Agilent ATF-58143 Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package
Data Sheet
Features • Low noise and high linearity performance • Enhancement Mode Technology[1] • Excellent uniformity in product specifications Description Agilent Technologies’s ATF-58143 is a high dynamic range, low noise E-PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package. The combination of high gain, high linearity and low noise makes the ATF-58143 ideal as low noise amplifier for cellular/ PCS/WCDMA base stations, wireless local loop, and other applications that require low noise and high linearity performance in the 450 MHz to 6 GHz frequency range. Surface Mount Package SOT-343 • Low cost surface mount small plastic package SOT-343 (4 lead SC-70) in Tape-and-Reel packaging option available • Lead-free option available Specifications 2 GHz; 3V, 30 mA (Typ.) Pin Connections and Package Marking • 30.5 dBm output 3rd order intercept • 19 dBm output power at 1 dB • 0.5 dB noise figure
SOURCE
8Fx
DRAIN
• 16.5 dB associated gain Applications • Q1 LNA for cellular/PCS/WCDMA base stations • Q1, Q2 LNA and Pre-driver amplifier for 3–4 GHz WLL • Other low noise and high linearity applications at 450 MHz to 6 GHz
Note: 1. Enhancement mode technology requires positive Vgs, thereby eliminating the need for the negative gate voltage associated with conventional depletion mode devices.
SOURCE
GATE
Note: Top View. Package marking provides orientation and identification “8F” = Device Code “x” = Date code character identifies month of manufacture.
Attention: Observe precautions for handling electrostatic sensitive devices.
ESD Machine Model (Class A) ESD Human Body Model (Class 0) Refer to Agilent Application Note A004R: Electrostatic Discharge Damage and Control.
ATF-58143 Absolute Maximum Ratings [1] Symbol
VDS VGS VGD IDS Pdiss Pin max. IGS TCH TSTG θjc
Parameter
Drain-Source Voltage [2] Gate-Source Voltage [2] Gate Drain Voltage [2] Drain Current [2] Total Power Dissipation [3] RF Input Power Gate Source Current Channel Temperature Storage Temperature Thermal Resistance [4]
Units
V V V mA mW dBm mA °C °C °C/W
Absolute Maximum
5 -5 to 1 -5 to 1 100 500 +135] 2[5] 150 -65 to 150 162
Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Assumes DC quiescent conditions. 3. Source lead temperature is 25°C. Derate 6.2 mW/°C for TL > 33°C. 4. Thermal resistance measured using 150°C Liquid Crystal Measurement method. 5. The device can handle +13 dBm RF Input Power provided IGS is limited to 2 mA. IGS at P1dB drive level is bias circuit dependent. See applications section for additional information.
120 100 80
IDS (mA)
60 40 20 0 0 1 2 3 4 5 6 7 VDS (V)
Figure 1. Typical I-V Curves (VGS=0.1V per step)
Product Consistency Distribution Charts [6, 7]
-150 Cpk=2.735 Stdev=0.049 -125 -100 -75 -50 -25 0 0.3 0.4 0.5 0.6 NF (dB) 0.7 0.8
15 16 GAIN (dB) 17 18 Cpk=1.953 Stdev=0.2610 Cpk=1.036 Stdev=0.509
28
29
30
31
32
33
34
OIP3 (dBm)
Figure 2. NF @ 3V, 30 mA. USL = 0.9, Nominal = 0.5
Figure 3. Gain @ 3V, 30 mA. USL = 18.5, LSL = 15, Nominal = 16.5
Figure 4. OIP3 @ 3V, 30 mA. LSL = 29, Nominal = 30.5
Notes: 6. Distribution data sample size is 500 samples taken from 3 different wafers. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. 7. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on production test equipment. Circuit losses have been de-embedded from actual measurements.
2
ATF-58143 Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol
Vgs Vth Idss Gm Igss NF
Parameter and Test Condition
Operational Gate Voltage Threshold Voltage Saturated Drain Current Transconductance Gate Leakage Current Noise Figure [1] f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz Vds = 3V, Ids = 30 mA Vds = 3V, Ids = 4 mA Vds = 3V, Vgs = 0V Vds = 3V, gm = ∆Idss/∆Vgs; ∆Vgs = 0.75 – 0.7 = 0.05V Vgd = Vgs = -3V Vds = 3V, Ids = 30 mA Vds = 3V, Ids = 30 mA Vds = 4V, Ids = 30 mA Vds = 4V, Ids = 30 mA Vds = 3V, Ids = 30 mA Vds = 3V, Ids = 30 mA Vds = 4V, Ids = 30 mA Vds = 4V, Ids = 30 mA Vds = 3V, Ids = 30 mA Vds = 3V, Ids = 30 mA Vds = 4V, Ids = 30 mA Vds = 4V, Ids = 30 mA Vds = 3V, Ids = 30 mA Vds = 3V, Ids = 30 mA Vds = 4V, Ids = 30 mA Vds = 4V, Ids = 30 mA
Units
V V µA mmho µA dB dB dB dB dB dB dB dB dBm dBm dBm dBm dBm dBm dBm dBm
Min.
0.4 0.18 — 230 — — — — — 15 — — — 29 — — — — — — —
Typ.[2]
0.51 0.38 1 410 — 0.5 0.3 0.5 0.3 16.5 23.1 17.7 22.5 30.5 28.6 31.5 31.0 19 18 21 19
Max.
0.75 0.52 5 560 200 0.9 — — — 18.5 — — — — — — — — — — —
Ga
Associated Gain [1]
OIP3
Output 3rd Order Intercept Point [1]
P1dB
1dB Compressed Output Power [1]
Notes: 1. Measurements obtained using production test board described in Figure 5. 2. Typical values determined from a sample size of 500 parts from 3 wafers.
28.2 + j9.4
51 – j3.3
RFin
input matching
output matching
RFout
0.7 dB loss 0.6 dB loss
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and associated impedance matching circuit losses.
3
C2
L1
C5
C1 C2 C3 C4 C5
ATF-58143 S
J2
C4 S J1 G C1 R1 AGILENT TECHNOLOGIES C3
R1 L1 J1 J2 J3 J4
: 2.7 pF Cap (0603) : 1 pF Cap (0603) : 1200 pF Cap (0603) : 120 pF Cap (0402) : 1200 pF Cap (0603) : 49.9 Ohm (0603) : 56 nH (0603) : 0 Ohm, Jumper (0805) : 0 Ohm, Jumper (0805) : 0 Ohm, Jumper (0402) : 0 Ohm, Jumper (0402)
Figure 6. Close-up of Production Test Board.
ATF-58143 Typical Performance Curves
0.7 0.8 0.7 0.6 0.6 0.5
GAIN (dB)
3V 4V
A
0.5 0.4 0.3 0.2
3V 4V
19 18 17 16 15 14 13 12 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Ids (mA) Ids (mA)
3V 4V
Fmin (dB)
0.4
0.3
Fmin (dB)
0.1 70 0
0.2 0 10 20 30 40 50 60 Ids (mA)
Figure 7. Fmin vs. Ids and Vds Tuned for Max OIP3 and Fmin at 2 GHz.
25 24 23
Figure 8. Fmin vs. Ids and Vds Tuned for Max OIP3 and Fmin at 900 MHz.
42 37 32 27 22 17 12
Figure 9. Gain vs. Ids and Vds Tuned for Max OIP3 and Fmin at 2 GHz.
40
35
OIP3 (dBm)
3V 4V
OIP3 (dBm)
GAIN (dB)
22 21 20 19 18 0 10 20 30 40 50 60 70 Ids (mA)
3V 4V
30
25
20
3V 4V
15 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Ids (mA) Ids (mA)
Figure 10. Gain vs. Ids and Vds Tuned for Max OIP3 and Fmin at 900 MHz.
Figure 11. OIP3 vs. Ids and Vds Tuned for Max OIP3 and Fmin at 2 GHz.
Figure 12. OIP3 vs. Ids and Vds Tuned for Max OIP3 and Fmin at 900 MHz.
4
ATF-58143 Typical Performance Curves, continued
24 22 20 18 16 14 12
3V 4V
23 22 21
1.5
P1dB (dBm)
P1dB (dBm)
19 18 17 16 15
3V 4V
Fmin (dB)
0.5
25°C -40°C 85°C
20
1.0
0 0 10 20 30 40 50 60 70 0 1 2 3 4 5 6 Idq (mA) FREQUENCY (GHz)
0
10
20
30
40
50
60
70
Idq (mA)
Figure 13. P1dB vs. Idq and Vds Tuned for [1] Max OIP3 and Fmin at 2 GHz.
30
Figure 14. P1dB vs. Idq and Vds Tuned for [1] Max OIP3 and Fmin at 900 MHz.
35
Figure 15. Fmin vs. Frequency and Temp. Tuned for Max OIP3 and Fmin at 3V, 30 mA.
20.0 19.5
25
30 19.0
P1dB (dBm)
25°C -40°C 85°C
OPI3 (dBm)
GAIN (dB)
20
25
18.5 18.0 17.5 17.0 16.5 16.0
25°C -40°C 85°C
15
20
10
25°C -40°C 85°C
15
5 0 1 2 3 4 5 6 FREQUENCY (GHz)
10 0 1 2 3 4 5 6 FREQUENCY (GHz)
0
1
2
3
4
5
6
FREQUENCY (GHz)
Figure 16. Gain vs. Frequency and Temp. Tuned for Max OIP3 and Fmin at 3V, 30 mA.
Figure 17. OIP3 vs. Frequency and Temp. Tuned for Max OIP3 and Fmin at 3V, 30 mA.
Figure 18. P1dB vs. Frequency and Temp. Tuned for Max OIP3 and Fmin at 3V, 30 mA.
Note: 1. When plotting P1dB, the drain current was allowed to vary dependent on the RF input power.
5
ATF-58143 Typical Scattering Parameters, VDS = 3V, IDS = 30 mA Freq. GHz
0.1 0.5 0.9 1.0 1.5 1.9 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
Mag.
0.98 0.81 0.75 0.73 0.69 0.66 0.65 0.63 0.61 0.61 0.62 0.64 0.66 0.68 0.69 0.71 0.74 0.78 0.84 0.87 0.89 0.90 0.93 0.96 0.94 0.96 0.93
S11 Ang.
-17.1 -92.0 -126.4 -132.2 -153.2 -165.9 -169.3 176.3 160.7 147.4 133.8 123.7 112.5 103.7 93.0 77.2 58.3 39.7 25.1 10.2 -3.9 -20.0 -31.4 -43.9 -54.2 -65.1 -79.8
dB
27.29 25.25 21.87 21.18 18.38 16.74 16.40 14.83 13.51 12.35 11.28 10.32 9.41 8.61 7.84 6.47 5.14 3.77 2.55 1.25 0.19 -1.09 -2.53 -4.00 -5.46 -7.14 -8.81
Mag.
23.14 18.31 12.40 11.46 8.31 6.88 6.61 5.51 4.74 4.15 3.66 3.28 2.96 2.70 2.47 2.11 1.81 1.54 1.34 1.16 1.02 0.88 0.75 0.63 0.53 0.44 0.36
S21 Ang.
168.7 123.7 103.4 99.8 85.1 75.4 73.1 61.9 50.9 40.4 30.2 20.5 11.1 2.1 -7.3 -24.8 -43.1 -60.7 -78.8 -97.1 -114.0 -132.2 -148.3 -162.8 -176.5 168.6 153.8
S12 dB
-40.10 -28.10 -26.12 -25.87 -24.70 -23.86 -23.65 -22.71 -21.87 -21.10 -20.45 -19.86 -19.39 -18.87 -18.44 -17.63 -17.13 -16.67 -16.21 -16.04 -15.72 -15.86 -16.22 -16.73 -17.15 -17.68 -18.36
Mag.
0.010 0.039 0.049 0.051 0.058 0.064 0.066 0.073 0.081 0.088 0.095 0.102 0.107 0.114 0.120 0.131 0.139 0.147 0.155 0.158 0.164 0.161 0.154 0.146 0.139 0.131 0.121
Ang.
80.8 45.7 34.8 33.4 29.4 27.4 26.9 24.4 21.1 17.7 13.5 9.3 4.9 0.7 -4.4 -14.6 -26.1 -37.0 -50.2 -64.2 -78.3 -93.6 -106.5 -118.2 -128.6 -142.4 -155.6
S22 MSG/MAG Mag. Ang. dB
0.67 0.42 0.32 0.31 0.25 0.23 0.22 0.19 0.17 0.15 0.13 0.13 0.13 0.14 0.14 0.17 0.19 0.24 0.34 0.41 0.46 0.52 0.58 0.66 0.72 0.74 0.77 -12.1 -46.6 -66.7 -72.3 -90.8 -103.6 -106.0 -118.1 -133.3 -145.4 -155.7 -175.4 166.2 152.8 140.7 120.7 95.4 70.1 52.4 37.3 21.5 2.5 -14.1 -26.0 -36.3 -49.0 -64.8 33.69 26.68 23.99 23.52 21.54 20.30 20.03 18.77 17.69 16.73 15.86 15.09 14.40 13.74 13.14 12.06 11.14 10.22 9.39 8.65 7.96 7.39 6.85 6.36 5.85 5.27 4.77
Typical Noise Parameters, VDS = 3V, IDS = 30 mA Freq GHz
0.5 0.9 1.0 1.5 1.9 2.0 2.4 3.0 3.9 5.0 5.8 6.0
Fmin dB
0.12 0.18 0.20 0.32 0.43 0.45 0.51 0.58 0.75 0.87 1.01 1.04
Γopt Mag.
0.39 0.37 0.36 0.32 0.30 0.30 0.29 0.31 0.35 0.42 0.50 0.53
Γopt Ang.
17.775 46.9 53.525 80 101 107.7 125.2 154.475 -156.95 -120.93 -100.83 -97.15
Rn/50
0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.09 0.15 0.18
Ga dB
MSG/MAG and S21 (dB)
40 35 30 25 20 15 10 5 0 -5 -10 -15 0 5 10 FREQUENCY (GHz) 15 20 S21 MSG
25.33 22.26 21.54 19.16 17.65 17.33 16.23 14.77 13.39 11.92 11.07 10.93
Figure 19. MSG/MAG and S21 vs. Frequency at 3V, 30 mA.
Notes: 1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
6
ATF-58143 Typical Scattering Parameters, VDS = 4V, IDS = 30 mA Freq. GHz
0.1 0.5 0.9 1 1.5 1.9 2 2.5 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Mag.
0.99 0.83 0.76 0.75 0.72 0.71 0.70 0.69 0.68 0.67 0.69 0.73 0.76 0.79 0.82 0.85 0.87 0.89 0.91 0.93 0.94 0.94 0.92 0.91
S11 Ang.
-16.3 -94.5 -133.1 -139.7 -162.2 -172.7 -174.9 173.5 161.6 141.9 123.1 108.9 96.3 82.4 71.2 60.1 47.2 36.2 26.6 17.2 9.2 1.2 -10.5 17.6
dB
28.16 25.82 22.52 21.83 18.94 17.18 16.79 14.67 13.05 11.00 9.29 7.73 6.16 4.74 3.63 2.63 1.52 0.38 -0.80 -2.01 -3.24 -4.43 -5.79 -6.74
Mag.
25.6 19.5 13.4 12.3 8.9 7.2 6.9 5.4 4.5 3.5 2.9 2.4 2.0 1.7 1.5 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.5
S21 Ang.
169.65 125.68 104.58 100.73 85.42 75.68 73.47 59.58 46.88 28.55 10.32 -7.48 -23.78 -39.33 -55.93 -73.30 -90.53 -106.67 -121.58 -135.15 -148.98 -164.25 -59.55 170.70
S12 dB
-41.08 -28.95 -27.00 -26.74 -25.79 -25.25 -25.09 -24.15 -23.33 -22.14 -21.13 -20.28 -19.80 -19.32 -18.49 -17.74 -17.31 -17.12 -17.09 -17.15 -17.22 -17.36 -17.68 -17.94
Mag.
0.01 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.08 0.09 0.10 0.10 0.11 0.12 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13
Ang.
81.1 46.2 33.9 32.0 26.9 24.8 24.4 21.7 19.0 14.1 7.3 -1.3 -9.7 -16.9 -26.7 -39.3 -52.2 -64.5 -75.2 -84.2 -94.3 -106.1 -119.3 -127.5
S22 MSG/MAG Mag. Ang. dB
0.65 0.45 0.33 0.31 0.24 0.21 0.21 0.18 0.16 0.13 0.12 0.13 0.17 0.20 0.25 0.31 0.38 0.44 0.49 0.54 0.59 0.64 0.68 0.69 -10.17 -54.83 -76.45 -80.28 -95.17 -104.27 -106.18 -117.35 -124.85 -137.33 -42.65 158.73 125.87 104.88 83.12 61.03 41.33 22.65 6.28 -7.48 -22.78 -39.22 -53.35 -71.73 34.62 27.39 24.76 24.29 22.37 21.21 20.94 19.41 18.19 16.57 15.21 14.00 12.98 12.03 11.06 10.19 9.42 8.75 8.15 7.57 6.99 6.46 5.94 5.60
Typical Noise Parameters, VDS = 4V, IDS = 30 mA Freq GHz
0.5 0.9 1.0 1.5 1.9 2.0 2.4 3.0 3.9 5.0 5.8 6.0
Fmin dB
0.14 0.23 0.25 0.35 0.47 0.49 0.55 0.61 0.78 0.91 1.05 1.11
Γopt Mag.
0.38 0.36 0.35 0.32 0.3 0.3 0.28 0.3 0.35 0.42 0.49 0.53
Γopt Ang.
9.7 44.4 54.0 78.7 100.7 105.4 124.0 153.9 -157.2 -120.8 -101.2 -97.4
Rn/50
0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.07 0.1 0.16 0.19
Ga dB
MSG/MAG and S21 (dB)
40 35 30 25 20 15 10 5 0 -5 -10 0 5 10 FREQUENCY (GHz) 15 20 S21 MSG
24.85 22.21 21.51 19.21 17.71 17.39 16.25 14.86 13.51 12.05 11.14 11.14
Figure 20. MSG/MAG and S21 vs. Frequency at 4V, 30 mA.
Notes: 1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
7
Ordering Information Part Number
ATF-58143-TR1 ATF-58143-TR2 ATF-58143-BLK ATF-58143-TR1G ATF-58143-TR2G ATF-58143-BLKG
No. of Devices
3000 10000 100 3000 10000 100
Container
7" Reel 13" Reel antistatic bag 7” Reel 13”Reel antistatic bag
Package Dimensions Outline 43 (SOT-343/SC70 4 lead)
Notes: 1. All dimensions are in mm. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash and metal blurr. 4. All specifications comply to EIAJ SC70. 5. Die is facing up for mold and facing down for trim/form, i.e., reverse trim/form. 6. Package surface to be mirror finish.
Symbol
E D HE A A2 A1 b b1 c L
MIN. (mm)
1.15 1.85 1.80 0.80 0.80 0.00 0.25 0.55 0.10 0.10
MAX. (mm)
1.35 2.25 2.40 1.10 1.00 0.10 0.40 0.70 0.20 0.46
8
Recommended PCB Pad Layout for Agilent's SC70 4L/SOT-343 Products
(Dimensions in inches/mm)
Device Orientation
REEL TOP VIEW 4 mm END VIEW
CARRIER TAPE USER FEED DIRECTION COVER TAPE
8 mm
9
Tape Dimensions For Outline 4T
Tape Dimensions and Product Orientation Description
Cavity Length Width Depth Pitch Bottom Hole Diameter Diameter Pitch Position Width Thickness Width Thickness Cavity to Perforation (Width Direction) Cavity to Perforation (Length Direction)
Symbol
Ao Bo Ko P D1 D PO E W t1 C Tt F P2
Size (mm)
2.40 ± 0.10 2.40 ± 0.10 1.20 ± 0.10 4.00 ± 0.10 1.00 + 0.25 1.50 + 0.10 4.00 ± 0.10 1.75 ± 0.10 8.00 + 0.30 - 0.10 0.254 ± 0.02 5.40 ± 0.010 0.062 ± 0.001 3.50 ± 0.05 2.00 ± 0.05
Size (inches)
0.094 ± 0.004 0.094 ± 0.004 0.047 ± 0.004 0.157 ± 0.004 0.039 + 0.010 0.061 + 0.002 0.157 ± 0.004 0.069 ± 0.004 0.315 + 0.012 0.0100 ± 0.0008 0.205 + 0.004 0.0025 ± 0.0004 0.138 ± 0.002 0.079 ± 0.002
Perforlation
Carrier Tape Cover Tape Distance
For product information and a complete list of Agilent contacts and distributors, please go to our web site.
www.agilent.com/semiconductors
E-mail: SemiconductorSupport@agilent.com Data subject to change. Copyright © 2004 Agilent Technologies, Inc. Obsoletes 5988-1922EN December 10, 2004 5989-1919EN