30V, 100mA TinyPower
TM
HT75xx-7
LDO with Protections
Features
General Description
• Low power consumption
The HT75xx-7 is a low power high voltage series of
regulators implemented in CMOS technology which
has the advantages of low voltage drop and low
quiescent current. They allow input voltages as high
as 30V and are available with several fixed output
voltages ranging from 2.1V to 12.0V.
• Low voltage drop
• Low temperature coefficient
• High input voltage – up to 30V
• Output voltage accuracy: tolerance ±2%
• Over current protection
When the CE input is low, a fast discharge path pulls
the output voltage low via an internal pull-down
resistor. An internal over-current protection circuit
prevents the device from damage even if the output
is shorted to ground. An over-temperature protection
circuit ensures the device junction temperature will
not exceed a temperature of 160°C.
• Over temperature protection
• Chip enable/disable function
• 3-pin SOT89 and 5-pin SOT23 packages
Applications
• Battery-powered equipment
• Communication equipment
• Audio/Video equipment
Selection Table
Part No.
Output Voltage
HT7521-7
2.1V
HT7523-7
2.3V
HT7525-7
2.5V
HT7527-7
2.7V
HT7530-7
3.0V
HT7533-7
3.3V
HT7536-7
3.6V
HT7540-7
4.0V
HT7544-7
4.4V
HT7550-7
5.0V
HT7560-7
6.0V
HT7570-7
7.0V
HT7580-7
8.0V
HT7590-7
9.0V
HT75A0-7
10.0V
HT75C0-7
12.0V
Packages
Markings
SOT89
SOT23-5
75xx-7 (for SOT89)
5xx7 (for SOT23-5)
Note: "xx" stands for output voltages.
Rev. 1.30
1
October 17, 2018
HT75xx-7
Block Diagram
OTP
VIN
OUT
OCP
300Ω
Vref
En
CE
En
Soft Start
GND
Pin Assignment
SOT23-5
SOT89
OUT
5
NC
4
75xx-7
5xx7
1
2
3
GND
VIN
OUT
1
VIN
2
3
GND CE
Pin Descriptions
Pin No.
Pin Name
Pin Description
SOT89
SOT23-5
1
2
GND
Ground pin
2
1
VIN
Input pin
3
5
OUT
Output pin
—
3
CE
Chip enable pin, high enable
—
4
NC
No connection
Rev. 1.30
2
October 17, 2018
HT75xx-7
Absolute Maximum Ratings
Parameter
Value
Unit
VIN
-0.3 to +33
V
VCE
-0.3 to (VIN+0.3)
Operating Temperature Range, Ta
o
C
+150
o
C
-65 to +165
o
C
Maximum Junction Temperature, TJ(MAX)
Storage Temperature Range
SOT89
Junction-to-Ambient Thermal Resistance, θJA
Power Dissipation, PD
V
-40 to +85
200
°C/W
SOT23-5
500
°C/W
SOT89
0.50
W
SOT23-5
0.20
W
Note: PD is measured at Ta = 25°C.
Recommended Operating Range
Parameter
Value
Unit
VIN
3.1 to 30
V
VCE
0 to VIN
V
Electrical Characteristics
VIN=VOUT+2V, VCE=VIN, Ta=+25oC and CIN=COUT=10μF, unless otherwise specified
Test Conditions
Min.
Typ.
Max.
Unit
VIN
Symbol
Input Voltage
—
—
—
30
V
VOUT
Output Voltage Range
—
2.1
—
12.0
V
VO
Output Voltage Accuracy IOUT=10mA
–2
—
2
%
IOUT
Output Current
VOUT < 5.0V
100
—
—
mA
VOUT ≥ 5.0V
150
—
—
mA
∆VOUT
Load Regulation
1mA ≤ IOUT ≤ 50mA
—
15
45
mV
VDIF
Dropout Voltage
IOUT=1mA, VOUT Change=2% (Note)
—
10
30
mV
IOUT=0mA
—
2.5
4.0
μA
VCE=2.0V, VIN=30V, IOUT=0mA
—
3.0
5.0
μA
VCE=0V
—
0.1
0.5
μA
∆VOUT
Line Regulation
∆VIN × ∆VOUT
(VOUT+1V) ≤ VIN ≤ 30V, VOUT ≤ 5V
IOUT=1mA
VOUT ≥ 6V
—
0.1
0.2
%/V
—
0.2
0.4
%/V
∆VOUT
∆Ta × ∆VOUT
Temperature Coefficient
IOUT=10mA, -40°C < Ta < 85°C
—
±100
—
ppm/°C
ISHORT
Output Short Current
VIN=12V, force VOUT=0V
—
150
—
mA
TSHD
Shutdown Temperature
—
—
160
—
o
C
TREC
Recovery Temperature
—
—
25
—
o
C
VIH
Enable High Threshold
CE pin, VOUT+1V ≤ VIN ≤ 30V
2.0
—
—
VIL
Enable Low Threshold
CE pin, VOUT+1V ≤ VIN ≤ 30V
—
—
0.6
V
RDIS
Discharge Resistor
CE=0V, measure at VOUT
—
300
—
Ω
ISS1
ISS2
ISHD
Parameter
Quiescent Current
Shutdown Current
V
Note: The dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in
the output voltage from the value at VIN=VOUT+2V with a fixed load.
Rev. 1.30
3
October 17, 2018
HT75xx-7
Typical Performance Characteristic
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
3.34
5.06
3.33
5.04
5.02
3.31
VOUT(V)
VOUT(V)
3.32
-40°C
25°C
85°C
3.3
3.29
5
4.98
4.94
3.28
4.92
3.27
4.9
4
7
10
13
16
19
VIN(V)
22
25
28
31
5
Line Regulation: HT7533-7 (IOUT=10mA)
8
11
14
17
20
VIN(V)
29
12.1
6.02
12.05
5.98
VOUT(V)
6
-40°C
25°C
85°C
5.96
5.94
12
11.95
-40°C
25°C
85°C
11.9
11.85
5.92
5.9
11.8
6
9
12
15
18
21
24
27
30
12
15
18
21
VIN(V)
24
27
30
VIN(V)
Line Regulation: HT7560-7 (IOUT=10mA)
Line Regulation: HT75C0-7 (IOUT=10mA)
4
4
3.5
3.5
3
3
2.5
ISS (uA)
ISS (uA)
26
12.15
6.04
2
1.5
-40°C
25°C
85°C
1
0.5
0
5
8
11
14
17
20
23
26
29
2.5
2
1.5
-40°C
25°C
85°C
1
0.5
0
32
5
8
11
14
VIN(V)
17
20
23
26
29
32
VIN(V)
ISS vs VIN: HT7533-7 (IOUT=0mA)
ISS vs VIN: HT7550-7 (IOUT=0mA)
4
4
3.5
3.5
3
3
2.5
2.5
ISS (uA)
ISS (uA)
23
Line Regulation: HT7550-7 (IOUT=10mA)
6.06
VOUT(V)
-40°C
25°C
85°C
4.96
2
-40°C
25°C
85°C
1.5
1
0.5
2
-40°C
25°C
85°C
1.5
1
0.5
0
0
6
9
12
15
18
21
24
27
30
12
VIN(V)
18
21
24
27
30
VIN(V)
ISS vs VIN: HT7560-7 (IOUT=0mA)
Rev. 1.30
15
ISS vs VIN: HT75C0-7 (IOUT=0mA)
4
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
0.5
0.5
I SHD (uA)
ISHD (uA)
0.3
-40°C
25°C
85°C
0.4
-40°C
25°C
85°C
0.4
0.2
0.3
0.2
0.1
0.1
0
0
4
7
10
13
16
VIN(V)
19
22
25
28
5
31
8
ISHD vs VIN: HT7533-7 (IOUT=0mA)
0.5
0.1
0.3
20
23
26
29
32
0.2
0.1
0
4
7
10
13
16
19
VIN(V)
22
25
28
0
31
12
15
ISHD vs VIN: HT7560-7 (IOUT=0mA)
200
ISS(uA)
150
100
-40°C
25°C
85°C
50
10
20
30
40
50
60
IOUT(mA)
70
80
90
100
110
30
40 50
200
150
-40°C
25°C
85°C
10
20 30
40 50
60 70 80 90 100 110 120 130 140 150 160
IOUT(mA)
650
600
550
500
450
400
350
300
250
200
150
100
50
0
-40°C
25°C
85°C
0
60 70 80 90 100 110 120 130 140 150 160
IOUT(mA)
ISS vs IOUT: HT7560-7 (VIN=8.0V)
Rev. 1.30
30
ISS vs IOUT: HT7550-7 (VIN=7.0V)
ISS(uA)
10 20
27
250
0
-40°C
25°C
85°C
0
24
450
400
350
300
ISS vs IOUT: HT7533-7 (VIN=5.3V)
600
550
500
450
400
350
300
250
200
150
100
50
0
21
VIN(V)
100
50
0
0
0
18
ISHD vs VIN: HT75C0-7 (IOUT=0mA)
250
ISS(uA)
VIN(V)
-40°C
25°C
85°C
0.4
0.2
ISS(uA)
17
0.5
ISHD (uA)
ISHD (uA)
0.3
14
ISHD vs VIN: HT7533-7 (IOUT=0mA)
-40°C
25°C
85°C
0.4
11
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
IOUT(mA)
ISS vs IOUT: HT75C0-7 (VIN=14V)
5
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
3.5
3
3
2.5
2.5
ISS (uA)
ISS (uA)
3.5
2
1.5
1
0
2.5
5.5
8.5
11.5
14.5
17.5
20.5
23.5
26.5
-40°C
25°C
85°C
1
-40°C
25°C
85°C
0.5
2
1.5
0.5
0
2.5
29.5
5.5
8.5
11.5
14.5
17.5
ISS vs VCE: HT7533-7 (IOUT=0mA)
26.5
29.5
3.5
3
3
2.5
2.5
2
ISS (uA)
ISS (uA)
23.5
ISS vs VCE: HT7550-7 (IOUT=0mA)
3.5
1.5
-40°C
25°C
85°C
1
0.5
0
2.5
5.5
8.5
11.5
14.5
17.5
20.5
23.5
26.5
2
1.5
-40°C
25°C
85°C
1
0.5
0
29.5
2.5
5.5
8.5
11.5
14.5
VCE(V)
-40°C
150
85°C
Temperature (C)
200
25°C
100
50
0
7
10
13
16
19
22
25
28
31
23.5
26.5
180
160
140
120
100
80
60
40
20
0
29.5
TSHD(+)
TSHD(-)
5
7
9
11
13
15
17
19
21
23
25
27
29
31
VIN(V)
VIN (V)
ISHD vs VIN
Rev. 1.30
20.5
ISS vs VCE: HT75C0-7 (IOUT=0mA)
250
4
17.5
VCE(V)
ISS vs VCE: HT7560-7 (IOUT=0mA)
ISHD (mA)
20.5
VCE(V)
VCE(V)
TSHD vs VIN
6
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
1400
1000
-40°C
25°C
85°C
1400
1200
VDIF(mV)
VDIF(mV)
1600
-40°C
25°C
85°C
1200
800
600
400
1000
800
600
400
200
200
0
0
10
20
30
40
50
60
70
80
90
0
100
0
10
20
30
40
50
60
IOUT(mA)
Dropout voltage: HT7533-7
80
90 100 110 120 130 140 150
Dropout voltage: HT7550-7
1800
1600
-40°C
25°C
85°C
1400
1200
1000
1600
-40°C
25°C
85°C
1400
VDIF(mV)
VDIF(mV)
70
IOUT(mA)
800
600
1200
1000
800
600
400
400
200
200
0
0
10
20
30
40
50
60
70
80
0
90 100 110 120 130 140 150
0
IOUT(mA)
20
30
40
50
60
70
80
90 100 110 120 130 140 150
IOUT(mA)
Dropout voltage: HT7560-7
Rev. 1.30
10
Dropout voltage: HT75C0-7
7
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
Load Transient Response:
HT7533-7 (VIN=5.3V, IOUT=0mA to 40mA)
Load Transient Response:
HT7550-7 (VIN=7V, IOUT=0mA to 40mA)
Load Transient Response:
HT7533-7 (VIN=5.3V, IOUT=40mA to 0mA)
Load Transient Response:
HT7550-7 (VIN=7.0V, IOUT=40mA to 0mA)
Load Transient Response:
HT7560-7 (VIN=8.0V, IOUT=0mA to 40mA)
Load Transient Response:
HT75C0-7 (VIN=14V, IOUT=0mA to 40mA)
Load Transient Response:
HT7560-7 (VIN=8.0V, IOUT=40mA to 0mA)
Load Transient Response:
HT75C0-7 (VIN=14V, IOUT=40mA to 0mA)
Rev. 1.30
8
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
Line Transient Response: HT7533-7 (IOUT=10mA)
Line Transient Response: HT7550-7 (IOUT=10mA)
Line Transient Response: HT7533-7 (IOUT=10mA)
Line Transient Response: HT7550-7 (IOUT=10mA)
Line Transient Response: HT7560-7 (IOUT=10mA)
Line Transient Response: HT75C0-7 (IOUT=10mA)
Line Transient Response: HT7560-7 (IOUT=10mA)
Line Transient Response: HT75C0-7 (IOUT=10mA)
Rev. 1.30
9
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
Line Transient Response: HT7533-7 (IOUT=10mA)
Line Transient Response: HT7550-7 (IOUT=10mA)
Line Transient Response: HT7533-7 (IOUT=10mA)
Line Transient Response: HT7550-7 (IOUT=10mA)
Line Transient Response: HT7560-7 (IOUT=10mA)
Line Transient Response: HT75C0-7 (IOUT=10mA)
Line Transient Response: HT7560-7 (IOUT=10mA)
Line Transient Response: HT75C0-7 (IOUT=10mA)
Rev. 1.30
10
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
ON/OFF Response:
HT7533-7 (IOUT=0mA, VCE=0V to 2.7V)
ON/OFF Response:
HT7550-7 (IOUT=0mA, VCE=0V to 2.7V)
ON/OFF Response:
HT7533-7 (IOUT=0mA, VCE=2.7V to 0V)
ON/OFF Response:
HT7550-7 (IOUT=0mA, VCE=2.7V to 0V)
ON/OFF Response:
HT7560-7 (IOUT=0mA, VCE=0V to 2.7V)
ON/OFF Response:
HT75C0-7 (IOUT=0mA, VCE=0V to 2.7V)
ON/OFF Response:
HT7560-7 (IOUT=0mA, VCE=2.7V to 0V)
ON/OFF Response:
HT75C0-7 (IOUT=0mA, VCE=2.7V to 0V)
Rev. 1.30
11
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
ON/OFF Response:
HT7533-7 (IOUT=100mA, VCE=0V to 2.7V)
ON/OFF Response:
HT7550-7 (IOUT=150mA, VCE=0V to 2.7V)
ON/OFF Response:
HT7533-7 (IOUT=100mA, VCE=2.7V to 0V)
ON/OFF Response:
HT7550-7 (IOUT=150mA, VCE=2.7V to 0V)
ON/OFF Response:
HT7560-7 (IOUT=150mA, VCE=0V to 2.7V)
ON/OFF Response:
HT75C0-7 (IOUT=150mA, VCE=0V to 2.7V)
ON/OFF Response:
HT7560-7 (IOUT=150mA, VCE=2.7V to 0V)
ON/OFF Response:
HT75C0-7 (IOUT=150mA, VCE=2.7V to 0V)
Rev. 1.30
12
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
Power On Response:
HT7533-7 (IOUT=0mA, TRISE=0.1ms)
Power On Response:
HT7550-7 (IOUT=0mA, TRISE=0.1ms)
Power Off Response:
HT7533-7 (IOUT=0mA, TFALL=0.1ms)
Power Off Response:
HT7550-7 (IOUT=0mA, TFALL=0.1ms)
Power On Response:
HT7560-7 (IOUT=0mA, TRISE=0.1ms)
Power On Response:
HT75C0-7 (IOUT=0mA, TRISE=0.1ms)
Power Off Response:
HT7560-7 (IOUT=0mA, TFALL=0.1ms)
Power Off Response:
HT75C0-7 (IOUT=0mA, TFALL=0.1ms)
Rev. 1.30
13
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
Power On Response:
HT7533-7 (IOUT=0mA, TRISE=100ms)
Power On Response:
HT7550-7 (IOUT=0mA, TRISE=100ms)
Power Off Response:
HT7533-7 (IOUT=0mA, TFALL=100ms)
Power Off Response:
HT7550-7 (IOUT=0mA, TFALL=100ms)
Power On Response:
HT7560-7 (IOUT=0mA, TRISE=100ms)
Power On Response:
HT75C0-7 (IOUT=0mA, TRISE=100ms)
Power Off Response:
HT7560-7 (IOUT=0mA, TFALL=100ms)
Power Off Response:
HT75C0-7 (IOUT=0mA, TFALL=100ms)
Rev. 1.30
14
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
Power On Response:
HT7533-7 (IOUT=100mA, TRISE=0.1ms)
Power On Response:
HT7550-7 (IOUT=150mA, TRISE=0.1ms)
Power Off Response:
HT7533-7 (IOUT=100mA, TFALL=0.1ms)
Power Off Response:
HT7550-7 (IOUT=150mA, TFALL=0.1ms)
Power On Response:
HT7560-7 (IOUT=150mA, TRISE=0.1ms)
Power On Response:
HT75C0-7 (IOUT=150mA, TRISE=0.1ms)
Power Off Response:
HT7560-7 (IOUT=150mA, TFALL=0.1ms)
Power Off Response:
HT75C0-7 (IOUT=150mA, TFALL=0.1ms)
Rev. 1.30
15
October 17, 2018
HT75xx-7
Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted.
Power On Response:
HT7533-7 (IOUT=100mA, TRISE=100ms)
Power On Response:
HT7550-7 (IOUT=150mA, TRISE=100ms)
Power Off Response:
HT7533-7 (IOUT=100mA, TFALL=100ms)
Power Off Response:
HT7550-7 (IOUT=150mA, TFALL=100ms)
Power On Response:
HT7560-7 (IOUT=150mA, TRISE=100ms)
Power On Response:
HT75C0-7 (IOUT=150mA, TRISE=100ms)
Power Off Response:
HT7560-7 (IOUT=150mA, TFALL=100ms)
Power Off Response:
HT75C0-7 (IOUT=150mA, TFALL=100ms)
Rev. 1.30
16
October 17, 2018
HT75xx-7
Application Information
Power Dissipation Calculation
When using the HT75xx-7 regulators, it is important
that the following application points are noted if
correct operation is to be achieved.
In order to keep the device within its operating limits
and to maintain a regulated output voltage, the power
dissipation of the device, given by P D, must not
exceed the Maximum Power Dissipation, given by
PD(MAX). Therefore PD ≤ PD(MAX). From the diagram it
can be seen that almost all of this power is generated
across the pass transistor which is acting like a
variable resistor in series with the load to keep the
output voltage constant. This generated power which
will appear as heat, must never allow the device to
exceed its maximum junction temperature.
External Circuit
It is important that external capacitors are connected
to both the input and output pins. For the input pin
suitable bypass capacitors as shown in the application
circuits should be connected especially in situations
where a battery power source is used which may have
a higher impedance. For the output pin, a suitable
capacitor should also be connected especially in
situations where the load is of a transient nature, in
which case larger capacitor values should be selected
to limit any output transient voltages.
In practical applications the regulator may be called
upon to provide both steady state and transient
currents due to the transient nature of the load.
Although the device may be working well within its
limits with its steady state current, care must be taken
with transient loads which may cause the current to
rise close to its maximum current value. Care must
be taken with transient loads and currents as this will
result in device junction temperature rises which must
not exceed the maximum junction temperature. With
both steady state and transient currents, the important
current to consider is the average or more precisely
the RMS current which is the value of current that will
appear as heat generated in the device. The following
diagram shows how the average current relates to the
transient currents.
Thermal Considerations
The maximum power dissipation depends on the
thermal resistance of the package, the PCB layout,
the rate of the surrounding airflow and the difference
between the junction and ambient temperature. The
maximum power dissipation can be calculated using
the following formula:
PD(MAX) = (TJ(MAX) – Ta) / θJA
where TJ(MAX) is the maximum junction temperature,
Ta is the ambient temperature and θJA is the junctionto-ambient thermal resistance of the IC package in
degrees per watt. The following table shows the θJA
values for various package types.
Package
θJA value °C/W
SOT89
200°C/W
SOT23-5
500°C/W
ILOAD
ILOAD(AVG)
Time
Maximum Power Dissipation (W)
For maximum operating rating conditions, the
maximum junction temperature is 150°C. However,
it is recommended that the maximum junction
temperature does not exceed 125°C during normal
operation to maintain an adequate margin for device
reliability. The derating curves of different packages
for maximum power dissipation are as follows:
0.8
0.6
0.5W (SOT89)
0.4
0.2W (SOT23-5)
0.2
0
0
25
50
75
100
125
150
Ambient Temperature (oC)
Rev. 1.30
17
October 17, 2018
HT75xx-7
As the quiescent current of the device is very small it can generally be ignored and as a result the input current can
be assumed to be equal to the output current. Therefore the power dissipation of the device, PD, can be calculated as
the voltage drop across the input and output multiplied by the current, given by the equation, PD = (VIN – VOUT) × IIN.
As the input current is also equal to the load current the power dissipation PD = (VIN – VOUT) × ILOAD. However,
with transient load currents, PD = (VIN – VOUT) × ILOAD(AVG) as shown in the figure.
IIN
VIN
VIN
OUT
CE
VOUT
ILOAD
Vref
Vfb
GND
Common
Common
Application Circuits
Basic Circuits
VIN
VIN
VOUT
CE
C3
C1
0.1μF
10μF
VOUT
HT75xx-7
Series
C2
C4
10μF
0.1μF
ON
OFF
GND
Common
Common
High Output Current Positive Voltage Regulator
TR1
R1
VIN
VIN
CE
C3
0.1μF
C1
10μF
OFF
ON
GND
Common
Rev. 1.30
VOUT
HT75xx-7
Series
VOUT
C2
10μF
C4
0.1μF
Common
18
October 17, 2018
HT75xx-7
Circuit for Increasing Output Voltage
VIN
VIN
C1
0.1μF
10μF
HT75xx-7
Series
CE
OFF
ON
GND
ISS
VOUT
C2
C4
10μF
0.1μF
Vxx
C3
VOUT
R1
R2
VOUT = Vxx×(1+R2/R1) + ISS×R2
Common
Common
Circuit for Increasing Output Voltage
VIN
VIN
CE
C3
10μF
OFF
ON
HT75xx-7
Series
GND
ISS
VOUT
C2
C4
10μF
0.1μF
Vxx
0.1μF
C1
VOUT
R1
D1
VOUT = Vxx + VD1
Common
Common
Constant Current Regulator
VIN
VIN
C3
C1
10μF
OFF
ON
GND
ISS
VOUT
C2
C4
10μF
0.1μF
Vxx
0.1μF
CE
VOUT
HT75xx-7
Series
RA
IOUT
IOUT = Vxx / RA + ISS
Common
Rev. 1.30
RL
Common
19
October 17, 2018
HT75xx-7
Dual Supply
VIN
VIN
OFF
VOUT
HT75xx-7
Series
CE
ON
GND
C3
0.1μF
C1
10μF
OFF
HT75xx-7
Series
GND
Common
Rev. 1.30
C5
C6
10μF
0.1μF
VOUT
VIN
CE
ON
VOUT
D1
VOUT
C2
C4
10μF
0.1μF
R1
Common
20
October 17, 2018
HT75xx-7
Package Information
Note that the package information provided here is for consultation purposes only. As this information may be
updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package/
Carton Information.
Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be
transferred to the relevant website page.
• Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
• Packing Meterials Information
• Carton information
Rev. 1.30
21
October 17, 2018
HT75xx-7
3-pin SOT89 Outline Dimensions
Symbol
Dimensions in inch
Min.
Nom.
Max.
A
0.173
—
0.185
B
0.053
—
0.072
C
0.090
—
0.106
D
0.031
—
0.047
E
0.155
—
0.173
F
0.014
—
0.019
G
0.017
—
0.022
H
—
0.059 BSC
—
I
0.055
—
0.063
J
0.014
—
0.017
Symbol
Rev. 1.30
Dimensions in mm
Min.
Nom.
Max.
A
4.40
—
4.70
B
1.35
—
1.83
C
2.29
—
2.70
D
0.89
—
1.20
E
3.94
—
4.40
F
0.36
—
0.48
G
0.44
—
0.56
H
—
1.50 BSC
—
I
1.40
—
1.60
J
0.35
—
0.44
22
October 17, 2018
HT75xx-7
5-pin SOT23 Outline Dimensions
H
Symbol
A
Min.
Nom.
Max.
—
—
0.057
A1
—
—
0.006
A2
0.035
0.045
0.051
b
0.012
—
0.020
C
0.003
—
0.009
D
—
0.114 BSC
—
E
—
0.063 BSC
—
e
—
0.037 BSC
—
e1
—
0.075 BSC
—
H
—
0.110 BSC
—
L1
—
0.024 BSC
—
θ
0°
—
8°
Symbol
Rev. 1.30
Dimensions in inch
Dimensions in mm
Min.
Nom.
Max.
A
—
—
1.45
A1
—
—
0.15
A2
0.90
1.15
1.30
b
0.30
—
0.50
C
0.08
—
0.22
D
—
2.90 BSC
—
E
—
1.60 BSC
—
e
—
0.95 BSC
—
e1
—
1.90 BSC
—
H
—
2.80 BSC
—
L1
—
0.60 BSC
—
θ
0°
—
8°
23
October 17, 2018
HT75xx-7
Copyright© 2018 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time
of publication. However, Holtek assumes no responsibility arising from the use of
the specifications described. The applications mentioned herein are used solely
for the purpose of illustration and Holtek makes no warranty or representation that
such applications will be suitable without further modification, nor recommends
the use of its products for application that may present a risk to human life due to
malfunction or otherwise. Holtek's products are not authorized for use as critical
components in life support devices or systems. Holtek reserves the right to alter
its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com.tw.
Rev. 1.30
24
October 17, 2018