I2C1_ SDA PWM_ CH3 LED_ COM0 25 22 PA8 PWM_ CH3 LED_ COM1 26 23 27 24 PA10 MT_ CH1 SPI0_ MOSI 28 25 PA11 MT_ CH1N SPI0_ MISO 29 26 19 SWCLK PA12 30 27 20 SWDIO PA13 31 28 21 PA14 MT_ CH0 SPI1_ SEL USR_ RTS I2C1_ SCL PWM_ CH0 LED_ COM0 32 29 22 PA15 MT_ CH0N SPI1_ SCK USR_ CTS I2C1_ SDA PWM_ CH1 LED_ COM1 33 30 23 PB0 MT_ CH1 SPI1_ MOSI USR_ TX I2C0_ SCL Rev. 1.00 18 WAKEUP0 USR_ TX PA9_ BOOT 4 Pin Assignment 48 LQFP SPI0_ MOSI PWM_ CH0 USR_ RX CAN_ TX PWM_ CH1 CAN_ RX 32 of 56 CAN_ TX CKOUT LED_ COM2 LED_ COM3 LED_ SEG0 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Alternate Function Mapping Packages AF0 AF1 AF2 AF3 AF4 AF5 AF6 MCTM /GPTM SPI USART /UART N/A I2C MT_ CH1N SPI1_ MISO USR_ RX I2C0_ SDA 46 QFN 32 QFN System Default 34 31 24 PB1 35 32 VDDIO 36 33 VSS_2 37 34 25 PB2 MT_ CH2 SPI0_ SEL 38 35 26 PB3 MT_ CH2N 39 36 27 PB4 40 37 28 41 GPIO ADC AF7 AF8 N/A AF9 N/A AF10 N/A AF11 N/A AF12 AF13 AF14 AF15 System Other CAN PWM LEDC CAN_ RX PWM_ CH2 LED_ SEG1 UR0_ TX CAN_ TX PWM_ CH2 LED_ SEG2 SPI0_ SCK UR0_ RX CAN_ RX PWM_ CH0 LED_ SEG3 MT_ BRK SPI0_ MOSI UR1_ TX PWM_ CH1 LED_ COM2 PB5 GT_ CH2 SPI0_ MISO UR1_ RX 38 PC1 MT_ CH0 SPI1_ SEL UR1_ TX 42 39 PC2 MT_ CH0N SPI1_ SCK 43 40 PC3 MT_ BRK SPI1_ MOSI 44 41 PB6 GT_ CH3 SPI1_ MISO 45 42 29 PB7 MT_ CH1 SPI0_ MISO UR0_ TX I2C1_ SCL PWM_ CH3 LED_ SEG4 46 43 30 PB8 MT_ CH1N SPI0_ SEL UR0_ RX I2C1_ SDA PWM_ CH3 LED_ SEG5 47 44 31 VDDA 48 45 32 VSSA CKIN LED_ COM3 UR1_ RX PWM_ CH0 LED_ COM4 PWM_ CH0 LED_ COM5 PWM_ CH1 LED_ COM6 LED_ COM7 Table 5. HT32F53242/HT32F53252 Pin Description Pin Number 64 48 46 32 LQFP LQFP QFN QFN Pin Name Type(1) I/O Structure(2) Description Output Driving Default Function (AF0) 1 1 46 1 PA0 AI/O 5V 4/8/12/16 mA PA0 2 2 1 2 PA1 AI/O 5V 4/8/12/16 mA PA1 3 3 2 3 PA2 AI/O 5V 4/8/12/16 mA PA2 4 4 3 4 PA3 AI/O 5V 4/8/12/16 mA PA3 5 5 4 5 PA4 AI/O 5V 4/8/12/16 mA PA4, this pin provides a USART_TX function in the Boot loader mode. 6 6 5 6 PA5 AI/O 5V 4/8/12/16 mA PA5, this pin provides a USART_RX function in the Boot loader mode. 7 7 PA6 AI/O 5V 4/8/12/16 mA PA6 8 8 PA7 AI/O 5V 4/8/12/16 mA PA7 9 PD4 AI/O 5V 4/8/12/16 mA PD4 10 PD5 AI/O 5V 4/8/12/16 mA PD5 11 9 6 7 PC4 I/O 5V 4/8/12/16 mA PC4 12 10 7 8 PC5 I/O 5V 4/8/12/16 mA PC5 PC8 I/O 5V 4/8/12/16 mA PC8 13 14 PC9 I/O 5V 4/8/12/16 mA PC9 15 11 8 PC6 I/O 5V 4/8/12/16 mA PC6 16 12 9 PC7 I/O 5V 4/8/12/16 mA PC7 Rev. 1.00 33 of 56 March 06, 2024 4 Pin Assignment 48 LQFP 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Pin Number 64 48 46 32 LQFP LQFP QFN QFN Pin Name Type(1) I/O Structure(2) Description Output Driving Default Function (AF0) 13 10 9 CLDO P — — 18 14 11 10 VDD_1 P — — Voltage for VDD domain digital I/O 19 15 12 11 VSS_1 P — — Ground reference for digital I/O 20 16 13 12 nRST(3) I 5V_PU — External reset pin 21 17 14 PB9(3) I/O (VDD) 5V 4/8/12/16 mA PB9 22 18 15 13 PB10(3) AI/O (VDD) 5V 4/8/12/16 mA X32KIN 23 19 16 14 PB11(3) AI/O (VDD) 5V 4/8/12/16 mA X32KOUT 24 20 17 15 PB12(3) I/O (VDD) 5V 4/8/12/16 mA RTCOUT PD0 I/O 5V 4/8/12/16 mA PD0 25 26 21 18 16 PB13 AI/O 5V 4/8/12/16 mA XTALIN 27 22 19 17 PB14 AI/O 5V 4/8/12/16 mA XTALOUT 28 23 20 PB15 I/O 5V 4/8/12/16 mA PB15 29 24 21 PC0 I/O 5V 4/8/12/16 mA PC0 30 PC10 I/O 5V 4/8/12/16 mA PC10 31 PC11 I/O 5V 4/8/12/16 mA PC11 32 PC12 I/O 5V 4/8/12/16 mA PC12 33 PC13 I/O 5V 4/8/12/16 mA PC13 PA8 I/O (VDDIO) 5V 4/8/12/16 mA PA8 PA9 I/O (VDDIO) 5V_PU 34 25 22 35 26 23 36 27 24 PA10 I/O (VDDIO) 5V 4/8/12/16 mA PA10 37 28 25 PA11 I/O (VDDIO) 5V 4/8/12/16 mA PA11 38 29 26 19(5) PA12 I/O (VDDIO) 5V_PU 4/8/12/16 mA SWCLK 39 30 27 20(5) PA13 I/O (VDDIO) 5V_PU 4/8/12/16 mA SWDIO 40 31 28 21(5) PA14 I/O (VDDIO) 5V 4/8/12/16 mA PA14 41 32 29 22(5) PA15 I/O (VDDIO) 5V 4/8/12/16 mA PA15 42 35 32 VDDIO P — — Voltage for digital VDDIO domain I/O 43 36 33 VSS_2 P — — Ground reference for digital I/O 44 33 30 PB0 I/O (VDDIO) 5V Rev. 1.00 18(5) 23(5) 34 of 56 4/8/12/16 mA PA9_BOOT 4/8/12/16 mA PB0 March 06, 2024 4 Pin Assignment 17 Core power LDO output It must be connected a 2.2 μF capacitor as close as possible between this pin and VSS_1. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Pin Number Description Pin Name Type(1) I/O Structure(2) PB1 I/O (VDDIO) 5V 4/8/12/16 mA PB1 46 PD1 I/O (VDDIO) 5V 4/8/12/16 mA PD1 47 PD2 I/O (VDDIO) 5V 4/8/12/16 mA PD2 48 PD3 I/O (VDDIO) 5V 4/8/12/16 mA PD3 64 48 46 32 LQFP LQFP QFN QFN 45 34 31 24(5) Output Driving Default Function (AF0) 37 34 25 PB2 I/O 5V 4/8/12/16 mA PB2 50 38 35 26 PB3 I/O 5V 4/8/12/16 mA PB3 51 39 36 27 PB4 I/O 5V 4/8/12/16 mA PB4 52 40 37 28 4 Pin Assignment 49 PB5 I/O 5V 4/8/12/16 mA PB5 53 PC14 I/O 5V 4/8/12/16 mA PC14 54 PC15 I/O 5V 4/8/12/16 mA PC15 55 VDD_3 P — — Voltage for VDD domain digital I/O 56 VSS_3 P — — Ground reference for digital I/O 57 41 38 PC1 I/O 5V 4/8/12/16 mA PC1 58 42 39 PC2 I/O 5V 4/8/12/16 mA PC2 59 43 40 PC3 I/O 5V 4/8/12/16 mA PC3 60 44 41 PB6 I/O 5V 4/8/12/16 mA PB6 61 45 42 29 PB7 AI/O 5V 4/8/12/16 mA PB7 62 46 43 30 PB8 AI/O 5V 4/8/12/16 mA PB8 63 47 44 31 VDDA P — — Analog voltage for ADC and comparators 64 48 45 32 VSSA P — — Ground reference for ADC and comparators Note: 1. I = input, O = output, A = Analog port, P = Power Supply, VDD = VDD Power, VDDIO = VDDIO Power. 2. 5V = 5 V operation I/O type, PU = Pull-up. 3. These pins are located at the VDD power domain. 4. In the Boot loader mode, the USART interface can be used for communication. 5. These pins are supplied by the VDD power for the 32-pin QFN package. Rev. 1.00 35 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Table 6. HT32F53231/HT32F53241 Pin Description Pin Number I/O (1) 48 46 32 Pin Name Type Structure(2) LQFP QFN QFN Description Output Driving Default Function (AF0) 46 1 PA0 AI/O 5V 4/8/12/16 mA PA0 2 1 2 PA1 AI/O 5V 4/8/12/16 mA PA1 3 2 3 PA2 AI/O 5V 4/8/12/16 mA PA2 4 3 4 PA3 AI/O 5V 4/8/12/16 mA PA3 5 4 5 PA4 AI/O 5V 4/8/12/16 mA PA4, this pin provides a USART_TX function in the Boot loader mode. 6 5 6 PA5 AI/O 5V 4/8/12/16 mA PA5, this pin provides a USART_RX function in the Boot loader mode. PA6 AI/O 5V 4/8/12/16 mA PA6 7 8 PA7 AI/O 5V 4/8/12/16 mA PA7 9 6 7 PC4 I/O 5V 4/8/12/16 mA PC4 10 7 8 PC5 I/O 5V 4/8/12/16 mA PC5 11 8 PC6 I/O 5V 4/8/12/16 mA PC6 12 9 PC7 I/O 5V 4/8/12/16 mA PC7 13 10 9 CLDO P — — Core power LDO output It must be connected a 2.2 μF capacitor as close as possible between this pin and VSS_1. 14 11 10 VDD_1 P — — Voltage for VDD domain digital I/O 15 12 11 VSS_1 P — — Ground reference for digital I/O 16 13 12 nRST(3) I 5V_PU — External reset pin 17 14 PB9(3) I/O (VDD) 5V 4/8/12/16 mA PB9 18 15 13 PB10(3) AI/O (VDD) 5V 4/8/12/16 mA X32KIN 19 16 14 PB11(3) AI/O (VDD) 5V 4/8/12/16 mA X32KOUT 20 17 15 PB12(3) I/O (VDD) 5V 4/8/12/16 mA RTCOUT 21 18 16 PB13 AI/O 5V 4/8/12/16 mA XTALIN 22 19 17 PB14 AI/O 5V 4/8/12/16 mA XTALOUT 23 20 PB15 I/O 5V 4/8/12/16 mA PB15 24 21 PC0 I/O 5V 4/8/12/16 mA PC0 25 22 PA8 I/O (VDDIO) 5V 4/8/12/16 mA PA8 26 23 PA9 I/O (VDDIO) 5V_PU 27 24 PA10 I/O (VDDIO) 5V 4/8/12/16 mA PA10 28 25 PA11 I/O (VDDIO) 5V 4/8/12/16 mA PA11 Rev. 1.00 18(5) 4/8/12/16 mA PA9_BOOT 36 of 56 March 06, 2024 4 Pin Assignment 1 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Pin Number 48 46 32 LQFP QFN QFN Pin Name Type(1) I/O Structure(2) Description Output Driving Default Function (AF0) 26 19(5) PA12 I/O (VDDIO) 5V_PU 4/8/12/16 mA SWCLK 30 27 20(5) PA13 I/O (VDDIO) 5V_PU 4/8/12/16 mA SWDIO 31 28 21(5) PA14 I/O (VDDIO) 5V 4/8/12/16 mA PA14 32 29 22(5) PA15 I/O (VDDIO) 5V 4/8/12/16 mA PA15 33 30 23(5) PB0 I/O (VDDIO) 5V 4/8/12/16 mA PB0 34 31 24(5) PB1 I/O (VDDIO) 5V 4/8/12/16 mA PB1 35 32 VDDIO P — — Voltage for digital VDDIO domain I/O 36 33 VSS_2 P — — Ground reference for digital I/O 37 34 25 PB2 I/O 5V 4/8/12/16 mA PB2 38 35 26 PB3 I/O 5V 4/8/12/16 mA PB3 39 36 27 PB4 I/O 5V 4/8/12/16 mA PB4 40 37 28 PB5 I/O 5V 4/8/12/16 mA PB5 41 38 PC1 I/O 5V 4/8/12/16 mA PC1 42 39 PC2 I/O 5V 4/8/12/16 mA PC2 43 40 PC3 I/O 5V 4/8/12/16 mA PC3 44 41 PB6 I/O 5V 4/8/12/16 mA PB6 45 42 29 PB7 AI/O 5V 4/8/12/16 mA PB7 46 43 30 PB8 AI/O 5V 4/8/12/16 mA PB8 47 44 31 VDDA P — — Analog voltage for ADC 48 45 32 VSSA P — — Ground reference for ADC 4 Pin Assignment 29 Note: 1. I = input, O = output, A = Analog port, P = Power Supply, VDDIO = VDDIO Power, VDD = VDD Power. 2. 5V = 5 V operation I/O type, PU = Pull-up. 3. These pins are located at the VDD power domain. 4. In the Boot loader mode, the USART interface can be used for communication. 5. These pins are supplied by the VDD power for the 32-pin QFN package. Rev. 1.00 37 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 5 Electrical Characteristics Absolute Maximum Ratings Table 7. Absolute Maximum Ratings Symbol Parameter Min. Max. Unit VSS - 0.3 VSS + 5.5 V VDD External Main Supply Voltage VDDIO External I/O Supply Voltage VSS - 0.3 VSS + 5.5 V VDDA External Analog Supply Voltage VSSA - 0.3 VSSA + 5.5 V VIN Input Voltage on I/O VSS - 0.3 VDD + 0.3 V TA Ambient Operating Temperature Range -40 105 °C TSTG Storage Temperature Range -60 150 °C TJ Maximum Junction Temperature — 125 °C PD Total Power Dissipation — 500 mW VESD Electrostatic Discharge Voltage - Human Body Mode -4000 +4000 V Recommended DC Operating Conditions Table 8. Recommended DC Operating Conditions Symbol Parameter TA = 25 °C, unless otherwise specified. Conditions Min. Typ. Max. Unit VDD Operating Voltage — 2.5 5.0 5.5 V VDDIO I/O Operating Voltage — 1.8 5.0 5.5 V VDDA Analog Operating Voltage — 2.5 5.0 5.5 V On-Chip LDO Voltage Regulator Characteristics Table 9. LDO Characteristics Symbol Parameter TA = 25 °C, unless otherwise specified. Conditions VLDO Internal Regulator Output Voltage VDD ≥ 2.5 V Regulator input @ ILDO = 25 mA and voltage variant = ±5 % after trimming ILDO Output Current VDD = 2.5 V Regulator input @ VLDO = 1.5 V CLDO External Filter Capacitor Value The capacitor value is dependent on for Internal Core Power Supply the core power current consumption Rev. 1.00 38 of 56 Min. Typ. Max. Unit 1.425 1.5 1.57 V — 30 35 mA 1 2.2 — μF March 06, 2024 5 Electrical Characteristics The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Power Consumption Table 10. HT32F53242/HT32F53252 Power Consumption Characteristics TA = 25 °C, unless otherwise specified. Symbol Parameter Operating Current (Sleep Mode) Max. @ TA 25 °C 105 °C VDD = 5 V fHCLK = HSI = 8 MHz 60 MHz PLL = 60 MHz All peripherals enabled 13.6 17.5 — All peripherals disabled 6.6 7.6 — VDD = 5 V fHCLK = HSI = 8 MHz 40 MHz PLL = 40 MHz All peripherals enabled 11.3 14.0 — All peripherals disabled 6.5 7.4 — VDD = 5 V fHCLK = HSI = 8 MHz 20 MHz PLL = 40 MHz All peripherals enabled 5.6 6.4 — All peripherals disabled 3.0 3.3 — All peripherals enabled 2.3 2.5 — All peripherals disabled 1.3 1.3 — fHCLK = 8 MHz IDD Typ. VDD = 5 V HSI = 8 MHz PLL = off VDD = 5 V All peripherals enabled 38.00 47.44 fHCLK = LSI = 32 kHz 32 kHz LDO off, DMOS on All peripherals disabled 33.42 42.65 — VDD = 5 V fHCLK = HSI = 8 MHz 60 MHz PLL = 60 MHz All peripherals enabled — 8.7 10.4 — All peripherals disabled 0.79 0.88 — VDD = 5 V fHCLK = HSI = 8 MHz 40 MHz PLL = 40 MHz All peripherals enabled 6.0 6.9 — All peripherals disabled 0.64 0.72 — VDD = 5 V fHCLK = HSI = 8 MHz 20 MHz PLL = 40 MHz All peripherals enabled 3.38 3.71 — All peripherals disabled 0.55 0.62 — All peripherals enabled 1.37 1.47 — All peripherals disabled 0.22 0.25 — VDD = 5 V All peripherals enabled 33.96 43.23 fHCLK = LSI = 32 kHz 32 kHz LDO off, DMOS on All peripherals disabled 29.08 38.09 — fHCLK = 8 MHz VDD = 5 V HSI = 8 MHz PLL = off — Unit mA μA mA μA Operating Current (Deep-Sleep1 Mode) — VDD = 5 V, HSI/HSE/PLL clock off, LDO off, 28.93 37.94 DMOS on, LSE off, LSI on, RTC on — μA Operating Current (Deep-Sleep2 Mode) — VDD = 5 V, HSI/HSE/PLL clock off, LDO off DMOS on, LSE off, LSI on, RTC on — μA 5.14 9.90 Note: 1. HSE means high speed external oscillator. HSI means 8 MHz high speed internal oscillator. 2. LSE means 32.768 kHz low speed external oscillator. LSI means 32 kHz low speed internal oscillator. 3. RTC means Real-Time clock. 4. Code = while (1) {208 NOP} executed in Flash. Rev. 1.00 39 of 56 March 06, 2024 5 Electrical Characteristics Operating Current (Run Mode) Conditions 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Table 11. HT32F53231/HT32F53241 Power Consumption Characteristics TA = 25 °C, unless otherwise specified. Symbol Parameter Operating Current (Sleep Mode) Max. @ TA 25 °C 105 °C VDD = 5 V fHCLK = HSI = 8 MHz 60 MHz PLL = 60 MHz All peripherals enabled 11.8 12.91 — All peripherals disabled 5.60 6.06 — VDD = 5 V fHCLK = HSI = 8 MHz 40 MHz PLL = 40 MHz All peripherals enabled 9.79 10.67 — All peripherals disabled 5.60 6.07 — VDD = 5 V fHCLK = HSI = 8 MHz 20 MHz PLL = 40 MHz All peripherals enabled 4.85 5.23 — All peripherals disabled 2.69 2.90 — All peripherals enabled 1.95 2.10 — All peripherals disabled 1.08 1.16 — VDD = 5 V All peripherals enabled 35.06 43.6 fHCLK = LSI = 32 kHz 32 kHz LDO off, DMOS on All peripherals disabled 31.4 39.7 — VDD = 5 V fHCLK = HSI = 8 MHz 60 MHz PLL = 60 MHz All peripherals enabled 7.41 8.05 — All peripherals disabled 0.76 0.85 — VDD = 5 V fHCLK = HSI = 8 MHz 40 MHz PLL = 40 MHz All peripherals enabled 5.10 5.53 — All peripherals disabled 0.62 0.70 — VDD = 5 V fHCLK = HSI = 8 MHz 20 MHz PLL = 40 MHz All peripherals enabled 2.87 3.10 — All peripherals disabled 0.55 0.62 — All peripherals enabled 1.14 1.24 — All peripherals disabled 0.22 0.24 — VDD = 5 V All peripherals enabled 31.72 40.02 fHCLK = LSI = 32 kHz 32 kHz LDO off, DMOS on All peripherals disabled 27.84 35.91 — fHCLK = 8 MHz IDD Typ. fHCLK = 8 MHz VDD = 5 V HSI = 8 MHz PLL = off VDD = 5 V HSI = 8 MHz PLL = off — — Unit mA μA mA μA Operating Current (Deep-Sleep1 Mode) — VDD = 5 V, HSI/HSE/PLL clock off, LDO off, DMOS on, LSE off, LSI on, RTC on 27.7 35.75 — μA Operating Current (Deep-Sleep2 Mode) — VDD = 5 V, HSI/HSE/PLL clock off, LDO off DMOS on, LSE off, LSI on, RTC on 3.99 — μA 6.84 Note: 1. HSE means high speed external oscillator. HSI means 8 MHz high speed internal oscillator. 2. LSE means 32.768 kHz low speed external oscillator. LSI means 32 kHz low speed internal oscillator. 3. RTC means Real-Time clock. 4. Code = while (1) {208 NOP} executed in Flash. Rev. 1.00 40 of 56 March 06, 2024 5 Electrical Characteristics Operating Current (Run Mode) Conditions 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Reset and Supply Monitor Characteristics Table 12. VDD Power Reset Characteristics Symbol Parameter Conditions Power On Reset Threshold (Rising Voltage on VDD) VPOR TA = 25 °C, unless otherwise specified. Power Down Reset Threshold (Falling Voltage on VDD) VPORHYST POR Hysteresis tPOR Reset Delay Time Typ. Max. Unit 2.22 2.35 2.48 V 2.12 2.2 2.33 V — 150 — mV — 0.1 0.2 ms TA = -40 °C ~ 105 °C — VDD = 5.0 V Note: 1. Data based on characterization results only, not tested in production. 2. If the LDO is turned on, the VDD POR has to be in the de-assertion condition. When the VDD POR is in the assertion state then the LDO will be turned off. Table 13. LVD / BOD Characteristics Symbol Parameter Voltage of Brown Out Detection VBOD TA = 25 °C, unless otherwise specified. Conditions Min. Typ. Max. Unit After factory-trimmed, VDD Falling edge 2.37 2.45 2.53 V LVDS = 000 2.57 2.65 2.73 V LVDS = 001 2.77 2.85 2.93 V LVDS = 010 2.97 3.05 3.13 V LVDS = 011 3.17 3.25 3.33 V LVDS = 100 3.37 3.45 3,53 V LVDS = 101 4.15 4.25 4.35 V LVDS = 110 4.35 4.45 4.55 V Voltage of Low Voltage VDD Falling edge Detection VLVD LVDS = 111 4.55 4.65 4.75 V VLVDHTST LVD Hysteresis VDD = 5.0 V — — 100 — mV tsuLVD LVD Setup Time VDD = 5.0 V — — — 5 μs tatLVD LVD Active Delay Time VDD = 5.0 V — — — — ms IDDLVD Operation Current (2) — — 10 20 μA VDD = 5.0 V Note: 1. Data based on characterization results only, not tested in production. 2. Bandgap current is not included. 3. LVDS field is in the PWRCU LVDCSR register External Clock Characteristics Table 14. High Speed External Clock (HSE) Characteristics Symbol Parameter Conditions Min. Typ. Max. Unit 2.5 — 5.5 V VDD = 2.5 V ~ 5.0 V 4 — 16 MHz VDD = 5.0 V, RESR = 100 Ω @ 16 MHz — — 12 pF — 0.5 — MΩ VDD Operation Voltage Range TA = -40 °C ~ 105 °C fHSE HSE Frequency CL Load Capacitance RFHSE Internal Feedback Resistor between VDD = 5.0 V XTALIN and XTALOUT Pins Rev. 1.00 TA = 25 °C, unless otherwise specified. 41 of 56 March 06, 2024 5 Electrical Characteristics VPDR Min. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Symbol Parameter RESR Equivalent Series Resistance DHSE HSE Oscillator Duty Cycle Min. Typ. Max. Unit — — 110 Ω % VDD = 5.0 V, CL = 12 pF @ 16 MHz, HSEGAIN = 0 VDD = 2.5 V, CL = 12 pF @ 16 MHz, HSEGAIN = 1 — 40 — 60 VDD = 5.0 V, RESR = 100 Ω, CL = 12 pF @ 8 MHz, HSEGAIN = 0 — 0.85 — VDD = 5.0 V, RESR = 25 Ω, CL = 12 pF @ 16 MHz, HSEGAIN = 1 — 3.0 — mA IPWDHSE HSE Oscillator Power Down Current VDD = 5.0 V — — 0.01 μA tSUHSE HSE Oscillator Startup Time — — 4 ms VDD = 5.0 V Table 15. Low Speed External Clock (LSE) Characteristics Symbol Parameter Conditions TA = 25 °C, unless otherwise specified. Min. Typ. Max. Unit VDD Operation Voltage Range TA = -40 °C ~ 105 °C 2.5 — 5.5 V fLSE LSE Frequency VDD = 2.5 V ~ 5.5 V — 32.768 — kHz RF Internal Feedback Resistor — 10 — MΩ RESR Equivalent Series Resistance VDD = 5.0 V 30 — TBD kΩ CL Recommended Load Capacitances VDD = 5.0 V 6 — TBD pF IDDLSE Oscillator Supply Current (High Current Mode) fCK_LSE = 32.768 kHz, RESR = 50 kΩ, CL ≥ 7 pF VDD = 2.5 V ~ 5.5 V TA = -40 °C ~ +105 °C — 3.3 6.3 μA Oscillator Supply Current (Low Current Mode) fCK_LSE = 32.768 kHz, RESR = 50 kΩ, CL < 7 pF VDD = 2.5 V ~ 5.5 V TA = -40 °C ~ +105 °C — 1.8 3.3 μA — — — 0.01 μA 500 — — ms Power Down Current LSE Oscillator Startup Time (Low Current Mode) tSULSE — fCK_LSE = 32.768 kHz, VDD = 2.5 V ~ 5.5 V Note: The following guidelines are recommended to increase the stability of the crystal circuit of the HSE / LSE clock in the PCB layout. 1. The crystal oscillator should be located as close as possible to the MCU to keep the trace length as short as possible to reduce any parasitic capacitance. 2. Shield lines in the vicinity of the crystal by using a ground plane to isolate signals and reduce noise. 3. Keep any high frequency signal lines away from the crystal area to prevent the crosstalk adverse effects. Rev. 1.00 42 of 56 March 06, 2024 5 Electrical Characteristics IDDHSE HSE Oscillator Current Consumption Conditions 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Internal Clock Characteristics Table 16. High Speed Internal Clock (HSI) Characteristics Symbol Typ. Max. Unit Operation Voltage Range TA = -40 °C ~ 105 °C 2.5 — 5.5 V fHSI HSI Frequency VDD = 5 V @ 25 °C — 8 — MHz VDD = 5.0 V TA = 25 °C -1 — 1 % VDD = 2.5 V ~ 5.5 V TA = -20 °C ~ 60 °C -1.5 — 2 % VDD = 2.5 V ~ 5.5 V TA = -40 °C ~ 105 °C -3 — 3 % fHSI = 8 MHz 35 — 65 % fHSI = 8 MHz @ HSI Oscillator Power Down Current VDD = 2.5 V ~ 5.5 V — — 140 μA — — 0.01 μA HSI Oscillator Startup Time — — 20 μs Duty IDDHSI TSUHSI Conditions Factory Calibrated HSI Oscillator Frequency Accuracy HSI Oscillator Duty Cycle HSI Oscillator Operating Current fHSI = 8 MHz Note: Data based on characterization results only, not tested in production. Table 17. Low Speed Internal Clock (LSI) Characteristics Symbol Parameter TA = 25 °C, unless otherwise specified. Min. Typ. Max. Unit VDD Operation Voltage Range TA = -40 °C ~105 °C Conditions 2.5 — 5.5 V fLSI LSI Frequency VDD = 5.0 V, TA = -40 °C ~ 105 °C 21 32 43 kHz ACCLSI LSI Frequency Accuracy VDD = 5.0 V, with factory-trimmed -10 — +10 % IDDLSI LSI Oscillator Operating Current VDD = 5.0 V — 0.5 0.8 μA tSULSI LSI Oscillator Startup Time — — 100 μs VDD = 5.0 V Note: Data based on characterization results only, not tested in production. System PLL Characteristics Table 18. System PLL Characteristics Symbol Parameter TA = 25 °C, unless otherwise specified. Conditions Min. Typ. Max. Unit fPLLIN System PLL Input Clock — 4 — 16 MHz fCK_PLL System PLL Output Clock — 4 — 60 MHz tLOCK System PLL Lock Time — — 200 — μs Memory Characteristics Table 19. Flash Memory Characteristics Symbol Min. Typ. Max. Unit NENDU Number of Guaranteed Program/Erase TA = -40 °C ~ 105 °C Cycles before failure (Endurance) 20 — — K cycles tRET Data Retention Time TA = -40 °C ~ 105 °C 10 — — Years tPROG Word Programming Time TA = -40 °C ~ 105 °C 20 — — μs Rev. 1.00 Parameter TA = 25 °C, unless otherwise specified. Conditions 43 of 56 March 06, 2024 5 Electrical Characteristics Min. VDD ACCHSI Parameter TA = 25 °C, unless otherwise specified. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Symbol Parameter Conditions Min. Typ. Max. Unit tERASE Page Erase Time TA = -40 °C ~ 105 °C 2 — — ms tMERASE Mass Erase Time TA = -40 °C ~ 105 °C 10 — — ms I/O Port Characteristics Table 20. I/O Port Characteristics Parameter IIL Low Level Input Current IIH High Level Input Current VIL VIH VHYS IOL IOH VOL Conditions Min. Typ. Max. Unit VI = VSS, On-chip pull-up resister disabled — — 3 μA — — 3 μA VI = VDD, On-chip pull-down resister disabled — — 3 μA — — 3 μA 5.0 V I/O - 0.5 — VDD × 0.35 V Reset pin - 0.5 — VDD × 0.35 V 5.0 V I/O VDD × 0.65 — VDD + 0.5 V Reset pin VDD × 0.65 — VDD + 0.5 V 5.0 V I/O — 0.12 × VDD — mV Reset pin — 0.12 × VDD — mV 5.0 V I/O 4 mA drive, VOL = 0.6 V 4 — — mA 5.0 V I/O Reset pin 5.0 V I/O Reset pin Low Level Input Voltage High Level Input Voltage Schmitt Trigger Input Voltage Hysteresis Low Level Output Current 5.0 V I/O 8 mA drive, VOL = 0.6 V (GPIO Sink Current) 5.0 V I/O 12 mA drive, VOL = 0.6 V 8 — — mA 12 — — mA 5.0 V I/O 16 mA drive, VOL = 0.6 V 16 — — mA 5.0 V I/O 4 mA drive, VOH = VDD - 0.6 V — 4 — mA High Level Output Current 5.0 V I/O 8 mA drive, VOH = VDD - 0.6 V (GPIO Source Current) 5.0 V I/O 12 mA drive, VOH = VDD - 0.6 V — 8 — mA — 12 — mA 5.0 V I/O 16 mA drive, VOH = VDD - 0.6 V — 16 — mA 5.0 V 4 mA drive I/O, IOL = 4 mA — — 0.6 V 5.0 V 8 mA drive I/O, IOL = 8 mA — — 0.6 V 5.0 V 12 mA drive I/O, IOL = 12 mA — — 0.6 V Low Level Output Voltage 5.0 V 16 mA drive I/O, IOL = 16 mA VOH High Level Output Voltage RPU Internal Pull-up Resistor RPD Internal Pull-down Resistor Rev. 1.00 — — 0.6 V 5.0 V 4 mA drive I/O, IOH = 4 mA VDD - 0.6 — — V 5.0 V 8 mA drive I/O, IOH = 8 mA VDD - 0.6 — — V 5.0 V 12 mA drive I/O, IOH = 12 mA VDD - 0.6 — — V 5.0 V 16 mA drive I/O, IOH = 16 mA VDD - 0.6 — — V VDD = 5.0 V — 50 — VDD = 3.3 V — 76 — VDD = 5.0 V — 50 — VDD = 3.3 V — 76 — 44 of 56 kΩ kΩ March 06, 2024 5 Electrical Characteristics Symbol TA = 25 °C, unless otherwise specified. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 ADC Characteristics Table 21. ADC Characteristics Symbol TA = 25 °C, unless otherwise specified. Min. Typ. Max. Unit A/D Converter Operating Voltage Parameter — 2.5 5.0 5.5 V VADCIN A/D Converter Input Voltage Range — 0 — VREF+ V VREF+ A/D Converter Reference Voltage — — VDDA VDDA V IADC A/D Converter Current Consumption VDDA = 5.0 V — 1.4 1.5 mA IADC_DN A/D Converter Power Down Current VDDA = 5.0 V Consumption — — 0.1 μA fADC A/D Converter Clock Frequency — 0.7 — 32 MHz fS Sampling Rate — 0.05 — 2 Msps tDL Data Latency — — 12.5 — 1/fADC Cycles tS&H Sampling & Hold Time — — 3.5 — 1/fADC Cycles tADCCONV A/D Converter Conversion Time — 16 — 1/fADC Cycles ADST[7:0] = 2 RI Input Sampling Switch Resistance CI Input Sampling Capacitance — — — 1 kΩ No pin/pad capacitance included — 4 — pF tSU Startup Time — — — 1 μs N Resolution INL Integral Non-linearity Error fS = 1.875 Msps, VDDA = 5.0 V — — 12 — bits — ±2 ±5 LSB DNL Differential Non-linearity Error fS = 1.875 Msps, VDDA = 5.0 V — ±1 — LSB EO Offset Error EG Gain Error — — — ±10 LSB — — — ±10 LSB Note: 1. Data based on characterization results only, not tested in production. 2. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where CI is the storage capacitor, RI is the resistance of the sampling switch and RS is the output impedance of the signal source VS. Normally the sampling phase duration is approximately, 3.5/fADC. The capacitance, CI, must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to VS for accuracy. To guarantee this, RS is not allowed to have an arbitrarily large value. SAR ADC sample RS CI VS RI Figure 12. ADC Sampling Network Model Rev. 1.00 45 of 56 March 06, 2024 5 Electrical Characteristics Conditions VDDA 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 The worst case occurs when the extremities of the input range (0 V and V REF) are sampled consecutively. In this situation a sampling error below 1/4 LSB is ensured by using the following equation: RS < 3.5 − RI fADCCIln(2N+2) If, in a system where the A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, RS may be larger than the value indicated by the equation above. Internal Reference Voltage Characteristics Table 22. Internal Reference Voltage Characteristics Symbol Parameter VDDA Conditions Min. Typ. Max. Unit — 2.8 — 5.5 V VDDA ≥ 2.8 V VREFSEL[1:0] = 00 2.47 2.5 2.53 VDDA ≥ 3.3 V VREFSEL[1:0] = 01 2.97 3.0 3.03 VDDA ≥ 4.3 V VREFSEL[1:0] = 10 3.96 4.0 4.04 VDDA ≥ 4.8 V VREFSEL[1:0] = 11 4.45 4.5 4.54 VDDA = 2.8 V ~ 5.5 V, VREF = 2.5 V, TA = -40 °C ~ 85 °C -3.0 — 2.5 VDDA = 2.8 V ~ 5.5 V, VREF = 2.5 V, TA = -40 °C ~ 105 °C -4.5 — 2.5 Operating Voltage Internal Reference Voltage after Factory Trimming @ TA = 25 °C VREF Reference Voltage Accuracy after Trimming ACCVREF TA = 25 °C, unless otherwise specified. V % tSTABLE Reference Voltage Stable Time — — — 100 ms tSREFV ADC Sampling Time when Reading Reference Voltage — 10 — — µs IDD Operating Current — — 50 70 µA IDDPWD Power Down Current — — — 0.01 µA Note: 1. Data based on characterization results only, not tested in production. 2. The trimming bits of the internal reference voltage are 7-bit resolution. Comparator Characteristics Table 23. Comparator Characteristics Symbol Parameter Conditions Min. Typ. Max. Unit 2.5 — 5.5 V VSSA — VDDA V TA = 25 °C -5 — 5 mV No hysteresis, CMPHM [1:0] = 00 — 0 — mV Low hysteresis, CMPHM [1:0] = 01 — 50 — mV Middle hysteresis, CMPHM [1:0] = 10 — 100 — mV High hysteresis, CMPHM [1:0] = 11 — 150 — mV VDDA Operating Voltage VIN Input Common Mode VoltCP or CN age Range VIOS Input Offset Voltage(1) VHYS Input Hysteresis VDDA = 5.0 V Rev. 1.00 TA = 25 °C, unless otherwise specified. Comparator mode 46 of 56 March 06, 2024 5 Electrical Characteristics Where fADC is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Symbol Parameter Conditions High Speed Mode Response Time Input Overdrive = ±100 mV Low Speed Mode tRT Min. Typ. Max. Unit VDDA ≥ 3.6 V — 50 100 VDDA < 3.6 V — 100 250 — 2 5 µs ns Current Consumption VDDA = 5.0 V High Speed Mode — 100 — µA Low Speed Mode — 15 — µA tCMPST Comparator Startup Time Comparator enabled to output valid — — 50 µs ICMP_DN Comparator Power Down Supply Current CMPEN = 0 CVREN = 0 CVROE = 0 — — 0.1 µA Comparator Voltage Reference (CVR) VCVR Output Voltage Range — VSSA — VDDA V NBits CVR Scaler Resolution — — 8 — bits VDDA = 5 V, CVROE = 1, CLOAD ≤ 100 pF, RLOAD ≥ 50 kΩ, CVR Scaler Setting Time from CVRVAL = “00000000” to “11111111” — — 250 µs CVREN = 1, CVROE = 0 — 100 — µA CVREN = 1, CVROE = 1 — 125 150 µA tCVRST Setting Time ICVR Current Consumption VDDA = 5.0 V Note: Data based on characterization results only, not tested in production. GPTM / MCTM / PWM Characteristics Table 24. GPTM / MCTM / PWM Characteristics Symbol Parameter Conditions Min. Typ. Max. Unit fTM Timer Clock Source for GPTM, MCTM, PWM — — — fPCLK MHz tRES Timer Resolution Time — 1 — — 1/fTM fEXT External Signal Frequency on Channel 0 ~ 3 — — — 1/2 fTM RES Timer Resolution — — — 16 bits I2C Characteristics Table 25. I2C Characteristics Symbol Standard Mode Parameter Min. Max. Fast Mode Min. Max. Fast Plus Mode Min. Max. Unit fSCL SCL Clock Frequency — 100 — 400 — 1000 kHz tSCL(H) SCL Clock High Time 4.5 — 1.125 — 0.45 — μs tSCL(L) SCL Clock Low Time 4.5 — 1.125 — 0.45 — μs tFALL SCL and SDA Fall Time — 1.3 — 0.34 — 0.135 μs tRISE SCL and SDA Rise Time — 1.3 — 0.34 — 0.135 μs tSU(SDA) SDA Data Setup Time 500 — 125 — 50 — ns 0 — 0 — 0 — ns SDA Data Hold Time (6) — 1.6 — 0.475 — 0.25 μs tVD(SDA) SDA Data Valid Time — 1.6 — 0.475 — 0.25 μs tSU(STA) START Condition Setup Time 500 — 125 — 50 — ns tH(SDA) Rev. 1.00 SDA Data Hold Time (5) 47 of 56 March 06, 2024 5 Electrical Characteristics ICMP 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Symbol Standard Mode Parameter Fast Mode Fast Plus Mode Min. Max. Min. Max. Min. Max. Unit tH(STA) START Condition Hold Time 0 — 0 — 0 — ns tSU(STO) STOP Condition Setup Time 500 — 125 — 50 — ns Note: 1. Data based on design, not tested in production. 2. To achieve 100 kHz standard mode, the peripheral clock frequency must be higher than 2 MHz. 4. To achieve 1 MHz fast plus mode, the peripheral clock frequency must be higher than 20 MHz. 5. The above characteristic parameters of the I2C bus timing are based on: COMBFILTEREN = 0 and SEQFILTER = 00. 6. The above characteristic parameters of the I2C bus timing are based on: COMBFILTEREN = 1 and SEQFILTER = 00. tFALL tRISE SCL tSCL(L) tH(STA) SDA tSCL(H) tVD(SDA) tH(SDA) tSU(STO) tSU(SDA) tSU(STA) Figure 13. I2C Timing Diagram SPI Characteristics Table 26. SPI Characteristics Symbol Parameter Conditions Min. Typ. Max. Unit Master mode SPI peripheral clock frequency fPCLK — — fPCLK/2 MHz SPI Master Mode fSCK SPI Master Output SCK Clock Frequency tSCK(H) tSCK(L) SCK Clock High and Low Time — tSCK/2 -2 — tSCK/2 +1 ns tV(MO) Data Output Valid Time — — — 5 ns tH(MO) Data Output Hold Time — 2 — — ns tSU(MI) Data Input Setup Time — 5 — — ns tH(MI) Data Input Hold Time — 5 — — ns SPI Slave Mode fSCK SPI Slave Input SCK Clock Slave mode Frequency SPI peripheral clock frequency fPCLK — — fPCLK/3 MHz DutySCK SPI Slave Input SCK Clock Duty Cycle — 30 — 70 % tSU(SEL) SEL Enable Setup Time — 3 tPCLK — — ns tH(SEL) SEL Enable Hold Time — 2 tPCLK — — ns tA(SO) Data Output Access Time — — — 3 tPCLK ns Rev. 1.00 48 of 56 March 06, 2024 5 Electrical Characteristics 3. To achieve 400 kHz fast mode, the peripheral clock frequency must be higher than 8 MHz. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 Symbol Parameter Conditions Min. Typ. Max. Unit tDIS(SO) Data Output Disable Time — — — 10 ns tV(SO) Data Output Valid Time — — — 25 ns tH(SO) Data Output Hold Time — 15 — — ns tSU(SI) Data Input Setup Time — 5 — — ns tH(SI) Data Input Hold Time — 4 — — ns 5 Electrical Characteristics Note: 1. fSCK is SPI output/input clock frequency and tSCK = 1/fSCK. 2. fPCLK is SPI peripheral clock frequency and tPCLK = 1/fPCLK. tSCK SCK (CPOL=0) tSCK(H) tSCK(L) SCK (CPOL=1) tH(MO) tV(MO) DATA VALID MOSI tSU(MI) DATA VALID CPHA=1 tH(MI) DATA VALID MISO DATA VALID DATA VALID tSU(MI) MISO DATA VALID tH(MO) tV(MO) MOSI DATA VALID DATA VALID DATA VALID tH(MI) DATA VALID CPHA=0 DATA VALID DATA VALID Figure 14. SPI Timing Diagram – SPI Master Mode Rev. 1.00 49 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 SEL tSU(SEL) tH(SEL) tSCK SCK (CPOL=0) tSCK(L) SCK (CPOL=1) tSU(SI) MSB/LSB IN MOSI tA(SO) MISO tH(SI) tV(SO) LSB/MSB IN tH(SO) MSB/LSB OUT tDIS(SO) LSB/MSB OUT Figure 15. SPI Timing Diagram – SPI Slave Mode with CPHA = 1 Rev. 1.00 50 of 56 March 06, 2024 5 Electrical Characteristics tSCK(H) 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 6 Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package/Carton Information. ● Package Information (include Outline Dimensions, Product Tape and Reel Specifications) ● The Operation Instruction of Packing Materials ● Carton information Rev. 1.00 51 of 56 March 06, 2024 6 Package Information Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 SAW Type 32-pin QFN (4mm × 4mm × 0.75mm) Outline Dimensions D2 32 b 25 17 8 e E E2 1 16 A1 A3 D L 9 K A Symbol Dimensions in inch Min. Nom. Max. A 0.028 0.030 0.031 A1 0.000 0.001 0.002 A3 b 0.008 REF 0.006 0.008 D 0.157 BSC E 0.157 BSC e 0.016 BSC D2 0.100 — 0.108 E2 0.100 — 0.108 L 0.014 0.016 0.018 K 0.008 — — Symbol Dimensions in mm Min. Nom. Max. A 0.70 0.75 0.80 A1 0.00 0.02 0.05 A3 b Rev. 1.00 0.010 0.203 REF 0.15 0.20 D 4.00 BSC E 4.00 BSC e 0.40 BSC 0.25 D2 2.55 — 2.75 E2 2.55 — 2.75 L 0.35 0.40 0.45 K 0.20 — — 52 of 56 March 06, 2024 6 Package Information 24 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 SAW Type 46-pin QFN (6.5mm × 4.5mm × 0.75mm) Outline Dimensions D2 33 b 46 24 9 e E E2 1 23 A1 A3 D L 10 K A Symbol Dimensions in inch Min. Nom. Max. A 0.028 0.030 0.031 A1 0.000 0.001 0.002 A3 b 0.008 REF 0.006 0.008 D 0.256 BSC E 0.177 BSC e 0.016 BSC D2 0.197 — 0.205 E2 0.118 — 0.126 L 0.014 0.016 0.018 K 0.008 — — Symbol Dimensions in mm Min. Nom. Max. A 0.70 0.75 0.80 A1 0.00 0.02 0.05 A3 b 0.203 REF 0.15 0.20 D 6.50 BSC E 4.50 BSC e Rev. 1.00 0.010 0.25 0.40 BSC D2 5.00 — 5.20 E2 3.00 — 3.20 L 0.35 0.40 0.45 K 0.20 — — 53 of 56 March 06, 2024 6 Package Information 32 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 48-pin LQFP (7mm × 7mm) Outline Dimensions            6 Package Information              Symbol   Dimensions in inch Min. Nom. A 0.354 BSC B 0.276 BSC C 0.354 BSC D 0.276 BSC E 0.020 BSC F 0.007 0.009 0.011 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° — 7° Symbol Rev. 1.00 Max. Dimensions in mm Min. Nom. A 9.00 BSC B 7.00 BSC C 9.00 BSC D 7.00 BSC E 0.50 BSC Max. F 0.17 0.22 0.27 G 1.35 1.40 1.45 H — — 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° — 7° 54 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 64-pin LQFP (7mm × 7mm) Outline Dimensions               6 Package Information             Symbol Dimensions in inch Min. Nom. A 0.354 BSC B 0.276 BSC C 0.354 BSC D 0.276 BSC E 0.016 BSC F 0.005 0.007 0.009 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° — 7° Symbol Dimensions in mm Min. Nom. A 9.00 BSC B 7.00 BSC C 9.00 BSC D 7.00 BSC E Rev. 1.00 Max. Max. 0.40 BSC F 0.13 0.18 0.23 G 1.35 1.40 1.45 H — — 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° — 7° 55 of 56 March 06, 2024 32-Bit Arm® Cortex®-M0+ 5V CAN MCU HT32F53231/HT32F53241/HT32F53242/HT32F53252 6 Package Information Copyright© 2024 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved. The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty’s rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK’s products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK’s products in life-saving/sustaining or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us. Rev. 1.00 56 of 56 March 06, 2024
HT32F53231 价格&库存

很抱歉,暂时无法提供与“HT32F53231”相匹配的价格&库存,您可以联系我们找货

免费人工找货