0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HT7536-7

HT7536-7

  • 厂商:

    HOLTEK(合泰)

  • 封装:

  • 描述:

  • 数据手册
  • 价格&库存
HT7536-7 数据手册
30V, 100mA TinyPower TM HT75xx-7 LDO with Protections Features General Description • Low power consumption The HT75xx-7 is a low power high voltage series of regulators implemented in CMOS technology which has the advantages of low voltage drop and low quiescent current. They allow input voltages as high as 30V and are available with several fixed output voltages ranging from 2.1V to 12.0V. • Low voltage drop • Low temperature coefficient • High input voltage – up to 30V • Output voltage accuracy: tolerance ±2% • Over current protection When the CE input is low, a fast discharge path pulls the output voltage low via an internal pull-down resistor. An internal over-current protection circuit prevents the device from damage even if the output is shorted to ground. An over-temperature protection circuit ensures the device junction temperature will not exceed a temperature of 160°C. • Over temperature protection • Chip enable/disable function • 3-pin SOT89 and 5-pin SOT23 packages Applications • Battery-powered equipment • Communication equipment • Audio/Video equipment Selection Table Part No. Output Voltage HT7521-7 2.1V HT7523-7 2.3V HT7525-7 2.5V HT7527-7 2.7V HT7530-7 3.0V HT7533-7 3.3V HT7536-7 3.6V HT7540-7 4.0V HT7544-7 4.4V HT7550-7 5.0V HT7560-7 6.0V HT7570-7 7.0V HT7580-7 8.0V HT7590-7 9.0V HT75A0-7 10.0V HT75C0-7 12.0V Packages Markings SOT89 SOT23-5 75xx-7 (for SOT89) 5xx7 (for SOT23-5) Note: "xx" stands for output voltages. Rev. 1.30 1 October 17, 2018 HT75xx-7 Block Diagram OTP VIN OUT OCP 300Ω Vref En CE En Soft Start GND Pin Assignment SOT23-5 SOT89 OUT 5 NC 4 75xx-7 5xx7 1 2 3 GND VIN OUT 1 VIN 2 3 GND CE Pin Descriptions Pin No. Pin Name Pin Description SOT89 SOT23-5 1 2 GND Ground pin 2 1 VIN Input pin 3 5 OUT Output pin — 3 CE Chip enable pin, high enable — 4 NC No connection Rev. 1.30 2 October 17, 2018 HT75xx-7 Absolute Maximum Ratings Parameter Value Unit VIN -0.3 to +33 V VCE -0.3 to (VIN+0.3) Operating Temperature Range, Ta o C +150 o C -65 to +165 o C Maximum Junction Temperature, TJ(MAX) Storage Temperature Range SOT89 Junction-to-Ambient Thermal Resistance, θJA Power Dissipation, PD V -40 to +85 200 °C/W SOT23-5 500 °C/W SOT89 0.50 W SOT23-5 0.20 W Note: PD is measured at Ta = 25°C. Recommended Operating Range Parameter Value Unit VIN 3.1 to 30 V VCE 0 to VIN V Electrical Characteristics VIN=VOUT+2V, VCE=VIN, Ta=+25oC and CIN=COUT=10μF, unless otherwise specified Test Conditions Min. Typ. Max. Unit VIN Symbol Input Voltage — — — 30 V VOUT Output Voltage Range — 2.1 — 12.0 V VO Output Voltage Accuracy IOUT=10mA –2 — 2 % IOUT Output Current VOUT < 5.0V 100 — — mA VOUT ≥ 5.0V 150 — — mA ∆VOUT Load Regulation 1mA ≤ IOUT ≤ 50mA — 15 45 mV VDIF Dropout Voltage IOUT=1mA, VOUT Change=2% (Note) — 10 30 mV IOUT=0mA — 2.5 4.0 μA VCE=2.0V, VIN=30V, IOUT=0mA — 3.0 5.0 μA VCE=0V — 0.1 0.5 μA ∆VOUT Line Regulation ∆VIN × ∆VOUT (VOUT+1V) ≤ VIN ≤ 30V, VOUT ≤ 5V IOUT=1mA VOUT ≥ 6V — 0.1 0.2 %/V — 0.2 0.4 %/V ∆VOUT ∆Ta × ∆VOUT Temperature Coefficient IOUT=10mA, -40°C < Ta < 85°C — ±100 — ppm/°C ISHORT Output Short Current VIN=12V, force VOUT=0V — 150 — mA TSHD Shutdown Temperature — — 160 — o C TREC Recovery Temperature — — 25 — o C VIH Enable High Threshold CE pin, VOUT+1V ≤ VIN ≤ 30V 2.0 — — VIL Enable Low Threshold CE pin, VOUT+1V ≤ VIN ≤ 30V — — 0.6 V RDIS Discharge Resistor CE=0V, measure at VOUT — 300 — Ω ISS1 ISS2 ISHD Parameter Quiescent Current Shutdown Current V Note: The dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at VIN=VOUT+2V with a fixed load. Rev. 1.30 3 October 17, 2018 HT75xx-7 Typical Performance Characteristic Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. 3.34 5.06 3.33 5.04 5.02 3.31 VOUT(V) VOUT(V) 3.32 -40°C 25°C 85°C 3.3 3.29 5 4.98 4.94 3.28 4.92 3.27 4.9 4 7 10 13 16 19 VIN(V) 22 25 28 31 5 Line Regulation: HT7533-7 (IOUT=10mA) 8 11 14 17 20 VIN(V) 29 12.1 6.02 12.05 5.98 VOUT(V) 6 -40°C 25°C 85°C 5.96 5.94 12 11.95 -40°C 25°C 85°C 11.9 11.85 5.92 5.9 11.8 6 9 12 15 18 21 24 27 30 12 15 18 21 VIN(V) 24 27 30 VIN(V) Line Regulation: HT7560-7 (IOUT=10mA) Line Regulation: HT75C0-7 (IOUT=10mA) 4 4 3.5 3.5 3 3 2.5 ISS (uA) ISS (uA) 26 12.15 6.04 2 1.5 -40°C 25°C 85°C 1 0.5 0 5 8 11 14 17 20 23 26 29 2.5 2 1.5 -40°C 25°C 85°C 1 0.5 0 32 5 8 11 14 VIN(V) 17 20 23 26 29 32 VIN(V) ISS vs VIN: HT7533-7 (IOUT=0mA) ISS vs VIN: HT7550-7 (IOUT=0mA) 4 4 3.5 3.5 3 3 2.5 2.5 ISS (uA) ISS (uA) 23 Line Regulation: HT7550-7 (IOUT=10mA) 6.06 VOUT(V) -40°C 25°C 85°C 4.96 2 -40°C 25°C 85°C 1.5 1 0.5 2 -40°C 25°C 85°C 1.5 1 0.5 0 0 6 9 12 15 18 21 24 27 30 12 VIN(V) 18 21 24 27 30 VIN(V) ISS vs VIN: HT7560-7 (IOUT=0mA) Rev. 1.30 15 ISS vs VIN: HT75C0-7 (IOUT=0mA) 4 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. 0.5 0.5 I SHD (uA) ISHD (uA) 0.3 -40°C 25°C 85°C 0.4 -40°C 25°C 85°C 0.4 0.2 0.3 0.2 0.1 0.1 0 0 4 7 10 13 16 VIN(V) 19 22 25 28 5 31 8 ISHD vs VIN: HT7533-7 (IOUT=0mA) 0.5 0.1 0.3 20 23 26 29 32   0.2 0.1 0 4 7 10 13 16 19 VIN(V) 22 25 28 0 31 12 15 ISHD vs VIN: HT7560-7 (IOUT=0mA) 200 ISS(uA) 150 100 -40°C 25°C 85°C 50 10 20 30 40 50 60 IOUT(mA) 70 80 90 100 110 30 40 50 200 150 -40°C 25°C 85°C 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 IOUT(mA) 650 600 550 500 450 400 350 300 250 200 150 100 50 0 -40°C 25°C 85°C 0 60 70 80 90 100 110 120 130 140 150 160 IOUT(mA) ISS vs IOUT: HT7560-7 (VIN=8.0V) Rev. 1.30 30 ISS vs IOUT: HT7550-7 (VIN=7.0V) ISS(uA) 10 20 27 250 0 -40°C 25°C 85°C 0 24 450 400 350 300 ISS vs IOUT: HT7533-7 (VIN=5.3V) 600 550 500 450 400 350 300 250 200 150 100 50 0 21 VIN(V) 100 50 0 0 0 18 ISHD vs VIN: HT75C0-7 (IOUT=0mA) 250 ISS(uA) VIN(V) -40°C 25°C 85°C 0.4 0.2 ISS(uA) 17 0.5 ISHD (uA) ISHD (uA) 0.3 14 ISHD vs VIN: HT7533-7 (IOUT=0mA) -40°C 25°C 85°C 0.4 11 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 IOUT(mA) ISS vs IOUT: HT75C0-7 (VIN=14V) 5 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. 3.5 3 3 2.5 2.5 ISS (uA) ISS (uA) 3.5 2 1.5 1 0 2.5 5.5 8.5 11.5 14.5 17.5 20.5 23.5 26.5 -40°C 25°C 85°C 1 -40°C 25°C 85°C 0.5 2 1.5 0.5 0 2.5 29.5 5.5 8.5 11.5 14.5 17.5 ISS vs VCE: HT7533-7 (IOUT=0mA) 26.5 29.5 3.5 3 3 2.5 2.5 2 ISS (uA) ISS (uA) 23.5 ISS vs VCE: HT7550-7 (IOUT=0mA) 3.5 1.5 -40°C 25°C 85°C 1 0.5 0 2.5 5.5 8.5 11.5 14.5 17.5 20.5 23.5 26.5 2 1.5 -40°C 25°C 85°C 1 0.5 0 29.5 2.5 5.5 8.5 11.5 14.5 VCE(V) -40°C 150 85°C Temperature (C) 200 25°C 100 50 0 7 10 13 16 19 22 25 28 31 23.5 26.5 180 160 140 120 100 80 60 40 20 0 29.5 TSHD(+) TSHD(-) 5 7 9 11 13 15 17 19 21 23 25 27 29 31 VIN(V) VIN (V) ISHD vs VIN Rev. 1.30 20.5 ISS vs VCE: HT75C0-7 (IOUT=0mA) 250 4 17.5 VCE(V) ISS vs VCE: HT7560-7 (IOUT=0mA) ISHD (mA) 20.5 VCE(V) VCE(V) TSHD vs VIN 6 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. 1400 1000 -40°C 25°C 85°C 1400 1200 VDIF(mV) VDIF(mV) 1600 -40°C 25°C 85°C 1200 800 600 400 1000 800 600 400 200 200 0 0 10 20 30 40 50 60 70 80 90 0 100 0 10 20 30 40 50 60 IOUT(mA) Dropout voltage: HT7533-7 80 90 100 110 120 130 140 150 Dropout voltage: HT7550-7 1800 1600 -40°C 25°C 85°C 1400 1200 1000 1600 -40°C 25°C 85°C 1400 VDIF(mV) VDIF(mV) 70 IOUT(mA) 800 600 1200 1000 800 600 400 400 200 200 0 0 10 20 30 40 50 60 70 80 0 90 100 110 120 130 140 150 0 IOUT(mA) 20 30 40 50 60 70 80 90 100 110 120 130 140 150 IOUT(mA) Dropout voltage: HT7560-7 Rev. 1.30 10 Dropout voltage: HT75C0-7 7 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Load Transient Response: HT7533-7 (VIN=5.3V, IOUT=0mA to 40mA) Load Transient Response: HT7550-7 (VIN=7V, IOUT=0mA to 40mA) Load Transient Response: HT7533-7 (VIN=5.3V, IOUT=40mA to 0mA) Load Transient Response: HT7550-7 (VIN=7.0V, IOUT=40mA to 0mA) Load Transient Response: HT7560-7 (VIN=8.0V, IOUT=0mA to 40mA) Load Transient Response: HT75C0-7 (VIN=14V, IOUT=0mA to 40mA) Load Transient Response: HT7560-7 (VIN=8.0V, IOUT=40mA to 0mA) Load Transient Response: HT75C0-7 (VIN=14V, IOUT=40mA to 0mA) Rev. 1.30 8 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Line Transient Response: HT7533-7 (IOUT=10mA) Line Transient Response: HT7550-7 (IOUT=10mA) Line Transient Response: HT7533-7 (IOUT=10mA) Line Transient Response: HT7550-7 (IOUT=10mA) Line Transient Response: HT7560-7 (IOUT=10mA) Line Transient Response: HT75C0-7 (IOUT=10mA) Line Transient Response: HT7560-7 (IOUT=10mA) Line Transient Response: HT75C0-7 (IOUT=10mA) Rev. 1.30 9 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Line Transient Response: HT7533-7 (IOUT=10mA) Line Transient Response: HT7550-7 (IOUT=10mA) Line Transient Response: HT7533-7 (IOUT=10mA) Line Transient Response: HT7550-7 (IOUT=10mA) Line Transient Response: HT7560-7 (IOUT=10mA) Line Transient Response: HT75C0-7 (IOUT=10mA) Line Transient Response: HT7560-7 (IOUT=10mA) Line Transient Response: HT75C0-7 (IOUT=10mA) Rev. 1.30 10 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. ON/OFF Response: HT7533-7 (IOUT=0mA, VCE=0V to 2.7V) ON/OFF Response: HT7550-7 (IOUT=0mA, VCE=0V to 2.7V) ON/OFF Response: HT7533-7 (IOUT=0mA, VCE=2.7V to 0V) ON/OFF Response: HT7550-7 (IOUT=0mA, VCE=2.7V to 0V) ON/OFF Response: HT7560-7 (IOUT=0mA, VCE=0V to 2.7V) ON/OFF Response: HT75C0-7 (IOUT=0mA, VCE=0V to 2.7V) ON/OFF Response: HT7560-7 (IOUT=0mA, VCE=2.7V to 0V) ON/OFF Response: HT75C0-7 (IOUT=0mA, VCE=2.7V to 0V) Rev. 1.30 11 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. ON/OFF Response: HT7533-7 (IOUT=100mA, VCE=0V to 2.7V) ON/OFF Response: HT7550-7 (IOUT=150mA, VCE=0V to 2.7V) ON/OFF Response: HT7533-7 (IOUT=100mA, VCE=2.7V to 0V) ON/OFF Response: HT7550-7 (IOUT=150mA, VCE=2.7V to 0V) ON/OFF Response: HT7560-7 (IOUT=150mA, VCE=0V to 2.7V) ON/OFF Response: HT75C0-7 (IOUT=150mA, VCE=0V to 2.7V) ON/OFF Response: HT7560-7 (IOUT=150mA, VCE=2.7V to 0V) ON/OFF Response: HT75C0-7 (IOUT=150mA, VCE=2.7V to 0V) Rev. 1.30 12 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Power On Response: HT7533-7 (IOUT=0mA, TRISE=0.1ms) Power On Response: HT7550-7 (IOUT=0mA, TRISE=0.1ms) Power Off Response: HT7533-7 (IOUT=0mA, TFALL=0.1ms) Power Off Response: HT7550-7 (IOUT=0mA, TFALL=0.1ms) Power On Response: HT7560-7 (IOUT=0mA, TRISE=0.1ms) Power On Response: HT75C0-7 (IOUT=0mA, TRISE=0.1ms) Power Off Response: HT7560-7 (IOUT=0mA, TFALL=0.1ms) Power Off Response: HT75C0-7 (IOUT=0mA, TFALL=0.1ms) Rev. 1.30 13 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Power On Response: HT7533-7 (IOUT=0mA, TRISE=100ms) Power On Response: HT7550-7 (IOUT=0mA, TRISE=100ms) Power Off Response: HT7533-7 (IOUT=0mA, TFALL=100ms) Power Off Response: HT7550-7 (IOUT=0mA, TFALL=100ms) Power On Response: HT7560-7 (IOUT=0mA, TRISE=100ms) Power On Response: HT75C0-7 (IOUT=0mA, TRISE=100ms) Power Off Response: HT7560-7 (IOUT=0mA, TFALL=100ms) Power Off Response: HT75C0-7 (IOUT=0mA, TFALL=100ms) Rev. 1.30 14 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Power On Response: HT7533-7 (IOUT=100mA, TRISE=0.1ms) Power On Response: HT7550-7 (IOUT=150mA, TRISE=0.1ms) Power Off Response: HT7533-7 (IOUT=100mA, TFALL=0.1ms) Power Off Response: HT7550-7 (IOUT=150mA, TFALL=0.1ms) Power On Response: HT7560-7 (IOUT=150mA, TRISE=0.1ms) Power On Response: HT75C0-7 (IOUT=150mA, TRISE=0.1ms) Power Off Response: HT7560-7 (IOUT=150mA, TFALL=0.1ms) Power Off Response: HT75C0-7 (IOUT=150mA, TFALL=0.1ms) Rev. 1.30 15 October 17, 2018 HT75xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Power On Response: HT7533-7 (IOUT=100mA, TRISE=100ms) Power On Response: HT7550-7 (IOUT=150mA, TRISE=100ms) Power Off Response: HT7533-7 (IOUT=100mA, TFALL=100ms) Power Off Response: HT7550-7 (IOUT=150mA, TFALL=100ms) Power On Response: HT7560-7 (IOUT=150mA, TRISE=100ms) Power On Response: HT75C0-7 (IOUT=150mA, TRISE=100ms) Power Off Response: HT7560-7 (IOUT=150mA, TFALL=100ms) Power Off Response: HT75C0-7 (IOUT=150mA, TFALL=100ms) Rev. 1.30 16 October 17, 2018 HT75xx-7 Application Information Power Dissipation Calculation When using the HT75xx-7 regulators, it is important that the following application points are noted if correct operation is to be achieved. In order to keep the device within its operating limits and to maintain a regulated output voltage, the power dissipation of the device, given by P D, must not exceed the Maximum Power Dissipation, given by PD(MAX). Therefore PD ≤ PD(MAX). From the diagram it can be seen that almost all of this power is generated across the pass transistor which is acting like a variable resistor in series with the load to keep the output voltage constant. This generated power which will appear as heat, must never allow the device to exceed its maximum junction temperature. External Circuit It is important that external capacitors are connected to both the input and output pins. For the input pin suitable bypass capacitors as shown in the application circuits should be connected especially in situations where a battery power source is used which may have a higher impedance. For the output pin, a suitable capacitor should also be connected especially in situations where the load is of a transient nature, in which case larger capacitor values should be selected to limit any output transient voltages. In practical applications the regulator may be called upon to provide both steady state and transient currents due to the transient nature of the load. Although the device may be working well within its limits with its steady state current, care must be taken with transient loads which may cause the current to rise close to its maximum current value. Care must be taken with transient loads and currents as this will result in device junction temperature rises which must not exceed the maximum junction temperature. With both steady state and transient currents, the important current to consider is the average or more precisely the RMS current which is the value of current that will appear as heat generated in the device. The following diagram shows how the average current relates to the transient currents. Thermal Considerations The maximum power dissipation depends on the thermal resistance of the package, the PCB layout, the rate of the surrounding airflow and the difference between the junction and ambient temperature. The maximum power dissipation can be calculated using the following formula: PD(MAX) = (TJ(MAX) – Ta) / θJA where TJ(MAX) is the maximum junction temperature, Ta is the ambient temperature and θJA is the junctionto-ambient thermal resistance of the IC package in degrees per watt. The following table shows the θJA values for various package types. Package θJA value °C/W SOT89 200°C/W SOT23-5 500°C/W ILOAD ILOAD(AVG) Time Maximum Power Dissipation (W) For maximum operating rating conditions, the maximum junction temperature is 150°C. However, it is recommended that the maximum junction temperature does not exceed 125°C during normal operation to maintain an adequate margin for device reliability. The derating curves of different packages for maximum power dissipation are as follows: 0.8 0.6 0.5W (SOT89) 0.4 0.2W (SOT23-5) 0.2 0 0 25 50 75 100 125 150 Ambient Temperature (oC) Rev. 1.30 17 October 17, 2018 HT75xx-7 As the quiescent current of the device is very small it can generally be ignored and as a result the input current can be assumed to be equal to the output current. Therefore the power dissipation of the device, PD, can be calculated as the voltage drop across the input and output multiplied by the current, given by the equation, PD = (VIN – VOUT) × IIN. As the input current is also equal to the load current the power dissipation PD = (VIN – VOUT) × ILOAD. However, with transient load currents, PD = (VIN – VOUT) × ILOAD(AVG) as shown in the figure. IIN VIN VIN OUT CE VOUT ILOAD Vref Vfb GND Common Common Application Circuits Basic Circuits VIN VIN VOUT CE C3 C1 0.1μF 10μF VOUT HT75xx-7 Series C2 C4 10μF 0.1μF ON OFF GND Common Common High Output Current Positive Voltage Regulator TR1 R1 VIN VIN CE C3 0.1μF C1 10μF OFF ON GND Common Rev. 1.30 VOUT HT75xx-7 Series VOUT C2 10μF C4 0.1μF Common 18 October 17, 2018 HT75xx-7 Circuit for Increasing Output Voltage VIN VIN C1 0.1μF 10μF HT75xx-7 Series CE OFF ON GND ISS VOUT C2 C4 10μF 0.1μF Vxx C3 VOUT R1 R2 VOUT = Vxx×(1+R2/R1) + ISS×R2 Common Common Circuit for Increasing Output Voltage VIN VIN CE C3 10μF OFF ON HT75xx-7 Series GND ISS VOUT C2 C4 10μF 0.1μF Vxx 0.1μF C1 VOUT R1 D1 VOUT = Vxx + VD1 Common Common Constant Current Regulator VIN VIN C3 C1 10μF OFF ON GND ISS VOUT C2 C4 10μF 0.1μF Vxx 0.1μF CE VOUT HT75xx-7 Series RA IOUT IOUT = Vxx / RA + ISS Common Rev. 1.30 RL Common 19 October 17, 2018 HT75xx-7 Dual Supply VIN VIN OFF VOUT HT75xx-7 Series CE ON GND C3 0.1μF C1 10μF OFF HT75xx-7 Series GND Common Rev. 1.30 C5 C6 10μF 0.1μF VOUT VIN CE ON VOUT D1 VOUT C2 C4 10μF 0.1μF R1 Common 20 October 17, 2018 HT75xx-7 Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package/ Carton Information. Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. • Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications) • Packing Meterials Information • Carton information Rev. 1.30 21 October 17, 2018 HT75xx-7 3-pin SOT89 Outline Dimensions          Symbol Dimensions in inch Min. Nom. Max. A 0.173 — 0.185 B 0.053 — 0.072 C 0.090 — 0.106 D 0.031 — 0.047 E 0.155 — 0.173 F 0.014 — 0.019 G 0.017 — 0.022 H — 0.059 BSC — I 0.055 — 0.063 J 0.014 — 0.017 Symbol Rev. 1.30  Dimensions in mm Min. Nom. Max. A 4.40 — 4.70 B 1.35 — 1.83 C 2.29 — 2.70 D 0.89 — 1.20 E 3.94 — 4.40 F 0.36 — 0.48 G 0.44 — 0.56 H — 1.50 BSC — I 1.40 — 1.60 J 0.35 — 0.44 22 October 17, 2018 HT75xx-7 5-pin SOT23 Outline Dimensions H Symbol A Min. Nom. Max. — — 0.057 A1 — — 0.006 A2 0.035 0.045 0.051 b 0.012 — 0.020 C 0.003 — 0.009 D — 0.114 BSC — E — 0.063 BSC — e — 0.037 BSC — e1 — 0.075 BSC — H — 0.110 BSC — L1 — 0.024 BSC — θ 0° — 8° Symbol Rev. 1.30 Dimensions in inch Dimensions in mm Min. Nom. Max. A — — 1.45 A1 — — 0.15 A2 0.90 1.15 1.30 b 0.30 — 0.50 C 0.08 — 0.22 D — 2.90 BSC — E — 1.60 BSC — e — 0.95 BSC — e1 — 1.90 BSC — H — 2.80 BSC — L1 — 0.60 BSC — θ 0° — 8° 23 October 17, 2018 HT75xx-7 Copyright© 2018 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.30 24 October 17, 2018
HT7536-7 价格&库存

很抱歉,暂时无法提供与“HT7536-7”相匹配的价格&库存,您可以联系我们找货

免费人工找货