0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HMT112U7BFR8C-G7

HMT112U7BFR8C-G7

  • 厂商:

    HYNIX(海力士)

  • 封装:

  • 描述:

    HMT112U7BFR8C-G7 - 240pin DDR3 SDRAM Unbuffered DIMMs - Hynix Semiconductor

  • 数据手册
  • 价格&库存
HMT112U7BFR8C-G7 数据手册
240pin DDR3 SDRAM Unbuffered DIMMs DDR3 SDRAM Unbuffered DIMMs Based on 1Gb B version HMT164U6BFR6C HMT112U6BFR8C HMT112U7BFR8C HMT125U6BFR8C HMT125U7BFR8C ** Contents are subject to change without prior notice. Rev. 0.1 / Apr 2009 1 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Revision History Revision No. 0.01 0.02 0.1 History Initial draft for internal review Added IDD Specification Updated IDD Specification Draft Date Dec. 2008 Feb. 2009 Apr. 2009 Remark Preliminary Preliminary Rev. 0.1 / Apr 2009 2 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table of Contents 1. Description 1.1 Device Features and Ordering Information 1.1.1 Features 1.1.2 Ordering Information 1.2 Speed Grade & Key Parameters 1.3 Address Table 2. Pin Architecture 2.1 Pin Definition 2.2 Input/Output Functional Description 2.3 Pin Assignment 3. Functional Block Diagram 3.1 512MB, 64Mx64 Module(1Rank of x16) 3.2 1GB, 128Mx64 Module(1Rank of x8) 3.3 1GB, 128Mx72 ECC Module(1Rank of x8) 3.4 2GB, 256Mx64 Module(2Rank of x8) 3.5 2GB, 256Mx72 ECC Module(2Rank of x8) 4. Address Mirroring Feature 4.1 DRAM Pin Wiring for Mirroring 5. Absolute Maximum Ratings 5.1 Absolute Maximum DC Ratings 5.2 Operating Temperature Range 6. AC & DC Operating Conditions 6.1 Recommended DC Operating Conditions 6.2 DC & AC Logic Input Levels 6.2.1 For Single-ended Signals 6.2.2 For Differential Signals 6.2.3 Differential Input Cross Point 6.3 Slew Rate Definition 6.3.1 For Ended Input Signals 6.3.2 For Differential Input Signals 6.4 DC & AC Output Buffer Levels 6.4.1 Single Ended DC & AC Output Levels 6.4.2 Differential DC & AC Output Levels 6.4.3 Single Ended Output Slew Rate 6.4.4 Differential Ended Output Slew Rate 6.5 Overshoot/Undershoot Specification 6.6 Input/Output Capacitance & AC Parametrics 6.7 IDD Specifications & Measurement Conditions 7. Electrical Characteristics and AC Timing 7.1 Refresh Parameters by Device Density 7.2 DDR3 Standard speed bins and AC para 8. DIMM Outline Diagram 8.1 512MB, 64Mx64 Module(1Rankx16) 8.2 1GB, 128Mx64 Module(1Rank of x8) 8.3 1GB, 128Mx72 ECC Module(1Rank of x8) 8.4 2GB, 256Mx64 Module(2Rank of x8) 8.5 2GB, 256Mx72 ECC Module(2Rank of x8) Rev. 0.1 / Apr 2009 3 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 1. Description This Hynix unbuffered Dual In-Line Memory Module(DIMM) series consists of 1Gb B version. DDR3 SDRAMs in Fine Ball Grid Array(FBGA) packages on a 240 pin glass-epoxy substrate. This DDR3 Unbuffered DIMM series based on 1Gb B ver. provide a high performance 8 byte interface in 133.35mm width form factor of industry standard. It is suitable for easy interchange and addition. 1.1 Device Features & Ordering Information 1.1.1 Features • VDD=VDDQ=1.5V • VDDSPD=3.3V to 3.6V • Fully differential clock inputs (CK, /CK) operation • Differential Data Strobe (DQS, /DQS) • On chip DLL align DQ, DQS and /DQS transition with CK transition • DM masks write data-in at the both rising and falling edges of the data strobe • All addresses and control inputs except data, data strobes and data masks latched on the rising edges of the clock • Programmable CAS latency 5, 6, 7, 8, 9, 10, and (11) supported • Programmable additive latency 0, CL-1, and CL-2 sup ported • Programmable CAS Write latency (CWL) = 5, 6, 7, 8 • Programmable burst length 4/8 with both nibble sequential and interleave mode • BL switch on the fly • 8banks • 8K refresh cycles /64ms • DDR3 SDRAM Package: JEDEC standard 78ball FBGA(x4/x8), 96ball FBGA(x16) with support balls • Driver strength selected by EMRS • Dynamic On Die Termination supported • Asynchronous RESET pin supported • ZQ calibration supported • TDQS (Termination Data Strobe) supported (x8 only) • Write Levelization supported • Auto Self Refresh supported • On Die Thermal Sensor supported (JEDEC optional) Rev. 0.1 / Apr 2009 4 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 1.1.2 Ordering Information # of DRAMs 4 8 9 16 18 # of ranks 1 1 1 2 2 Part Name HMT164U6BFR6C - G7/H9 HMT112U6BFR8C - G7/H9 HMT112U7BFR8C - G7/H9 HMT125U6BFR8C - G7/H9 HMT125U7BFR8C - G7/H9 Density 512MB 1GB 1GB 2GB 2GB Org. 64Mx64 128Mx64 128Mx72 256Mx64 256Mx72 Materials Halogen-free Halogen-free Halogen-free Halogen-free Halogen-free ECC None None ECC None ECC TS No No Yes No Yes Rev. 0.1 / Apr 2009 5 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 1.2 Speed Grade & Key Parameters MT/S Grade tCK(min) CAS Latency tRCD(min) tRP(min) tRAS(min) tRC(min) CL-tRCD-tRP 1066 -G7 1.875 7 13.125 13.125 37.5 50.625 7-7-7 DDR3-1333 Unit -H9 1.5 9 13.5 13.5 36 49.5 9-9-9 ns tCK ns ns ns ns tCK 1.3 Address Table 512MB Organization Refresh Method Row Address Column Address Bank Address Page Size # of Rank # of Device 64M x 64 8K/64ms A0-A12 A0-A9 BA0-BA2 2KB 1 4 1GB 128M x 64 8K/64ms A0-A13 A0-A9 BA0-BA2 1KB 1 8 1GB 128M x 72 8K/64ms A0-A13 A0-A9 BA0-BA2 1KB 1 9 2GB 256M x 64 8K/64ms A0-A13 A0-A9 BA0-BA2 1KB 2 16 2GB 256M x 72 8K/64ms A0-A13 A0-A9 BA0-BA2 1KB 2 18 Rev. 0.1 / Apr 2009 6 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 2. Pin Architecture 2.1 Pin Definition Pin Name A0–A13 BA0–BA2 RAS CAS WE S0–S1 CKE0–CKE1 ODT0–ODT1 DQ0–DQ63 CB0–CB7 DQS0–DQS8 DQS0–DQS8 DM0–DM8 CK0–CK1 CK0–CK1 Description SDRAM address bus SDRAM bank select SDRAM row address strobe SDRAM column address strobe SDRAM write enable DIMM Rank Select Lines SDRAM clock enable lines On-die termination control lines DIMM memory data bus DIMM ECC check bits SDRAM data strobes (positive line of differential pair) SDRAM data strobes (negative line of differential pair) SDRAM data masks/high data strobes (x8-based x72 DIMMs) SDRAM clocks (positive line of differential pair) SDRAM clocks (negative line of differential pair) Pin Name SCL SDA SA0–SA2 VDD* VDDQ* VREFDQ VREFCA VSS VDDSPD NC TEST RESET VTT RFU Description I2C serial bus clock for EEPROM I2C serial bus data line for EEPROM I2C slave address select for EEPROM SDRAM core power supply SDRAM I/O Driver power supply SDRAM I/O reference supply SDRAM command/address reference supply Power supply return (ground) Serial EEPROM positive power supply Spare pins (no connect) Memory bus analysis tools (unused on memory DIMMS) Set DRAMs to Known State SDRAM I/O termination supply Reserved for future use - *The VDD and VDDQ pins are tied common to a single power-plane on these designs Rev. 0.1 / Apr 2009 7 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 2.2 Input/Output Functional Description Symbol CK0–CK1 CK0–CK1 Type Polarity Differential crossing Function CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of crossing). Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self Refresh mode. Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. This signal provides for external rank selection on systems with multiple ranks. RAS, CAS, and WE (ALONG WITH S) define the command being entered. When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming this function is enabled in the Mode Register 1 (MR1). Reference voltage for SSTL15 I/O inputs. Reference voltage for SSTL 15 command/address inputs. Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered DIMM designs, VDDQ shares the same power plane as VDD pins. — Selects which SDRAM bank of eight is activated. During a Bank Activate command cycle, Address input defines the row address (RA0–RA15). During a Read or Write command cycle, Address input defines the column address. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop; LOW, burst chopped). Data and Check Bit Input/Output pins. DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. Power and ground for the DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on these modules. SSTL CKE0–CKE1 SSTL Active High S0–S1 SSTL Active Low RAS, CAS, WE ODT0–ODT1 VREFDQ VREFCA VDDQ BA0–BA2 SSTL SSTL Supply Supply Supply SSTL Active Low Active High A0–A13 SSTL — DQ0–DQ63, CB0–CB7 SSTL — DM0–DM8 SSTL Active High VDD, VSS Supply Rev. 0.1 / Apr 2009 8 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Symbol DQS0–DQS8 DQS0–DQS8 SA0–SA2 Type SSTL Polarity Differential crossing — Function Data strobe for input and output data. These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected from the SDA bus line to VDDSPD to act as a pullup on the system board. This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL bus time to VDDSPD to act as a pullup on the system board. Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable from 3.0V to 3.6V. SDA — SCL — VDDSPD Supply 2.3 Pin Assignment Front Side(left 1–60) Pin x64 # Non-ECC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VREFDQ VSS DQ0 DQ1 VSS DQS0 DQS0 VSS DQ2 DQ3 VSS DQ8 DQ9 VSS DQS1 DQS1 x72 ECC VSS DQ0 DQ1 VSS DQS0 DQS0 VSS DQ2 DQ3 VSS DQ8 DQ9 VSS DQS1 DQS1 Back Side(right 121–180) Pin x64 # Non-ECC VSS DQ4 DQ5 VSS DM0 NC VSS DQ6 DQ7 VSS DQ12 DQ13 VSS DM1 NC VSS 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 x72 ECC VSS DQ4 DQ5 VSS DM0 NC VSS DQ6 DQ7 VSS DQ12 DQ13 VSS DM1 NC VSS Front Side(left 61–120) Back Side(right 181–240) Pin # 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 x64 Non-ECC A2 VDD CK1 CK1 VDD VDD VREFCA NC VDD A10 BA02 VDD WE CAS VDD S1 x72 ECC A2 VDD CK1 CK1 VDD VDD VREFCA NC VDD A10 BA02 VDD WE CAS VDD S1 Pin # 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 x64 Non-ECC A1 VDD VDD CK0 CK0 VDD NC A0 VDD BA12 VDD RAS S0 VDD ODT0 A13 x72 ECC A1 VDD VDD CK0 CK0 VDD NC A0 VDD BA12 VDD RAS S0 VDD ODT0 A13 VREFDQ 121 NC = No Connect; RFU = Reserved Future Use 1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group. 2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more information on mirrored addresses. Rev. 0.1 / Apr 2009 9 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Front Side(left 1–60) Pin x64 # Non-ECC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 VSS DQ10 DQ11 VSS DQ16 DQ17 VSS DQS2 DQS2 VSS DQ18 DQ19 VSS DQ24 DQ25 VSS DQS3 DQS3 VSS DQ26 DQ27 VSS NC NC VSS NC NC VSS NC NC VSS x72 ECC VSS DQ10 DQ11 VSS DQ16 DQ17 VSS DQS2 DQS2 VSS DQ18 DQ19 VSS DQ24 DQ25 VSS DQS3 DQS3 VSS DQ26 DQ27 VSS CB0 CB1 VSS DQS8 DQS8 VSS CB2 CB3 VSS Back Side(right 121–180) Pin x64 # Non-ECC 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 DQ14 DQ15 VSS DQ20 DQ21 VSS DM2 NC VSS DQ22 DQ23 VSS DQ28 DQ29 VSS DM3 NC VSS DQ30 DQ31 VSS NC NC VSS DM8 NC VSS NC NC VSS NC x72 ECC DQ14 DQ15 VSS DQ20 DQ21 VSS DM2 NC VSS DQ22 DQ23 VSS DQ28 DQ29 VSS DM3 NC VSS DQ30 DQ31 VSS CB4 CB5 VSS DM8 NC VSS CB6 CB7 VSS NC Front Side(left 61–120) Back Side(right 181–240) Pin # 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 x64 Non-ECC ODT1 VDD NC VSS DQ32 DQ33 VSS DQS4 DQS4 VSS DQ34 DQ35 VSS DQ40 DQ41 VSS DQS5 DQS5 VSS DQ42 DQ43 VSS DQ48 DQ49 VSS DQS6 DQS6 VSS DQ50 DQ51 VSS x72 ECC ODT1 VDD NC VSS DQ32 DQ33 VSS DQS4 DQS4 VSS DQ34 DQ35 VSS DQ40 DQ41 VSS DQS5 DQS5 VSS DQ42 DQ43 VSS DQ48 DQ49 VSS DQS6 DQS6 VSS DQ50 DQ51 VSS Pin # 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 x64 Non-ECC VDD NC VSS DQ36 DQ37 VSS DM4 NC VSS DQ38 DQ39 VSS DQ44 DQ45 VSS DM5 NC VSS DQ46 DQ47 VSS DQ52 DQ53 VSS DM6 NC VSS DQ54 DQ55 VSS DQ60 x72 ECC VDD NC VSS DQ36 DQ37 VSS DM4 NC VSS DQ38 DQ39 VSS DQ44 DQ45 VSS DM5 NC VSS DQ46 DQ47 VSS DQ52 DQ53 VSS DM6 NC VSS DQ54 DQ55 VSS DQ60 NC = No Connect; RFU = Reserved Future Use 1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group. 2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more information on mirrored addresses. Rev. 0.1 / Apr 2009 10 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Front Side(left 1–60) Pin x64 # Non-ECC 48 49 50 51 52 53 54 55 56 57 58 59 60 NC KEY NC CKE0 VDD BA2 NC VDD All A72 VDD A52 A42 VDD NC CKE0 VDD BA2 NC VDD All A72 VDD A52 A42 VDD x72 ECC NC Back Side(right 121–180) Pin x64 # Non-ECC 168 169 170 171 172 173 174 175 176 177 178 179 180 Reset KEY CKE1/NC VDD NC NC VDD A12 A9 VDD A82 A62 VDD A32 CKE1/NC VDD NC NC VDD A12 A9 VDD A82 A62 VDD A32 x72 ECC Reset Front Side(left 61–120) Back Side(right 181–240) Pin # 108 109 110 111 112 113 114 115 116 117 118 119 120 x64 Non-ECC DQ56 DQ57 VSS DQS7 DQS7 VSS DQ58 DQ59 VSS SA0 SCL SA2 VTT x72 ECC DQ56 DQ57 VSS DQS7 DQS7 VSS DQ58 DQ59 VSS SA0 SCL SA2 VTT Pin # 228 229 230 231 232 233 234 235 236 237 238 239 240 x64 Non-ECC DQ61 VSS DM7 NC VSS DQ62 DQ63 VSS VDDSPD SA1 SDA VSS VTT x72 ECC DQ61 VSS DM7 NC VSS DQ62 DQ63 VSS VDDSPD SA1 SDA VSS VTT NC = No Connect; RFU = Reserved Future Use 1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group. 2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more information on mirrored addresses. Rev. 0.1 / Apr 2009 11 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 3. Functional Block Diagram 3.1 512MB, 64Mx64 Module(1Rank of x16) S0 DQS0 DQS0 DM0 CS DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 LDQS LDQS LDM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 UDQS UDQS UDM I/O 8 I/O 9 I/O 10 I/O 11 I/O 12 I/O 13 I/O 14 I/O 15 D0 DQS4 DQS4 DM4 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 LDQS LDQS LDM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 UDQS UDQS UDM I/O 8 I/O 9 I/O 10 I/O 11 I/O 12 I/O 13 I/O 14 I/O 15 CS D2 DQS1 DQS1 DM1 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DQS5 DQS5 DM5 ZQ DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 ZQ DQS2 DQS2 DM2 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 LDQS LDQS LDM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS CS D1 DQS6 DQS6 DM6 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 LDQS LDQS LDM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS CS D3 DQS3 DQS3 DM3 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 UDQS CS UDQS UDM I/O 8 I/O 9 I/O 10 I/O 11 I/O 12 I/O 13 I/O 14 I/O 15 DQS7 DQS7 DM7 ZQ DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 UDQS CS UDQS UDM I/O 8 I/O 9 I/O 10 I/O 11 I/O 12 I/O 13 I/O 14 I/O 15 ZQ Serial PD SCL BA0–BA2 A0–A14 RAS CAS CKE0 WE ODT0 CK0 CK0 RESET BA0–BA2: SDRAMs D0–D3 A0–A14: SDRAMs D0–D3 RAS: SDRAMs D0–D3 CAS: SDRAMs D0–D3 CKE: SDRAMs D0–D3 WE: SDRAMs D0–D3 ODT: SDRAMs D0–D3 CK: SDRAMs D0–D3 CK: SDRAMs D0–D3 RESET:SDRAMs D0-D3 WP A0 SA0 A1 SA1 A2 SA2 SDA VDDSPD VDD/VDDQ VREFDQ VSS VREFCA SPD D0–D3 D0–D3 D0–D3 D0–D3 Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,DM,DQS,DQS resistors;Refer to associated topology diagram. 4. Refer to the appropriate clock wiring topology under the DIMM wiring details section of this document. 5. The pair CK1 and CK1# is terminated in 75ohm but is not used on the module. 6. A15 is not routed on the module. 7. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is 240ohm+-1% 8. One SPD exists per module. Rev. 0.1 / Apr 2009 12 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 3.2 1GB, 128Mx64 Module(1Rank of x8) DQS0 DQS0 DM0 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 S0 DQS4 DQS4 DM4 I/O I/O I/O I/O I/O I/O I/O I/O DM CS DQS DQS 0 1 D0 2 3 4 5 6 ZQ 7 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D4 ZQ DQS1 DQS1 DM1 DQS5 DQS5 DM5 DQS2 DQS2 DM2 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM CS DQS DQS I/O 0 I/O 1 D1 I/O 2 I/O 3 I/O 4 I/O 5 ZQ I/O 6 I/O 7 DQS6 DQS6 DM6 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D5 ZQ DQS3 DQS3 DM3 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 I/O I/O I/O I/O I/O I/O I/O I/O DM CS DQS DQS 0 1 D2 2 3 4 5 6 7 ZQ DQS7 DQS7 DM7 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D6 ZQ DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM CS DQS DQS I/O 0 I/O 1 D3 I/O 2 I/O 3 I/O 4 I/O 5 ZQ I/O 6 I/O 7 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D7 ZQ Serial PD WP A0 SDA A1 SA1 A2 SA2 SCL BA0–BA2 A0–A15 RAS CAS CKE0 WE ODT0 CK0 CK0 RESET BA0–BA2: SDRAMs D0–D7 A0–A15: SDRAMs D0–D7 RAS: SDRAMs D0–D7 CAS: SDRAMs D0–D7 CKE: SDRAMs D0–D7 WE: SDRAMs D0–D7 ODT: SDRAMs D0–D7 CK: SDRAMs D0–D7 CK: SDRAMs D0–D7 RESET:SDRAMs D0-D7 SA0 VDDSPD VDD/VDDQ VREFDQ VSS VREFCA SPD D0–D7 D0–D7 D0–D7 D0–D7 Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,DM,DQS/DQS resistors;Refer to associated topology diagram. 4. Refer to the appropriate clock wiring topology under the DIMM wiring details section of this document. 5. Refer to Section 3.1 of this document for details on address mirroring. 6. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is 240ohm+-1% 7. One SPD exists per module. Rev. 0.1 / Apr 2009 13 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 3.3 1GB, 128Mx72 Module(1Rank of x8) DQS0 DQS0 DM0 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 S0 DQS4 DQS4 DM4 CS DQS DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D0 ZQ DQS1 DQS1 DM1 DQS5 DQS5 DM5 CS DQS DQS DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D4 ZQ DQS2 DQS2 DM2 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D1 ZQ DQS6 DQS6 DM6 CS DQS DQS DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D5 ZQ DQS3 DQS3 DM3 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D2 ZQ DQS7 DQS7 DM7 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D6 ZQ DQS8 DQS8 DM8 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D3 ZQ DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D7 ZQ CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS SPD(TS integrated) SCL D8 EVENT ZQ EVENT A0 SA0 SDA A1 SA1 A2 SA2 BA0–BA2 A0–A15 RAS CAS CKE0 WE ODT0 CK0 CK0 RESET BA0–BA2: SDRAMs D0–D8 A0–A15: SDRAMs D0–D8 VDDSPD RAS: SDRAMs D0–D8 VDD/VDDQ CAS: SDRAMs D0–D8 CKE: SDRAMs D0–D8 VREFDQ WE: SDRAMs D0–D8 VSS ODT: SDRAMs D0–D8 CK: SDRAMs D0–D8 VREFCA CK: SDRAMs D0–D8 RESET:SDRAMs D0-D8 SPD D0–D8 D0–D8 D0–D8 D0–D8 Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,CB,DM,DQS/DQS resistors;Refer to associated topology diagram. 4. Refer to the appropriate clock wiring topology under the DIMM wiring details section of this document. 5. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is 240ohm+-1% 6. One SPD exists per module. Rev. 0.1 / Apr 2009 14 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 3.4 2GB, 256Mx64 Module(2Rank of x8) S0 DQS0 DQS0 DM0 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS S1 DQS4 DQS4 DM4 DM CS DQS DQS I/O 0 I/O 1 D8 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 ZQ I/O 7 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM CS DQS DQS I/O 0 I/O 1 D4 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM CS DQS DQS I/O 0 I/O 1 D12 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D0 DQS1 DQS1 DM1 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DQS5 DQS5 DM5 DM CS DQS DQS I/O 0 I/O 1 D9 I/O 2 I/O 3 I/O 4 I/O 5 ZQ I/O 6 I/O 7 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 ZQ ZQ CS DQS DQS D1 DQS2 DQS2 DM2 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM CS DQS DQS I/O 0 I/O 1 D5 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQS6 DQS6 DM6 ZQ DM CS DQS DQS I/O 0 I/O 1 D13 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ CS DQS DQS D2 DQS3 DQS3 DM3 ZQ DM CS DQS DQS I/O 0 I/O 1 D10 I/O 2 I/O 3 I/O 4 I/O 5 ZQ I/O 6 I/O 7 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM CS DQS DQS I/O 0 I/O 1 D6 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM CS DQS DQS I/O 0 I/O 1 D14 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DQS7 DQS7 DM7 DM CS DQS DQS I/O 0 I/O 1 D11 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 ZQ I/O 7 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM CS DQS DQS I/O 0 I/O 1 D7 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM CS DQS DQS I/O 0 I/O 1 D15 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D3 ZQ ZQ ZQ Serial PD BA0–BA2 A0–A15 CKE1 CKE0 RAS CAS WE ODT0 ODT1 CK0 CK0 CK1 CK1 BA0–BA2: SDRAMs D0–D15 SCL A0-A15: SDRAMs D0–D15 WP CKE: SDRAMs D8–D15 A0 CKE: SDRAMs D0–D7 SA0 RAS: SDRAMs D0–D15 CAS: SDRAMs D0–D15 VDDSPD WE: SDRAMs D0–D15 VDD/VDDQ ODT: SDRAMs D0–D7 VREFDQ ODT: SDRAMs D8–D15 CK: SDRAMs D0–D7 VSS CK: SDRAMs D0–D7 VREFCA CK: SDRAMs D8–D15 CK: SDRAMs D8–D15 SDA A1 SA1 A2 SA2 SPD D0–D15 D0–D15 D0–D15 D0–D15 Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,DM,DQS,DQS resistors;Refer to associated topology diagram. 4. Refer to Section 3.1 of this document for details on address mirroring. 5. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is 240ohm+-1% 6. One SPD exists per module. RESET RESET:SDRAMs D0-D3 Rev. 0.1 / Apr 2009 15 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 3.5 2GB, 256Mx72 Module(2Rank of x8) DQS0 DQS0 DM0 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 S0 S1 DQS4 DQS4 DM4 DM CS DQS DQS I/O 0 I/O 1 D0 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D9 ZQ DQS1 DQS1 DM1 DQS5 DQS5 DM5 CS DQS DQS DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM CS DQS DQS I/O 0 I/O 1 D4 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D13 ZQ DM DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D1 DQS2 DQS2 DM2 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D10 ZQ DQS6 DQS6 DM6 CS DQS DQS DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM CS DQS DQS I/O 0 I/O 1 D5 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D14 ZQ DQS3 DQS3 DM3 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM CS DQS DQS I/O 0 I/O 1 D2 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D11 ZQ DQS7 DQS7 DM7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM CS DQS DQS I/O 0 I/O 1 D6 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D15 ZQ DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM CS DQS DQS I/O 0 I/O 1 D3 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D12 DQS8 DQS8 DM8 CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 ZQ ZQ SCL DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM CS DQS DQS I/O 0 I/O 1 D7 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D16 ZQ SPD VDDSPD SPD(TS integrated) DM CS DQS DQS I/O 0 I/O 1 D8 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS VDD/VDDQ D0–D17 D0–D17 D0–D17 D0–D17 EVENT EVENT A0 SA0 SDA A1 SA1 VREFDQ Vss VREFCA D17 A2 SA2 ZQ ZQ ODT: SDRAMs D0–D8 ODT: SDRAMs D9–D17 CK: SDRAMs D0–D8 CK: SDRAMs D0–D8 CK: SDRAMs D9–D17 CK: SDRAMs D9–D17 RESET:SDRAMs D0-D17 BA0–BA2 A0–A15 CKE0 CKE1 RAS CAS WE BA0-BA2: SDRAMs D0–D17 A0-A15: SDRAMs D0–D17 CKE: SDRAMs D0–D8 CKE: SDRAMs D9–D17 RAS: SDRAMs D0–D17 CAS: SDRAMs D0–D17 WE: SDRAMs D0–D17 ODT0 ODT1 CK0 CK0 CK1 CK1 RESET Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,CB,DM/DQS/DQS resistors;Refer to associated topology diagram. 4. Refer to Section 3.1 of this document for details on address mirroring. 5. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is 240ohm+-1% 6. One SPD exists per module. Rev. 0.1 / Apr 2009 16 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 4. Address Mirroring Feature There is a via grid located under the SDRAMs for wiring the CA signals (address, bank address, command, and control lines) to the SDRAM pins. The length of the traces from the via to the SDRAMs places limitations on the bandwidth of the module. The shorter these traces, the higher the bandwidth. To extend the bandwidth of the CA bus for DDR3 modules, a scheme was defined to reduce the length of these traces.The pins on the SDRAM are defined in a manner that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical support pins, do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are address pins A3, A4, A5, A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 SDRAM pins are wired straight, with no mismatch between the connector pin assignment and the SDRAM pin assignment. Some of the Rank 1 SDRAM pins are cross wired as defined in the table. Pins not listed in the table are wired straight. 4.1 DRAM Pin Wiring for Mirroring Connector Pin A3 A4 A5 A6 A7 A8 BA0 BA1 SDRAM Pin Rank 0 A3 A4 A5 A6 A7 A8 BA0 BA1 The table 4.1 illustrates the wiring in both the mirrored and non-mirrored case. The lengths of the traces to the SDRAM pins, is obviously shorter. The via grid is smaller as well. Rank 1 A4 A3 A6 A5 A8 A7 BA1 BA0 Rev. 0.1 / Apr 2009 17 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C No Mirroring Mirroring < Figure 4.1: Wiring Differences for Mirrored and Non-Mirrored Addresses > Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know if the rank is mirrored or not. This requires a few rules. Mirroring is done on 2 rank modules and can only be done on the second rank. There is not a requirement that the second rank be mirrored. There is a bit assignment in the SPD that indicates whether the module has been designed with the mirrored feature or not. See the DDR3 UDIMM SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the second rank. Rev. 0.1 / Apr 2009 18 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 5. ABSOLUTE MAXIMUM RATINGS 5.1 Absolute Maximum DC Ratings Symbol VDD VDDQ VIN, VOUT TSTG Parameter Voltage on VDD pin relative to Vss Voltage on VDDQ pin relative to Vss Voltage on any pin relative to Vss Storage Temperature Rating - 0.4 V ~ 1.975 V - 0.4 V ~ 1.975 V - 0.4 V ~ 1.975 V -55 to +100 ℃ Units V V V ℃ ,2 Notes ,3 ,3 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 5.2 DRAM Component Operating Temperature Range Symbol TOPER Parameter Normal Temperature Range Extended Temperature Range Rating 0 to 85 85 to 95 Units ℃ ℃ Notes ,2 1,3 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°… and 95°… case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. (This double refresh requirement may not apply for some devices.) It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to supplier data sheet and/ or the DIMM SPD for option avail ability. b) If Self-Refresh operation is required in the Extended Temperature Range, than it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0band MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). Rev. 0.1 / Apr 2009 19 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 6. AC & DC Operating Conditions 6.1 Recommended DC Operating Conditions Rating Min. 1.425 1.425 Typ. 1.500 1.500 Max. 1.575 1.575 Symbol VDD VDDQ Parameter Supply Voltage Supply Voltage for Output Units V V Notes 1,2 1,2 1. Under all conditions, VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD abd VDDQ tied together. 6.2 DC & AC Logic Input Levels 6.2.1 DC & AC Logic Input Levels for Single-Ended Signals DDR3-1066, DDR3-1333 Symbol VIH(DC) VIL(DC) VIH(AC) VIL(AC) VRefDQ(DC) VRefCA(DC) VTT Parameter Min DC input logic high DC input logic low AC input logic high AC input logic low Reference Voltage for DQ, DM inputs Reference Voltage for ADD, CMD inputs Termination voltage for DQ, DQS outputs 0.49 * VDD 0.49 * VDD VDDQ/2 - TBD Vref + 0.175 Vref + 0.100 Max Vref - 0.100 Vref - 0.175 0.51 * VDD 0.51 * VDD VDDQ/2 + TBD V V V V V V V 1, 2 1, 2 1, 2 1, 2 3, 4 3, 4 Unit Notes 1. For DQ and DM, Vref = VrefDQ. For input ony pins except RESET#, Vref = VrefCA. 2. The “t.b.d.” entries might change based on overshoot and undershoot specification. 3. The ac peak noise on VRef may not allow VRef to deviate from VRef(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV). For reference: approx. VDD/2 +/- 15 mV. The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure 6.2.1. It shows a valid reference voltage VRef(t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise).VRef(DC) is the linear average of VRef(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in Table 1. Furthermore VRef(t) may temporarily deviate from VRef(DC) by no more than +/- 1% VDD. Rev. 0.1 / Apr 2009 20 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C voltage VDD VRef ac-noise VRef(DC) VRef(t) VRef(DC)max VDD/2 VRef(DC)min VSS time < Figure 6.2.1: Illustration of Vref(DC) tolerance and Vref AC-noise limits > The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VRef. "VRef " shall be understood as VRef(DC), as defined in Figure 6.2.1 This clarifies, that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VRef(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRef ac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. 6.2.2 DC & AC Logic Input Levels for Differential Signals DDR3-1066, DDR3-1333 Min + 0.200 Max - 0.200 Symbol VIHdiff VILdiff Note1: Parameter Differential input logic high Differential input logic low Unit V V Notes 1 1 Refer to “Overshoot and Undershoot Specification section 6.5 on 26 page Rev. 0.1 / Apr 2009 21 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 6.2.3 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the requirements in Table 6.2.3 The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the midlevel between of VDD and VSS. VDD CK#, DQS# VIX VDD/2 VIX VIX CK, DQS VSS < Figure 6.2.3 Vix Definition > DDR3-1066, DDR3-1333 Symbol Parameter Min VIX Differential Input Cross Point Voltage relative to VDD/2 - 150 Max + 150 mV Unit Notes < Table 6.2.3: Cross point voltage for differential input signals (CK, DQS) > Rev. 0.1 / Apr 2009 22 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 6.3 Slew Rate Definitions 6.3.1 For Single Ended Input Signals - Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS) Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef and the first crossing of VIH(AC)min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VRef and the first crossing of VIL(AC)max. - Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH) Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VRef. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VRef. Measured Min Vref Vref VIL(DC)max VIH(DC)min Max VIH(AC)min VIL(AC)max Vref Vref Description Input slew rate for rising edge Input slew rate for falling edge Input slew rate for rising edge Input slew rate for falling edge Defined by VIH(AC)min-Vref Delta TRS Vref-VIL(AC)max Delta TFS Vref-VIL(DC)max Delta TFH VIH(DC)min-Vref Delta TRH Applicable for Setup (tIS, tDS) Hold (tIH, tDH) < Table 6.3.1: Single-Ended Input Slew Rate Definition > Part A: Set up Delta TRS Single Ended input Voltage(DQ,ADD, CMD) vIH(AC)min vIH(DC)min vRefDQ or vRefCA vIL(DC)max vIL(AC)max Delta TFS Rev. 0.1 / Apr 2009 23 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C P a rt B : H o ld D e lta T R H Single Ended input Voltage(DQ,ADD, CMD) v IH (A C )m in v IH (D C )m in v R e fD Q o r v R e fC A v IL (D C )m a x v IL (A C )m a x D e lta T F H < Figure 6.3.1: Input Nominal Slew Rate Definition for Single-Ended Signals > 6.3.2 Differential Input Signals Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured as shown in below Table and Figure . Measured Min VILdiffmax VIHdiffmin Max VIHdiffmin VILdiffmax Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Note: Defined by VIHdiffmin-VILdiffmax DeltaTRdiff VIHdiffmin-VILdiffmax DeltaTFdiff The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds. Rev. 0.1 / Apr 2009 24 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Differential Input Voltage (i.e. DQS-DQS; CK-CK) D e lta T R d iff vIH d iffm in 0 vILd iffm a x D e lta T F d iff < Figure 6.3.2: Differential Input Slew Rate Definition for DQS,DQS# and CK,CK# > 6.4 DC & AC Output Buffer Levels 6.4.1 Single Ended DC & AC Output Levels Below table shows the output levels used for measurements of single ended signals. Symbol VOH(DC) VOM(DC) VOL(DC) VOH(AC) VOL(AC) Parameter DC output high measurement level (for IV curve linearity) DC output mid measurement level (for IV curve linearity) DC output low measurement level (for IV curve linearity) AC output high measurement level (for output SR) AC output low measurement level DDR3-1066, 1333 0.8 x VDDQ 0.5 x VDDQ 0.2 x VDDQ VTT + 0.1 x VDDQ Unit V V V V 1 Notes VTT - 0.1 x VDDQ V 1 (for output SR) 1. The swing of ± 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ / 2. Rev. 0.1 / Apr 2009 25 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 6.4.2 Differential DC & AC Output Levels Below table shows the output levels used for measurements of differential signals. Symbol VOHdiff (AC) VOLdiff (AC) Parameter AC differential output high measurement level (for output SR) DDR3-1066, 1333 + 0.2 x VDDQ Unit V Notes 1 AC differential output low - 0.2 x VDDQ V 1 measurement level (for output SR) 1. The swing of °æ 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swingwith a driver impedance of 40ߟ and an effective test load of 25ߟ to VTT = VDDQ/2 at each of the differential output 6.4.3 Single Ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below Table and Figure 6.4.3. Measured From VOL(AC) VOH(AC) To VOH(AC) VOL(AC) Description Single ended output slew rate for rising edge Single ended output slew rate for falling edge Note: Defined by VOH(AC)-VOL(AC) DeltaTRse VOH(AC)-VOL(AC) DeltaTFse Output slew rate is verified by design and characterization, and may not be subject to production test. D e lt a T R s e Single Ended Output Voltage(l.e.DQ) vO H (A C ) V∏ vO L(A C ) D e lt a T F s e < Figure 6.4.3: Single Ended Output Slew Rate Definition > Rev. 0.1 / Apr 2009 26 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Parameter Single-ended Output Slew Rate Symbol SRQse DDR3-1066 Min 2.5 Max 5 2.5 DDR3-1333 Min Max 5 Units V/ns *** Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) For Ron = RZQ/7 setting < Table 6.4.3: Output Slew Rate (single-ended) > 6.4.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below Table and Figure 6.4.4 Measured From VOLdiff(AC) VOHdiff(AC) To VOHdiff(AC) VOLdiff(AC) Description Differential output slew rate for rising edge Differential output slew rate for falling edge Defined by VOHdiff(AC)-VOLdiff(AC) DeltaTRdiff VOHdiff(AC)-VOLdiff(AC) DeltaTFdiff Note: Output slew rate is verified by design and characterization, and may not be subject to production test. Differential Output Voltage(i.e. DQS-DQS) D e lta T R d iff v O H d iff(A C ) O v O L d iff(A C ) D e lta T F d iff < Figure 6.4.4: Differential Output Slew Rate Definition > Rev. 0.1 / Apr 2009 27 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C DDR3-1066 Parameter Differential Output Slew Rate Symbol Min SRQdiff 5 DDR3-1333 Min 5 Max 10 Max 10 Units V/ns ***Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) diff: Differential Signals For Ron = RZQ/7 setting < Table 6.6.4: Differential Output Slew Rate > 6.5 Overshoot and Undershoot Specifications 6.5.1 Address and Control Overshoot and Undershoot Specifications Description Maximum peak amplitude allowed for overshoot area (see Figure) Maximum peak amplitude allowed for undershoot area (see Figure) Maximum overshoot area above VDD (See Figure) Maximum undershoot area below VSS (See Figure) Specification DDR3-1066 0.4V 0.4V 0.5 V-ns 0.5 V-ns DDR3-1333 0.4V 0.4V 0.4 V-ns 0.4 V-ns < Table 6.5.1: AC Overshoot/Undershoot Specification for Address and Control Pins > < Figure 6.5.1: Address and Control Overshoot and Undershoot Definition > Maximum Amplitude Overshoot Area Volts (V) VDD VSS Undershoot Area Maximum Amplitude Time (ns) Rev. 0.1 / Apr 2009 28 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 6.5.2 Clock,Data,Strobe and Mask Overshoot and Undershoot Specifications Specification DDR3-1066 0.4V 0.4V 0.19 V-ns 0.19 V-ns DDR3-1333 0.4V 0.4V 0.15 V-ns 0.15 V-ns Description Maximum peak amplitude allowed for overshoot area (see Figure) Maximum peak amplitude allowed for undershoot area (see Figure) Maximum overshoot area above VDDQ (See Figure) Maximum undershoot area below VSSQ (See Figure) < Table 6.5.2: AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask > M a x im u m A m p litu d e O v e rsh o o t A re a V o lts (V ) VDDQ VSSQ U n d e rsh o o t A re a M a x im u m A m p litu d e T im e (n s) C lo c k , D a ta S tro b e a n d M a sk O v e rsh o o t a n d U n d e rsh o o t D e fin itio n < Figure 6.5.2: Clock, Data, Strobe and Mask Overshoot and Undershoot Definition > Rev. 0.1 / Apr 2009 29 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 6.6 Pin Capacitance Parameter Input/output capacitance (DQ, DM, DQS, DQS#, TDQS, TDQS#) Input capacitance, CK and CK# Input capacitance delta CK and CK# Input capacitance (All other input-only pins) Input capacitance delta, DQS and DQS# Input capacitance delta (All CTRL input-only pins) Input capacitance delta (All ADD/CMD input-only pins) Input/output capacitance delta (DQ, DM, DQS, DQS#) Notes: 1. TDQS/TDQS# are not necessarily input function but since TDQS is sharing DM pin and the parasitic characterization of TDQS/TDQS# should be close as much as possible, Cio&Cdio requirement is applied (recommend deleting note or changing to “Although the DM, TDQS and TDQS# pins have different functions, the loading matches DQ and DQS.”) 2. This parameter is not subject to production test. It is verified by design and characterization. Input capacitance is measured according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)”) with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE, RESET# and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK#. 5. The minimum CCK will be equal to the minimum CI. 6. Input only pins include: ODT, CS, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#. 7. CTRL pins defined as ODT, CS and CKE. 8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK#)) 9. ADD pins defined as A0-A15, BA0-BA2 and CMD pins are defined as RAS#, CAS# and WE#. 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#)) 11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS#)) 12. Absolute value of CIO(DQS) - CIO(DQS#) Symbol CIO CCK CDCK CI CDDQS CDI_CTRL CDI_ADD_C MD DDR3-1066 Min 1.5 TBD 0 TBD 0 -0.5 -0.5 -0.5 Max 3.0 1.6 0.15 1.5 0.20 0.3 0.5 0.3 DDR3-1333 Min 1.5 TBD TBD TBD TBD TBD TBD TBD Max 2.5 TBD TBD TBD TBD TBD TBD TBD Units Notes pF pF pF pF pF pF pF pF 1,2,3 2,3,5 2,3,4 2,3,6 2,3,12 2,3,7,8 2,3,9,1 0 2,3,11 CDIO 6.7 IDD Specifications(TCASE: 0 to 95oC) Rev. 0.1 / Apr 2009 30 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 512MB, 64M x 64 U-DIMM: HMT164U6BFR6C Symbol DDR3 1066 DDR3 1333 Unit IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 400 500 200 200 40 140 200 280 140 780 780 720 40 48 48 840 420 520 220 220 40 140 220 300 160 860 860 720 40 48 48 1040 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA 1GB, 128M x 64 U-DIMM: HMT112U6BFR8C Symbol DDR3 1066 DDR3 1333 Unit IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 600 680 400 400 80 200 400 480 240 960 960 1360 80 96 96 1280 640 760 440 440 80 240 440 520 240 1080 1080 1360 80 96 96 1600 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Rev. 0.1 / Apr 2009 31 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 1GB, 128M x 72 U-DIMM: HMT112U7BFR8C Symbol DDR3 1066 DDR3 1333 Unit IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 675 765 450 450 90 225 450 540 270 1080 1080 1530 90 108 108 1440 720 855 495 495 90 270 495 585 270 1215 1215 1530 90 108 108 1800 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA 2GB, 256M x 64 U-DIMM: HMT125U6BFR8C Symbol DDR3 1066 DDR3 1333 Unit IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 1000 1080 800 800 160 400 800 960 480 1360 1360 1760 160 192 192 1680 1080 1200 880 880 160 480 880 1040 480 1520 1520 1800 160 192 192 2040 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Rev. 0.1 / Apr 2009 32 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 2GB, 256M x 72 U-DIMM: HMT125U7BFR8C Symbol DDR3 1066 DDR3 1333 Unit IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 1125 1215 900 900 180 450 900 1080 540 1530 1530 1980 180 216 216 1890 1215 1350 990 990 180 540 990 1170 540 1710 1710 2025 180 216 216 2295 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Rev. 0.1 / Apr 2009 33 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 6.7 IDD Measurement Conditionss In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 1. shows the setup and test load for IDD and IDDQ measurements. • IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. • For IDD and IDDQ measurements, the following definitions apply: • • • • • • • ”0” and “LOW” is defined as VIN = VIHAC(max). “FLOATING” is defined as inputs are VREF - VDD/2. Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1 on Page 26. Basic IDD and IDDQ Measurement Conditions are described in Table 2 on page 26. Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 on page 30 through Table 10 on page 36. IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW} Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH} • • • Rev. 0.1 / Apr 2009 34 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C IDD IDDQ (optional) VDD RESET CK/CK CKE CS RAS, CAS, WE A, BA ODT ZQ VDDQ DDR3 SDRAM DQS, DQS DQ, DM, TDQS, TDQS RTT = 25 Ohm VDDQ/2 VSS VSSQ Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above] Application specific memory channel environment IDDQ Test Load Channel IO Power Simulation IDDQ Simulation IDDQ Simulation Correction Channel IO Power Number Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement Rev. 0.1 / Apr 2009 35 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns Symbol tCK CL nRCD nRC nRAS nRP nFAW nRRD nRFC -512Mb nRFC-1 Gb nRFC- 2 Gb nRFC- 4 Gb nRFC- 8 Gb x4/x8 x16 x4/x8 x16 DDR3-800 5-5-5 2.5 5 5 20 15 5 16 20 4 4 36 44 64 120 140 DDR3-1066 7-7-7 1.875 7 7 27 20 7 20 27 4 6 48 59 86 160 187 Unit ns nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK Table 2 -Basic IDD and IDDQ Measurement Conditions Symbol Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High IDD0 between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3 on page 30; Data IO: FLOATING; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3 on page 30); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3 on page 30 Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: IDD1 High between ACT, RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4 on page 31; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4 on page 31); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4 page 31 Description Rev. 0.1 / Apr 2009 36 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2N Address, Bank Address Inputs: partially toggling according to Table 5 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5 on page 32 Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2NT Address, Bank Address Inputs: partially toggling according to Table 6 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6 on page 32; Pattern Details: see Table 6 on page 32 IDDQ2NT Precharge Standby ODT IDDQ Current (optional Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current ) Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2P0 Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc) Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2P1 Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 IDDQ4R Operating Burst Read IDDQ Current (optional Same definition like for IDD4R, however measuring IDDQ current instead of IDD current ) Rev. 0.1 / Apr 2009 37 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD3N Address, Bank Address Inputs: partially toggling according to Table 5 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5 on page 32 Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 7 on page 33; Data IO: IDD4R seamless read data burst with different data between one burst and the next one according to Table 7 on page 33; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7 on page 33); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7 on page 33 Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 8 on page 34; Data IO: IDD4W seamless read data burst with different data between one burst and the next one according to Table 8 on page 34; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8 on page 34); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8 on page 34 Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between IDD5B REF; Command, Address, Bank Address Inputs: partially toggling according to Table 9 on page 35; Data IO: FLOATING; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9 on page 35); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9 on page 35 Rev. 0.1 / Apr 2009 38 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Self-Refresh Current: Normal Temperature Range TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); IDD6 CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Self-Refresh Current: Extended Temperature Range (optional)f) TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): ExtendIDD6ET ede); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Auto Self-Refresh Current (optional)f) TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Enabledd);Self-Refresh Temperature Range (SRT): Normale); IDD6TC CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Auto SelfRefresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1 on page 26; BL: 8a); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially togIDD7 gling according to Table 10 on page 36; Data IO: read data burst with different data between one burst and the next one according to Table 10 on page 36; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10 on page 36; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 10 on page 36 a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device Rev. 0.1 / Apr 2009 39 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table 3 - IDD0 Measurement-Loop Patterna) Command Sub-Loop Cycle Number BA[2:0] A[15:11] CK, CK A[9:7] A[6:3] A[2:0] 0 0 0 0 0 0 A[10] ODT RAS CKE CAS WE CS Datab) 0 0 1,2 3,4 ... nRAS ... 1*nRC+0 ACT D, D D, D PRE ACT PRE 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F - repeat pattern 1...4 until nRAS - 1, truncate if necessary repeat pattern 1...4 until nRC - 1, truncate if necessary repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary repeat pattern 1...4 until 2*nRC - 1, truncate if necessary repeat Sub-Loop 0, use BA[2:0] = 1 instead repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead Static High toggling ... 1*nRC+nRAS ... 1 2 3 4 5 6 7 2*nRC 4*nRC 6*nRC 8*nRC 10*nRC 12*nRC 14*nRC a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.1 / Apr 2009 40 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table 4 - IDD1 Measurement-Loop Patterna) Command Sub-Loop Cycle Number BA[2:0] A[15:11] CK, CK A[9:7] A[6:3] A[2:0] 0 0 0 A[10] ODT RAS CKE CAS WE CS Datab) 0 0 1,2 3,4 ... nRCD ... nRAS ... 1*nRC+0 1*nRC+1,2 ACT D, D D, D 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 00 00 00 0 0 0 0 0 0 0 0 0 0000000 0 0011001 1 - repeat pattern 1...4 until nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE ACT D, D D, D 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 00 00 00 00 0 0 0 0 0 0 0 0 0 F F F 0 0 0 0 repeat pattern 1...4 until nRC - 1, truncate if necessary Static High toggling 1*nRC+3,4 ... 1*nRC+nRCD ... 1*nRC+nRAS ... 1 2 3 4 5 6 7 2*nRC 4*nRC 6*nRC 8*nRC 10*nRC 12*nRC 14*nRC repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 F 0 repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 F 0 repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary repeat Sub-Loop 0, use BA[2:0] = 1 instead repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.1 / Apr 2009 41 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table 5 - IDD2N and IDD3N Measurement-Loop Patterna) Command Sub-Loop Cycle Number BA[2:0] A[15:11] CK, CK A[9:7] A[6:3] A[2:0] 0 0 0 0 A[10] ODT RAS CKE CAS WE CS Datab) 0 0 1 2 3 D D D D 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F - Static High toggling 1 2 3 4 5 6 7 4-7 8-11 12-15 16-19 20-23 24-17 28-31 repeat Sub-Loop 0, use BA[2:0] = 1 instead repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna) Command Sub-Loop Cycle Number BA[2:0] A[15:11] CK, CK A[9:7] A[6:3] A[2:0] 0 0 0 0 A[10] ODT RAS CKE CAS WE CS Datab) 0 0 1 2 3 D D D D 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F 0000000 0 Static High toggling 1 2 3 4 5 6 7 4-7 8-11 12-15 16-19 20-23 24-17 28-31 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.1 / Apr 2009 42 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table 7 - IDD4R and IDDQ24RMeasurement-Loop Patterna) Command Sub-Loop Cycle Number BA[2:0] A[15:11] CK, CK A[9:7] A[6:3] A[2:0] 0 0 0 0 0 0 A[10] ODT RAS CKE CAS WE CS Datab) 0 0 1 2,3 4 RD D D,D RD D D,D 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F 000000 00 001100 11 - Static High toggling 5 6,7 1 2 3 4 5 6 7 8-15 16-23 24-31 32-39 40-47 48-55 56-63 repeat Sub-Loop 0, but BA[2:0] = 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 0, but BA[2:0] = 3 repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 0, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.1 / Apr 2009 43 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table 8 - IDD4W Measurement-Loop Patterna) Command Sub-Loop Cycle Number BA[2:0] A[15:11] CK, CK A[9:7] A[6:3] A[2:0] 0 0 0 0 0 0 A[10] ODT RAS CKE CAS WE CS Datab) 0 0 1 2,3 4 WR D D,D WR D D,D 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F 000000 00 001100 11 - Static High toggling 5 6,7 1 2 3 4 5 6 7 8-15 16-23 24-31 32-39 40-47 48-55 56-63 repeat Sub-Loop 0, but BA[2:0] = 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 0, but BA[2:0] = 3 repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 0, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.1 / Apr 2009 44 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table 9 - IDD5B Measurement-Loop Patterna) Command Sub-Loop Cycle Number BA[2:0] A[15:11] CK, CK A[9:7] A[6:3] A[2:0] 0 0 0 A[10] ODT RAS CKE CAS WE CS Datab) 0 1 0 1.2 3,4 5...8 REF D, D D, D 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 F - repeat cycles 1...4, but BA[2:0] = 1 repeat cycles 1...4, but BA[2:0] = 2 repeat cycles 1...4, but BA[2:0] = 3 repeat cycles 1...4, but BA[2:0] = 4 repeat cycles 1...4, but BA[2:0] = 5 repeat cycles 1...4, but BA[2:0] = 6 repeat cycles 1...4, but BA[2:0] = 7 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. Static High toggling 9...12 13...16 17...20 21...24 25...28 29...32 2 33...nRFC-1 a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.1 / Apr 2009 45 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C Table 10 - IDD7 Measurement-Loop Patterna) ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9 Command Sub-Loop Cycle Number BA[2:0] A[15:11] CK, CK A[9:7] A[6:3] A[2:0] A[10] RAS ODT CKE CAS WE CS Datab) 0 1 2 3 4 5 6 7 8 Static High toggling 9 10 11 12 13 14 15 16 17 18 14 ACT 0 0 1 1 0 0 00 0 0 0 0 RDA 0 1 0 1 0 0 00 1 0 0 0 00000000 D 1 0 0 0 0 0 00 0 0 0 0 repeat above D Command until nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 F 0 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011 D 1 0 0 0 0 1 00 0 0 F 0 repeat above D Command until 2* nRRD - 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 F 0 4*nRRD ... Assert and repeat above D Command until nFAW - 1, if necessary nFAW repeat Sub-Loop 0, but BA[2:0] = 4 nFAW+nRRD repeat Sub-Loop 1, but BA[2:0] = 5 nFAW+2*nRRD repeat Sub-Loop 0, but BA[2:0] = 6 nFAW+3*nRRD repeat Sub-Loop 1, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 F 0 nFAW+4*nRRD ... Assert and repeat above D Command until 2* nFAW - 1, if necessary 2*nFAW+0 ACT 0 0 1 1 0 0 00 0 0 F 0 2*nFAW+1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011 D 1 0 0 0 0 0 00 0 0 F 0 2&nFAW+2 Repeat above D Command until 2* nFAW + nRRD - 1 2*nFAW+nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 2*nFAW+nRRD+1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000 D 1 0 0 0 0 1 00 0 0 0 0 2&nFAW+nRRD+ 2 Repeat above D Command until 2* nFAW + 2* nRRD - 1 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3 D 1 0 0 0 0 0 00 0 0 0 0 2*nFAW+4*nRRD Assert and repeat above D Command until 3* nFAW - 1, if necessary 3*nFAW repeat Sub-Loop 10, but BA[2:0] = 4 3*nFAW+nRRD repeat Sub-Loop 11, but BA[2:0] = 5 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7 D 1 0 0 0 0 0 00 0 0 0 0 3*nFAW+4*nRRD Assert and repeat above D Command until 4* nFAW - 1, if necessary 1 2 ... nRRD nRRD+1 nRRD+2 ... 2*nRRD 3*nRRD 0 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.1 / Apr 2009 46 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 7. Electrical Characteristics and AC Timing 7.1 Refresh Parameters by Device Density Parameter REF command to ACT or REF command time Average periodic refresh interval tREFI Symbol tRFC 512Mb 1Gb 2Gb 4Gb 8Gb Units 90 110 160 300 350 ns 0 ×C < TCASE < 85 ×C 85 ×C < TCASE < 95 ×C 7.8 3.9 7.8 3.9 7.8 3.9 7.8 3.9 7.8 3.9 us us Rev. 0.1 / Apr 2009 47 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C 7.2 DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin DDR3 1066 Speed Bin CL - nRCD - nRP Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 5 CWL = 5 CWL = 6 CWL = 5 CWL = 6 CWL = 5 CWL = 6 CWL = 5 CWL = 6 Symbol min 13.125 13.125 13.125 50.625 37.5 Reserved Reserved 2.5 Reserved Reserved 1.875 Reserved 1.875 6, 7, 8 5, 6 < 2.5 < 2.5 3.3 DDR3-1066F 7-7-7 max 20 — — — 9 * tREFI ns ns ns ns ns ns ns ns ns ns ns ns ns 1)2)3)4)6) 4) 1)2)3)6) 1)2)3)4) 4) 1)2)3)4) 4) 1)2)3) Unit Note tAA tRCD tRP tRC tRAS tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CL = 6 CL = 7 CL = 8 Supported CL Settings Supported CWL Settings nCK nCK Rev. 0.1 / Apr 2009 48 HMT164U6BFR6C HMT112U6(7)BFR8C HMT125U6(7)BFR8C DDR3 1333 Speed Bin CL - nRCD - nRP Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 5 CWL = 5 CWL = 6, 7 CWL = 5 CL = 6 CWL = 6 CWL = 7 CWL = 5 CL = 7 CWL = 6 CWL = 7 CWL = 5 CL = 8 CWL = 6 CWL = 7 CL = 9 CWL = 5, 6 CWL = 7 CWL = 5, 6 CL = 10 CWL = 7 Symbol min 13.5 13.5 13.5 49.5 36 DDR3-1333H 9-9-9 max 20 — — — 9 * tREFI Reserved Reserved 2.5 Reserved Reserved Reserved Reserved Reserved Reserved 1.875 Reserved Reserved 1.5 Reserved 1.5 (Optional) 6, 8, 9 5, 6, 7
HMT112U7BFR8C-G7 价格&库存

很抱歉,暂时无法提供与“HMT112U7BFR8C-G7”相匹配的价格&库存,您可以联系我们找货

免费人工找货