Agilent AMMC-5023 23 GHz Low Noise Amplifier
(21.2 – 26.5 GHz) Data Sheet
Features • Frequency range: 21.2 – 26.5 GHz • High gain: 23 dB • Low noise figure: 2.3 dB • Input and output return loss: >10 dB • Single supply bias: 5 volts, 28 mA • Optional bias adjust
Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 1880 x 600 µm (74 x 23.6 mils) ±10 µm (±0.4 mils) 100 ± 10 µm (4 ± 0.4 mils) 80 x 80 µm (3.1 x 3.1 mils), or larger
Applications • Digital Radio Communication Systems (21.2–23.6 GHz and 24.5–26.5 GHz) • Any narrow band application within 21 –26 GHz • 24.1 GHz collision avoidance • Front-end gain stage
Description Agilent’s AMMC-5023 is a high gain, low noise amplifier that operates from 21 GHz to over 30 GHz. By eliminating the complex tuning and assembly processes typically required by hybrid (discrete-FET) amplifiers, the AMMC-5023 is a cost-effective alternative in both 21.2–23.6 GHz and 24.5–26.5 GHz communications receivers. The device has good input and output match to 50 Ohm and is unconditionally stable to more than 40 GHz. The backside of the chip is both RF and DC ground. This helps simplify the assembly process and reduces assembly related performance variations and costs. It is fabricated in a PHEMT process to provide exceptional noise and gain performance.
Absolute Maximum Ratings [1]
Symbol
VD1, VD2 VG1, VG2 ID1 ID2 Pin Tch Tb Tstg Tmax
Parameters/Conditions
Drain Supply Voltage Gate Supply Voltage Drain Supply Current Drain Supply Current RF Input Power Channel Temperature Operating Backside Temperature Storage Temperature Max. Assembly Temp (60 sec max)
Units
V V mA mA dBm °C °C °C °C
Min.
Max.
8
0.4
2 35 35 15 +150
-55 -65
+140 +165 +300
Notes: 1. Absolute maximum ratings for continuous operation unless otherwise noted.
AMMC-5023 DC Specifications/Physical Properties[1]
Symbol
VD1, VD2 VG1, VG2 ID1, ID2 ID1+ID2 θch-b
Parameters and Test Conditions
Recommended Drain Supply Voltage Gate Supply Voltage[2] (V
D1 ≤ VD1(max),
Units
V VD2 ≤ VD2(max)) V mA mA °C/W
Min.
3
Typ.
5 0.8 14
Max.
7
Input and Output Stage Drain Supply Current (VG1 = VG2 = Open, VD1 = VD2 = 5 V) Total Drain Supply Current (VG1 = VG2 = Open, VD1 = VD2 = 5 V) Thermal Resistance[3] (Backside temperature, T
b = 25°C)
13
28 44
35
Notes: 1. Backside ambient operating temperature TA = 25°C unless otherwise noted. 2. Open circuit voltage at VG1 and VG2 when VD1 and VD2 are 5 Volts. 3. Channel-to-backside Thermal Resistance (θch-b) = 66°C/W at Tchannel (Tc) = 150°C as measured using the liquid crystal method. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data.
RF Specifications[4] (VG1 = VG2 = Open, VD1 = VD2 = 5V, ID1 + ID2 = 28 mA, Zin = Z0 = 50Ω) 21.2 – 23.6 GHz Min. Typ. Max.
21 23.6 ±1.5 10 9 40 12 12 50 9.5 10.5 18 24 dB 2.3 2.8 2.3 2.8 10 10 40 28
Symbol
|S21|2 ∆ |S21| RLin RLout |S12| P-1dB Psat OIP3 NF
2 2
Parameters and Test Conditions
Small-signal Gain Small-signal Gain Flatness Input Return Loss Output Return Loss Isolation Output Power @ 1 dB Gain Compression f = 23 GHz Saturated Output Power (@ 3 dB Gain Compression) Output 3rd Order Intercept Point, Rfin1 = Rfin2 = -20 dBm, ∆ f = 2 MHz Noise Figure 22.4 GHz 25.5 GHz 22 GHz 25 GHz
Units
dB dB dB dB dB dBm dBm dB
24.5 – 26.5 GHz Min. Typ. Max.
17 19 ±1.2 11.5 17 43 10 11.5 25
Note: 4. 100% on-wafer RF test is done at frequency = 21.2, 22.4, 23.6, 24.5, 25.5 and 26.5 GHz, except as noted.
2
AMMC-5023 Typical Performance (Tchuck = 25°C, VD1 = VD2 = 5V, VG1 = VG2 = Open, Z0 = 50Ω)
30 25
ISOLATION (dB)
70 60 50
0 -5 -10
20
GAIN (dB)
40 30 20 10 0 18
RLin (dB)
15 10 5 0 18
-15 -20 -25 -30 18
20
22
24
26
28
20
22
24
26
28
20
22
24
26
28
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 1. Gain.
Figure 2. Isolation.
Figure 3. Input Return Loss.
0
5
12
NOISE FIGURE (dB)
-5
RLout (dB)
4
P-1dB (dBm)
9
3
-10
6
2
-15 1
3
-20 18
20
22
24
26
28
0 18
20
22
24
26
28
0 18
20
22
24
26
28
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 4. Output Return Loss.
Figure 5. Noise Figure.
Figure 6. Output Power at 1dB Gain Compression.
3
AMMC-5023 Typical Performance vs. Supply Voltage (T = 25°C, VD1 = VD2 = VDD, VG1 = VG2 = Open, Z0 = 50Ω)
30 25 20 70 60 0 -5 -10 40 30 20
VDD = 4 V VDD = 5 V VDD = 6 V
ISOLATION (dB)
50
GAIN (dB)
15 10 5 0 18
RLin (dB)
VDD = 4 V VDD = 5 V VDD = 6 V
-15 -20 -25 -30 18
VDD = 4 V VDD = 5 V VDD = 6 V
10 0 18
20
22
24
26
28
20
22
24
26
28
20
22
24
26
28
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 7. Gain and Voltage.
Figure 8. Isolation and Voltage.
Figure 9. Input Return Loss and Voltage.
0
VDD = 4 V VDD = 5 V VDD = 6 V
5
12
-5
4
NOISE FIGURE (dB)
9 3
-10
P-1dB (dBm)
VDD = 4 V VDD = 5 V VDD = 6 V
RLout (dB)
6
-15
2
-20
1
3
VDD = 4 V VDD = 5 V VDD = 6 V
-25 18
20
22
24
26
28
0 18
20
22
24
26
28
0 18
20
22
24
26
28
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 10. Output Return Loss and Voltage.
Figure 11. Noise Figure and Voltage.
Figure 12. P-1dB and Voltage.
4
AMMC-5023 Typical Performance vs. Temperature (VD1 = VD2 = VDD= 5V, VG1 = VG2 = Open, Z0 = 50Ω)
30 25 20 80 70 60 0 -5 -10
ISOLATION (dB)
GAIN (dB)
15 10 5 0 18
-40°C 25°C 85°C
40 30 20 10
-40°C 25°C 85°C
RLin (dB)
50
-15 -20 -25 -30 18
-40°C 25°C 85°C
20
22
24
26
28
0 18
20
22
24
26
28
20
22
24
26
28
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 13. Gain and Temperature.
Figure 14. Isolation and Temperature.
Figure 15. Input Return Loss and Temperature.
12
0
-40°C 25°C 85°C
6 5
-40°C 25°C 85°C
-5
NOISE FIGURE (dB)
9
-10
3 2
P-1dB (dBm)
RLout (dB)
4
6
-15
-20
3 1 0 18 0 18
-40°C 25°C 85°C
-25 18
20
22
24
26
28
20
22
24
26
28
20
22
24
26
28
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 16. Output Return Loss and Temperature.
Figure 17. Noise Figure and Temperature.
Figure 18. P-1dB and Temperature.
5
AMMC-5023 Typical Scattering Parameters[1] (Tc = 25°C, VD1 = VD2 = 5 V, Idd = 28 mA, VG1 = VG2 = Open)
Freq. GHz
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8 21 21.2 21.4 21.6 21.8 22 22.2 22.4 22.6 22.8 23 23.2 23.4 23.6 23.8 24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8 27 27.2 27.4 27.6 27.8 28
dB
-6.813 -7.202 -7.266 -7.644 -7.815 -8.46 -8.502 -9.293 -10.62 -11.39 -12.13 -12.77 -13.69 -14.92 -16.83 -19.11 -23.18 -30.15 -20.59 -17.93 -15.74 -14.66 -13.94 -13.22 -12.04 -11.82 -11.7 -11.46 -11.18 -11.22 -11.3 -11.09 -11.32 -11.38 -11.41 -11.62 -11.89 -11.81 -12.06 -12.55 -12.48 -12.51 -12.29 -12.4 -12.15 -11.85 -11.84 -11.86 -11.53 -11.31 -11.04
S11 Mag
0.4564 0.4364 0.4332 0.4148 0.4067 0.3776 0.3758 0.343 0.2943 0.2694 0.2474 0.23 0.2067 0.1795 0.1441 0.1108 0.0693 0.0311 0.0934 0.1269 0.1634 0.185 0.201 0.2184 0.2499 0.2565 0.2601 0.2672 0.276 0.2749 0.2724 0.2789 0.2717 0.2698 0.269 0.2625 0.2544 0.2569 0.2495 0.2357 0.2378 0.2367 0.2429 0.2398 0.2468 0.2556 0.2558 0.2554 0.2653 0.2719 0.2804
Phase
74.519 74.66 72.588 70.858 67.349 65.232 62.276 56.815 51.64 54.737 53.651 52.385 49.224 46.249 42.376 43.556 33.667 43.731 155.16 156.15 148.96 147.58 142.03 142.09 138.22 133.62 130.32 129.24 125.92 124.18 122.88 122.15 119.68 118.72 118.3 117.04 116.86 117.41 114.9 117.83 120.31 121.69 123.23 123.93 125.41 125.81 124.87 126.85 128.29 127.51 128.43
dB
-57.94 -59.98 -60.22 -62.22 -58.93 -61.93 -63.28 -57.84 -53.14 -55.77 -57.89 -60.66 -57.48 -54.44 -56.15 -53.47 -57.14 -55.04 -52.25 -51.09 -54.03 -48.57 -48.93 -48.25 -47.36 -47.42 -46.06 -46.7 -46 -45.25 -45.1 -44.25 -44.3 -43.4 -43.43 -43.54 -42.29 -41.51 -41.05 -41.34 -41.95 -40.55 -39.89 -39.92 -40.2 -39.47 -39.17 -39.01 -38.6 -38.23 -38.11
S12 Mag
0.0013 0.001 0.001 0.0008 0.0011 0.0008 0.0007 0.0013 0.0022 0.0016 0.0013 0.0009 0.0013 0.0019 0.0016 0.0021 0.0014 0.0018 0.0024 0.0028 0.002 0.0037 0.0036 0.0039 0.0043 0.0043 0.005 0.0046 0.005 0.0055 0.0056 0.0061 0.0061 0.0068 0.0067 0.0067 0.0077 0.0084 0.0089 0.0086 0.008 0.0094 0.0101 0.0101 0.0098 0.0106 0.011 0.0112 0.0118 0.0123 0.0124
Phase
1.7405 -26.99 124.05 17.763 100.07 76.42 40.997 100.86 60.218 22.448 1.7795 -42.99 -58.99 -57.86 -40.83 -53.53 -51.56 -53.75 -67.58 -88.01 -110.5 -108.8 -108.6 -110 -124.1 -127.7 -134.4 -140.5 -148.6 -145.8 -153.6 -155.4 -167.3 -171.1 -71.2 137.17 133.77 162.99 157.69 150.4 145.28 143.86 139.48 132.24 126.75 126.31 123.8 119.72 114.03 110.58 103.56
dB
23.206 23.203 23.114 23.114 23.202 23.282 23.382 23.582 23.787 23.659 23.735 23.882 23.975 24.1 24.412 24.479 24.705 24.755 24.427 24.235 23.892 23.656 23.362 23.209 22.914 22.593 22.312 22.015 21.767 21.399 21.206 20.921 20.626 20.347 20.102 19.854 19.696 19.475 19.17 19.077 18.968 18.767 18.629 18.45 18.298 18.124 17.881 17.756 17.589 17.389 17.23
S21 Mag
14.464 14.459 14.312 14.313 14.457 14.592 14.76 15.104 15.464 15.239 15.372 15.635 15.803 16.033 16.618 16.748 17.19 17.288 16.648 16.284 15.654 15.233 14.727 14.469 13.986 13.478 13.05 12.611 12.256 11.747 11.49 11.119 10.748 10.407 10.118 9.8331 9.6559 9.4138 9.0888 8.9921 8.8795 8.6771 8.5402 8.3655 8.2203 8.0576 7.8349 7.7234 7.5765 7.4038 7.2697
Phase
122.15 111.97 101.1 91.174 81.167 71.291 61.218 50.894 39.572 29.26 20.239 10.031 0.2045 -9.704 -18.13 -28.97 -39.82 -52.67 -64.69 -75.32 -84.97 -95.11 -104.6 -113.7 -124.1 -132.6 -141.2 -146 -154.2 -161.7 -169 94.004 170.24 163.06 156.05 149.07 142.65 135.76 129.79 124.04 116.86 110.73 103.45 97.292 90.776 83.96 78.019 71.862 65.475 59.28 53.236
dB
-13.57 -13.66 -12.57 -11.74 -11.64 -10.45 -10.44 -9.703 -8.943 -9.414 -8.923 -9.317 -8.817 -8.971 -9.29 -9.167 -10.07 -10.209 -10.54 -11.06 -11 -11.99 -11.98 -12.98 -13.6 -13.61 -14.94 -14.13 -15.3 -15.67 -15.63 -16.94 -15.98 -16.8 -16.7 -16.85 -17.96 -16.74 -17.66 -16.87 -17.58 -17.75 -16.9 -17.16 -16.55 -17.36 -16.66 -16.11 -16.31 -14.98 -15.44
S22 Mag
0.2096 0.2076 0.2354 0.2588 0.2618 0.3002 0.3006 0.3272 0.3572 0.3383 0.358 0.3421 0.3624 0.356 0.3432 0.3481 0.3138 0.3087 0.2971 0.2798 0.2818 0.2513 0.2518 0.2243 0.2089 0.2086 0.179 0.1965 0.1718 0.1646 0.1654 0.1423 0.1589 0.1445 0.1463 0.1436 0.1265 0.1456 0.1309 0.1433 0.1322 0.1295 0.1429 0.1387 0.1487 0.1354 0.1468 0.1564 0.1529 0.1782 0.1691
Phase
51.531 -73.76 165.76 163.66 157.71 152.53 150.28 141.82 139.34 129.99 126.19 123.37 114.62 111.84 103.37 98.097 94.38 86.525 83.119 74.893 75.567 68.795 61.88 62.905 55.353 59.509 53.623 50.5 54.919 41.768 49.105 38.655 37.913 40.066 22.655 28.818 12.448 11.766 22.237 0.7878 8.5083 -6.375 -7.881 -20.1 -31.85 -34.26 -49.17 -51.07 -64.97 -68.69 -76.56
Note: 1. Data obtained from on-wafer measurements.
6
Biasing and Operation The AMMC-5023 has four cascaded gain stages as shown in Figure 19. The first two gain stages at the input are biased with the VD1 drain supply. Similarly, the two output stages are biased with the VD2 supply. Standard LNA operation is with a single positive DC drain supply voltage (VD1 =VD2 = 5 V) as shown in the assembly diagram, Figure 2(a). If desired, the output stage DC supply voltage (VD2) can be increased to improve output power capability while maintaining optimum low noise bias conditions for the input section. The output power may also be adjusted by applying a positive voltage at VG2 to alter the operating bias point for both the output FETs. Increasing the voltage applied to VG2 (more positively) results in a more negative gateto-source voltage and, therefore, lower drain current. Figures 20(b) and 20(c) illustrate how the device can be assembled for independent drain supply operation and for output stage gate bias control.
Assembly Techniques The chip should be attached directly to the ground plane using either a fluxless AuSn solder preform or electrically conductive epoxy[1]. For conductive epoxy, the amount should be just enough to provide a thin fillet around the bottom perimeter of the die. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. Thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. The RF connections should be kept as short as possible to minimize inductance. Gold mesh[2] or double-bonding with 0.7 mil gold wire is recommended. Mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic
power of roughly 55 dB for a duration of 76 ± 8 mS. A guided wedge at an ultrasonic power level of 64 dB can be used for the 0.7 mil wire. The recommended wire bond stage temperature is 150 ± 2° C. The chip is 100 mm thick and should be handled with care. This MMIC has exposed air bridges on the top surface. Handle at edges or with a custom collet (do not pick up die with vacuum on die center.) This MMIC is also static sensitive and ESD handling precautions should be taken. For more information, see Agilent Application Note 54 “GaAs MMIC ESD, Die Attach and Bonding Guidelines.” Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824.
RF Input
RF Output
VG1
VD1
VG2
VD2
Figure 19. AMMC-5023 Schematic.
7
Gold Plated Shim (Optional)
AMMC-5023 RF INPUT VD1 VD2 RF OUTPUT
≥20 pF Capacitor To VDD DC supply
(a) Single DC Drain Supply Voltage.
AMMC-5023 RF INPUT RF OUTPUT
VG2
≥ 20 pF Capacitor
R R VD1 VD2
R (typ.) ≥ 90 Ω
(b) Assembly for custom biasing of output gain stages using an external chip-resistor.
AMMC-5023 RF INPUT RF OUTPUT RF INPUT
AMMC-5023 RF OUTPUT
VG2
VG2
VD1
VD2
To DC supply (optional)
VD1
VD2
(c) A VG2 DC Supply or a resistive divider network can also be used to bias the output stages for custom application. Figure 20. AMMC-5023 Assembly Diagrams.
8
600 520 RF INPUT 300 RF OUTPUT 300 VG2 (Y-axis) 105 0 VG1 0 435 VD1 755 VG2 1235 VD2 1555 1880
80 0
Figure 21. AMMC-5023 Bonding Pad Locations. (dimensions in micrometers)
www.agilent.com/semiconductors
For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (65) 6756 2394 India, Australia, New Zealand: (65) 6755 1939 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (65) 6755 2044 Taiwan: (65) 6755 1843 Data subject to change. Copyright © 2003 Agilent Technologies, Inc. July 31, 2003 5988-9883EN