HM10S604 PRELIMINARY SPEC
Electronics Industries
CMOS TFT-LCD SOURCE DRIVER
HM10S604
420/402CH TFT-LCD SOURCE DRIVER PRELIMINARY SPECIFICATION
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
Electronics Industries
CMOS TFT-LCD SOURCE DRIVER
• Description
HM10S604 is a source driver LSI that drives an active-matrix LCD panels, as well as a 64 gradation driver that implements multi-pin configuration and reduced power consumption. HM10S604 has 420/402 panel drive outputs. Because it is expandable, the HM10S604 can easily be used in multiple application, its screen can be enlarged, and its L/R(shift-direction switching) terminals can be used to simplify LCD panel interconnection. The device has a large output dynamic range that makes the reverse driving of opposing electrodes in the LCD panel unnecessary; this reduces system power consumption and produces a high quality pictures. The device is also compatible with single sided mounting and dot reverse driving. The HM10S604’s 420/402 outputs ensure SXGA+ compatibility, making it useful in a wider range of applications. The maximum operating clock frequency of the HM10S604 is 70MHz when the power supply voltage for the logic section is between 2.7V and 3.6V and the single-side driving of an LCD panel has been implemented.
• Features
Source Driver LSI for Active Matrix LCD Compatible With Dot inversion, n-line inversion, column-line inversion No Precharging Liquid Crystal Outputs : 420/402 L/R(shift-direction switching) terminals can be used to simplify LCD panel interconnection. Fine Pitch/TCP Driver With Internal 6-Bit Digital Input DAC Maximum Operating Clock Frequencies : 70MHz (Logic Section Power Supply : 2.7V - 3.6V) Dual Port Input Gamma Correction No Need For an External Reference Voltage Generation Circuit(or for Ramp Voltage or a MultiValue Power Supply Low System Power Consumption Can be Accomplished Using the Low Power Mode. Can Handle Heavy Loads Using the LCD Capacity Switching Mode. Allows for Input Data Reversing Logic Section Power Supply Voltage : 2.7V - 3.6V Liquid Crystal Drive Section Power Supply Voltage : 6V - 10V
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
• Functional
Block Diagram
L/R DCLK
DEIO1
DEIO2 70 Bit Shift Register
RVRS1 6 DA0 ~ DA5 DB0 ~ DB5 DC0 ~ DC5 DD0 ~ DD5 DE0 ~ DE5 DF0 ~ DF5 RVRS2 6 6 6 6 6 Buffer 6 6 6 6 6 6
.......
420/402 x 6 Bit x 2Line Latch
666 10 Voltage Reference For Gamma Correction (GH63/GH47/GH31/GH15/GH0 GL63/GL47/GL31/GL15/GL0) LP BC
.....................
Digital to Analog Converter
66
......................
LOAD Output Buffer POLC
OUT1
• CONFIDENTIAL & PROPRIETARY
......................
OUT420
HM10S604 PRELIMINARY SPEC
• TCP Pin Configuration
DEIO2 DF5 DF4 DF3 DF2 DF1 DF0 DE5 DE4 DE3 DE2 DE1 DE0 DD5 DD4 DD3 DD2 DD1 DD0 BC LP VDD1 L/R GL63 GL47 GL31 GL15 GL0 VDD2 VSS GH0 GH15 GH31 GH47 GH63 VSS DCLK LOAD POLC RVRS2 RVRS1 DC5 DC4 DC3 DC2 DC1 DC0 DB5 DB4 DB3 DB2 DB1 DB0 DA5 DA4 DA3 DA2 DA1 DA0 DEIO1
OUT420 OUT419
HM10S604
OUT2 OUT1
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
• Terminal function
TERMINAL NAME
DA0 - DA5 DB0 - DB5 DC0 - DC5 DD0 - DD5 DE0 - DE5 DF0 - DF5
FUNCTION
Port1 Image signal input terminal Port2 Image signal input terminal
I/O
DESCRIPTION
I
I
Image signal input terminal Inputs image signals with a 36-bit width : 6bit gradation data X 6 dots(for 2 pixels) Data inputs which select between one of 64 voltages Dx0 : LSB, Dx5 : MSB Internal shift register’s start pulse
DEIO1 DEIO2
Start pulse I/O terminal
I/O DEIO1 DEIO2
L/R=H Right shift input Right shift output
L/R=L Left shift output Left shift input
L/R
Shift direction selection signal input terminal Shift clock Input terminal Power supply Ground
I
Shift direction selection signal Right shift (OUT1 ---> OUT420) : H Left shift (OUT420 ---> OUT1) : L Shift register clock input terminal Writes the display data to the data register at the leading edge VDD1 VDD2 Power supply for digital circuits. Power supply for analog circuits.
DCLK VDD1 VDD2 VSS
I
P G
Ground for digital and analog Potential input terminal for gamma correction GH63 : The highest voltage in high voltage range.(necessary) GH0 : The lowest voltage in high voltage range .(necessary) GL0 : The highest voltage in low voltage range .(necessary) GL63 : The lowest voltage in low voltage range .(necessary) GH47/GL47, GH31/GL31, GH15/GL15 : Intermediate D/A voltage references (optional) Latches the data register contents with leading edge, transfers it to the D/A converter, and outputs the gradation voltage with trailing edge. POLC= L : odd numbered outputs : GH63 ~ GH0 even numbered outputs : GL0 ~ GL63 POLC= H : odd numbered outputs : GL0 ~ GL63 even numbered outputs : GH63 ~ GH0 Selects reversal/non-reversal of input data RVRS1 : controls reversal/non-reversal of port1. RVRS2 : controls reversal/non-reversal of port2. RVRS1,2 = H : reversal RVRS1,2 = L : non-reversal This terminal can be processed within TCP. H & L are identified at the leading edge of each DCLK, like the data.
GHxx / GLxx
Gamma correction reference potential input terminal
I
LOAD
Latch input terminal
I
POLC
Polarity control terminal
I
RVRS1 RVRS2
Input data reverse terminal
I
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
TERMINAL NAME
OUT1 ~ OUT420 BC
FUNCTION
LCD control output terminal LCD drive capacity switching terminal Low power mode selection terminal
I/O
DESCRIPTION
O
Sub-pixel output, provides 64 gray signals to the LCD panel. Switched LCD drive capacity : BC = H : heavy load mode BC = L : spec-load mode Reduces charge and discharge current to a load LP = H : normal mode LP = L : low power mode
I
LP
I
• Detailed description
Image signal capture
DEIOn=H(n=1 or n=2) is captured internally at the leading edge of DCLK. After the decay of DEIOn, the image signal data are captured in the internal latch with the rise of the next DCLK. If DEIOn receives an input in the meantime, new image signal data is captured at the rise of the next DCLK after DEIOn decays. It is possible to reverse the input data for each port by means of the RVRS1 and RVRS2.
Output expansion
The number of image signal output terminals can be expanded by cascading these devices,thereby enabling compatibility with large screens. Expansion is controlled by using the L/R terminal: L/R=L : the previous stage DEIO1 terminals is connected to the next stage DEIO2, and input terminals other than DEIO1 and DEIO2 are connected together on each device. L/R=H : the previous stage DEIO2 terminals is connected to the next stage DEIO1, and input terminals other than DEIO1 and DEIO2 are connected together on each device
Relationship between input data values and output voltage
The output voltage is determined by the input data value and the 10 gamma correction potentials, Also, since the output voltage is compatible with dot reverse driving, it is possible to output gradation voltages for the opposing electrode voltages with polarities that differ for even and odd numbered outputs. Input potentials with the same polarities relative to the opposing electrode voltages should be applied for GH63/GL63,GH47/GL47,GH31/GL31,GH15/GL15,GH0/GL0 of the gamma correction reference power supply. Reference potential input for correction ( i.e. GH63/GL63,GH47/GL47,GH31/GL31,GH15/GL15,GH0/GL0 ) should be applied externally as desired. Reference potential should be maintained during gradation voltage output. Refer to the operating conditions for the relative magnitude of each potential.
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
• Detailed description (continued)
Details of pixel signal data Data format : 6bit X 2 RGB Input width : 36bits (2-pixel data) MSB Dx5 Dx4 Dx3 Dx2 Dx1 Dx0 LSB
Relationship between shift direction and output data:
L/R = H (right shift) Output Data Out1 Out2 Out3 Out4 Out5 Out6 Out7 ....... ....... Out420 DF0-DF5
DA0-DA5 DB0-DB5 DC0-DC5 DD0-DD5 DE0-DE5 DF0-DF5 DA0-DA5
L/R = L (left shift) Output Data Out1 Out2 Out3 Out4 Out5 Out6 Out7 ....... ....... Out420 DF0-DF5
DA0-DA5 DB0-DB5 DC0-DC5 DD0-DD5 DE0-DE5 DF0-DF5 DA0-DA5
Voltage VDD1 GH63
GH47 GH31 GH15 GH0 VCOM GL0 GL15 GL31 GL47
GL63 VSS Input Data (HEX)
Fig 1. Conceptional Drawing of Gamma Correction
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
• Detailed description (continued)
Resistance Between Reference Potential Input Terminals for Gamma Correction
HM10S604
GH63 RT1 GH47 RT2 GH31 RT3 GH15 External Power Supply GL0 for Reference Power RT6 GL31 RT7 GL47 RT8 GL63 Negative Polarity RT5 GL15 RT4 GH0 Positive Polarity
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
• Detailed description (continued)
Resistance Between Reference Potential Input Terminals for Gamma Correction
Reference Potential
GH63 ,GL63
Name Resistance Ratio Reference Potential
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 840 560 504 448 392 392 392 392 336 336 336 280 280 280 280 168 168 168 168 168 168 168 168 168 168 168 168 112 112 112 112 112 GH31,GL31
Name Resistance Ratio
R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 168 168 168 168 168 224 280 280 616 1176
-
-
GH47,GL47
GH15,GL15
-
-
GH31,GL31
GH0,GL0
-
-
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
Relationship between Input data and output voltages at positive polarity
DATA (Hex) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F Dx[5:0] 000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111 010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111 Output Voltage GH63 GH47+(GH63 -GH47)X5376/6216 GH47+(GH63 -GH47)X4816/6216 GH47+(GH63 -GH47)X4312/6216 GH47+(GH63 -GH47)X3864/6216 GH47+(GH63 -GH47)X3472/6216 GH47+(GH63 -GH47)X3080/6216 GH47+(GH63 -GH47)X2688/6216 GH47+(GH63 -GH47)X2296/6216 GH47+(GH63 -GH47)X1960/6216 GH47+(GH63 -GH47)X1624/6216 GH47+(GH63 -GH47)X1288/6216 GH47+(GH63 -GH47)X1008/6216 GH47+(GH63 -GH47)X728/6216 GH47+(GH63 -GH47)X448/6216 GH47+(GH63 -GH47)X168/6216 GH47 GH31+(GH47-GH31)X2240/2408 GH31+(GH47-GH31)X2072/2408 GH31+(GH47-GH31)X1904/2408 GH31+(GH47-GH31)X1736/2408 GH31+(GH47-GH31)X1568/2408 GH31+(GH47-GH31)X1400/2408 GH31+(GH47-GH31)X1232/2408 GH31+(GH47-GH31)X1064/2408 GH31+(GH47-GH31)X896/2408 GH31+(GH47-GH31)X728/2408 GH31+(GH47-GH31)X560/2408 GH31+(GH47-GH31)X448/2408 GH31+(GH47-GH31)X336/2408 GH31+(GH47-GH31)X224/2408 GH31+(GH47-GH31)X112/2408 DATA (Hex) 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Dx[5:0] 100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111 Output Voltage GH31 GH15+(GH31-GH15)X1680/1792 GH15+(GH31-GH15)X1568/1792 GH15+(GH31-GH15)X1456/1792 GH15+(GH31-GH15)X1344/1792 GH15+(GH31-GH15)X1232/1792 GH15+(GH31-GH15)X1120/1792 GH15+(GH31-GH15)X1008/1792 GH15+(GH31-GH15)X896/1792 GH15+(GH31-GH15)X784/1792 GH15+(GH31-GH15)X672/1792 GH15+(GH31-GH15)X560/1792 GH15+(GH31-GH15)X448/1792 GH15+(GH31-GH15)X336/1792 GH15+(GH31-GH15)X224/1792 GH15+(GH31-GH15)X112/1792 GH15 GH0+(GH15-GH0)X3864/3976 GH0+(GH15-GH0)X3752/3976 GH0+(GH15-GH0)X3640/3976 GH0+(GH15-GH0)X3528/3976 GH0+(GH15-GH0)X3416/3976 GH0+(GH15-GH0)X3248/3976 GH0+(GH15-GH0)X3080/3976 GH0+(GH15-GH0)X2912/3976 GH0+(GH15-GH0)X2744/3976 GH0+(GH15-GH0)X2576/3976 GH0+(GH15-GH0)X2352/3976 GH0+(GH15-GH0)X2072/3976 GH0+(GH15-GH0)X1792/3976 GH0+(GH15-GH0)X1176/3976 GH0
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
Relationship between Input data and output voltages at negative polarity
DATA (Hex) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F Dx[5:0] 000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111 010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111 Output Voltage GL63 GL63+(GL47-GL63)X840/6216 GL63+(GL47-GL63)X1400/6216 GL63+(GL47-GL63)X1904/6216 GL63+(GL47-GL63)X2352/6216 GL63+(GL47-GL63)X2744/6216 GL63+(GL47-GL63)X3136/6216 GL63+(GL47-GL63)X3528/6216 GL63+(GL47-GL63)X3920/6216 GL63+(GL47-GL63)X4256/6216 GL63+(GL47-GL63)X4592/6216 GL63+(GL47-GL63)X4928/6216 GL63+(GL47-GL63)X5208/6216 GL63+(GL47-GL63)X5488/6216 GL63+(GL47-GL63)X5768/6216 GL63+(GL47-GL63)X6048/6216 GL47 GL47+(GL31-GL47)X168/2408 GL47+(GL31-GL47)X336/2408 GL47+(GL31-GL47)X504/2408 GL47+(GL31-GL47)X672/2408 GL47+(GL31-GL47)X840/2408 GL47+(GL31-GL47)X1008/2408 GL47+(GL31-GL47)X1176/2408 GL47+(GL31-GL47)X1344/2408 GL47+(GL31-GL47)X1512/2408 GL47+(GL31-GL47)X1680/2408 GL47+(GL31-GL47)X1848/2408 GL47+(GL31-GL47)X1960/2408 GL47+(GL31-GL47)X2072/2408 GL47+(GL31-GL47)X2184/2408 GL47+(GL31-GL47)X2296/2408 DATA (Hex) 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Dx[5:0] 100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111 Output Voltage GL31 GL31+(GL15-GL31)X112/1792 GL31+(GL15-GL31)X224/1792 GL31+(GL15-GL31)X336/1792 GL31+(GL15-GL31)X448/1792 GL31+(GL15-GL31)X560/1792 GL31+(GL15-GL31)X672/1792 GL31+(GL15-GL31)X784/1792 GL31+(GL15-GL31)X896/1792 GL31+(GL15-GL31)X1008/1792 GL31+(GL15-GL31)X1120/1792 GL31+(GL15-GL31)X1232/1792 GL31+(GL15-GL31)X1344/1792 GL31+(GL15-GL31)X1456/1792 GL31+(GL15-GL31)X1568/1792 GL31+(GL15-GL31)X1680/1792 GL15 GL15+(GL0-GL15)X112/3976 GL15+(GL0-GL15)X224/3976 GL15+(GL0-GL15)X336/3976 GL15+(GL0-GL15)X448/3976 GL15+(GL0-GL15)X560/3976 GL15+(GL0-GL15)X728/3976 GL15+(GL0-GL15)X896/3976 GL15+(GL0-GL15)X1064/3976 GL15+(GL0-GL15)X1232/3976 GL15+(GL0-GL15)X1400/3976 GL15+(GL0-GL15)X1624/3976 GL15+(GL0-GL15)X1904/3976 GL15+(GL0-GL15)X2184/3976 GL15+(GL0-GL15)X2800/3976 GL0
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
Absolute maximum ratings over operating free air temperature range(unless otherwise noted)
Parameter VDD1(Note1&2) Supply Voltage VDD2 Input Voltage VGMA (Note3) VI (Inputs) Output Voltage VO (DEIO1,2) VO (OUT1 ~ 420) Storage Temperature Range , TSTR -0.5 ~ 15.0 -0.5 ~ VDD2 + 0.5 -0.5 ~ VDD1 + 0.5 -0.5 ~ VDD1 + 0.5 -0.5 ~ VDD2 + 0.5 -55 ~ 125 V V V V V Absolute Maximum Ratings -0.5 ~ 5.5 Unit V
Stresses beyond those listed under “ absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “ recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Notes : 1. All voltage values are with respect to VSS = 0V. 2. Power up in the following order : VDD1 , control inputs, VDD2, VGMA. Power down by reversing the sequence. 3. VGMA = GH63/GL63,GH47/GL47,GH31/GL31,GH15/GL15,GH0/GL0 The relative magnitudes of the reference potentials are as follows: VDD2 > GH63 > GH0 > GL0 > GL63>VSS
Recommended operating conditions
Parameter VDD1 Supply Voltage VDD2 Output Voltage Gamma correction potential VO(OUT1 ~OUT420) VGMA (GH63 ~ GH0) VGMA (GL0 ~ GL63) Clock frequency, fclk 2.7VVDD1 3.6V
MIN 2.7 6.0 VSS+0.2 0.5*VDD2 VSS+0.2
TYP -
MAX 3.6 10.0 VDD2-0.2 VDD2-0.2 0.5*VDD2 70 75
Unit V V V V V MHz pF
Load capacitance for outputs, CL Operating free air temperature, TA -10
75
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
Electrical characteristics over recommended operating conditions Parameter
High level input voltage
Dx0~ Dx5,DCLK, LOAD,RVRS1,RVRS2 DEIO1,DEIO2, L/R,POLC,LP,BC Dx0~ Dx5,DCLK, LOAD,RVRS1,RVRS2 DEIO1,DEIO2,L/R, POLC,LP,BC Dx0~ Dx5,DCLK, LOAD,RVRS1,RVRS2 DEIO1,DEIO2,L/R, POLC,LP,BC
Test Conditions
MIN
TYP
MAX
Unit
VIH
-
0.7VDD1
VDD1
V
VIL
Low level input voltage
-
0
0.3VDD1
V
Ilk
Input leakage current
-
10
uA
ICHG IDIS
Output current (Note 4) Deviation between output voltage pins (Note 5) Average output variation (Note 6) Resistance between reference power supplies
Vx = VDD2 - 0.2 V VO = Vx - 1.0 V OUT1 ~ OUT420 Vx = VSS2+ 0.2 V VO = Vx + 1.0 V OUT1 ~ OUT420 VSS + 0.2 ~ VDD2 - 0.2 110
-110 uA
Vo
10
mV
VAV
OUT1 ~ OUT420
10
mV
RGMA
GH63 ~ GH0 GL0 ~ GL63
LOAD interval = 20us fclk = 36 MHz, No load VDD2=8.0V Black raster pattern GH63 =7.8 V GL63 = 0.2 V No load, VDD2=8V Black raster pattern GH63 =7.8 V GL63 = 0.2 V Clock and input signal are in the stop state LOAD interval = 20us fclk = 36 MHz, Checked dot test pattern Clock and input signal are in the stop state
14,392
DIDD2
Supply current (during operation)
TBD
uA
Analog section Supply current (during standby)
SIDD2
TBD
uA
DIDD1
Supply current (during operation) Digital section Supply current (during standby)
TBD
uA
SIDD1
TBD
uA
Notes : 4. Vx is the output voltage of OUT1 ~ OUT420. Vo is the voltage impressed at OUT1 ~ OUT420. 5.This is the deviation between terminals with differences in positive and negative amplitude, when all chip outputs display the same data. 6. This is the inter-chip deviation in the average of the output voltage inter-pin deviation
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
Timing requirements over recommended operating free air temperature range. VDD1 = 2.7V to 3.6V
Parameter tc1 tw1 tw2 tsu1 th1 tsu2 th2 td1 td2 LCD drive signal delay time td3 tsu3 th3 tw3 thiz tsu4 th4 LOAD signal EIO(input) setup time LOAD low hold time from final data DCLK High level LOAD signal pulse width duration Output high impedance duration POLC signal LOAD setup time POLC signal LOAD hold time DCLK cycle time High level DCLK pulse width duration Low level DCLK pulse width duration Data/REV setup time Data/REV hold time Start pulse setup time Start pulse hold time Start pulse signal delay time ( Load = 25pF)
Test Conditions - See Fig 3. - See Fig 3. - See Fig 3. - See Fig 3. - See Fig 3. - See Fig 3. - See Fig 3. - See Fig 3 - See Fig 4.note7,9 - See Fig 4.note8,9 - See Fig 4. - See Fig 4. - See Fig 4. - See Fig 4.note 10 - See Fig 5.note 11 - See Fig 4. - See Fig 4.
MIN 14 2.0 2.0 2.0 0 2.0 0
TYP
MAX
Unit ns ns ns ns ns ns ns
10 5 8 2 1 2 66 tw3+3 DCLK cycle -5 6.0
ns
DCLK cycle DCLK cycle DCLK cycle DCLK cycle -
ns ns
Notes : 7. Specified as the value at which the driver’s output voltage reaches the target output voltage (VDD2X0.1). 8. Specified as the value at which ther driver’s output voltage reaches the target output voltage(6-bit precision) 9. The load of the analog output terminal is the value shown in Fig 2. 10. When LOAD high level pulse width duration is shorter than 63 DCLK cycle, high-Z duration is 66 DCLK cycle. 11. When LOAD high level pulse width duration is longer than 63 DCLK cycle, high-Z duration is tw3+3DCLK cycle.
Measured Point
R R R R R OUTPUT
C
C
C
C
C
R = 1k C = 15pF Fig 2. Load conditions of analog output pin. The values of R and C could be changed according to the situation.
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
tc1 DCLK
tw1
tw2 LAST-1 (69) tsu1 th1 1 2 69 70 LAST (70)
Dxx RVRS1 RVRS2 th2 DEIO1(L/R=H) DEIO2(L/R=L) INPUT DEIO2(L/R=H) DEIO1(L/R=L) OUTPUT tsu2 th2 tsu2
td1
td1
Fig 3. Timing Waveform
DCLK
LAST (70)
DEIO1(L/R=H) DEIO2(L/R=L) INPUT th3 LOAD tsu4 POLC
tsu3 tw3 < 63 DCLK cycle
th4
OUT ( H--> L) High - Z OUT ( L--> H) thiz td2 td3
Fig 4. Timing Waveform
• CONFIDENTIAL & PROPRIETARY
HM10S604 PRELIMINARY SPEC
DCLK
Tw3 > 63 DCLK cycle LOAD
OUT ( H--> L) High - Z OUT ( L--> H) thiz td2 td3
Fig 5. Timing Waveform
LOAD
POLC
Odd Outputs
High-Z
GL63 ~GL0
High-Z
GH63 ~GH0
High-Z
GL63 ~GL0
High-Z
GH63 ~GH0
Even Outputs
High-Z
GH63 ~GH0
High-Z
GL63 ~GL0
High-Z
GH63 ~GH0
High-Z
GL63 ~GL0
Fig 6. Relationship between LOAD, POLC, and outputs
• CONFIDENTIAL & PROPRIETARY