0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HMT125S6TFR8A-H9

HMT125S6TFR8A-H9

  • 厂商:

    HYNIX(海力士)

  • 封装:

  • 描述:

    HMT125S6TFR8A-H9 - 204pin DDR3 SDRAM SODIMM - Hynix Semiconductor

  • 数据手册
  • 价格&库存
HMT125S6TFR8A-H9 数据手册
204pin DDR3 SDRAM SODIMM DDR3L SDRAM Unbuffered SODIMMs Based on 1Gb T-die HMT112S6TFR8A HMT125S6TFR8A *Hynix Semiconductor reserves the right to change products or specifications without notice. Rev. 0.1 / Feb. 2010 1 Revision History Revision No. 0.1 History Initial Release Draft Date Feb.2010 Remark Preliminary Rev. 0.1 / Feb. 2010 2 Description Hynix Unbuffered DDR3L SDRAM DIMMs (Unbuffered Double Data Rate Synchronous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules that use Hynix DDR3L SDRAM devices. These Unbuffered DDR3L SDRAM DIMMs are intended for use as main memory when installed in systems such as mobile personal computers. Features • Power Supply: VDD=1.35V (1.283V to 1.45V) • VDDQ = 1.35V (1.283V to 1.45V) • VDDSPD=3.0V to 3.6V • Functionality and operations comply with the DDR3 SDRAM datasheet • 8 internal banks • Data transfer rates: PC3-10600, PC3-8500, or PC3-6400 • Bi-directional Differential Data Strobe • 8 bit pre-fetch • Burst Length (BL) switch on-the-fly: BL 8 or BC (Burst Chop) 4 • On Die Termination (ODT) supported • RoHS compliant * This product is in compliance with the RoHS directive. Ordering Information Part Number HMT112S6TFR8A-G7/H9 HMT125S6TFR8A-G7/H9 Density 1GB 2GB Organization 128Mx64 256Mx64 Component Composition 128Mx8(H5TC1G83TFR)*8 128Mx8(H5TC1G83TFR)*16 # of ranks 1 2 Rev. 0.1 / Feb. 2010 3 Key Parameters MT/s DDR3-1066 DDR3-1333 Grade -G7 -H9 tCK (ns) 1.875 1.5 CAS Latency (tCK) 7 9 tRCD (ns) 13.125 13.5 tRP (ns) 13.125 13.5 tRAS (ns) 37.5 36 tRC (ns) 50.625 49.5 CL-tRCD-tRP 7-7-7 9-9-9 Speed Grade Frequency [MHz] Grade CL6 -G7 -H9 800 800 CL7 1066 1066 CL8 1066 1066 1333 1333 CL9 CL10 Remark Address Table 1GB(1Rx8) Refresh Method Row Address Column Address Bank Address Page Size 8K/64ms A0-A13 A0-A9 BA0-BA2 1KB 2GB(2Rx8) 8K/64ms A0-A13 A0-A9 BA0-BA2 1KB Rev. 0.1 / Feb. 2010 4 Pin Descriptions Pin Name CK[1:0] CK[1:0] CKE[1:0] RAS CAS WE S[1:0] A[9:0],A11, A[15:13] A10/AP A12/BC BA[2:0] ODT[1:0] SCL SDA SA[1:0] Description Clock Input, positive line Clock Input, negative line Clock Enables Row Address Strobe Column Address Strobe Write Enable Chip Selects Address Inputs Address Input/Autoprecharge Address Input/Burst chop SDRAM Bank Addresses On Die Termination Inputs Serial Presence Detect (SPD) Clock Input SPD Data Input/Output SPD Address Inputs Num ber 2 2 2 1 1 1 2 14 1 1 3 2 1 1 2 VREFDQ VREFCA VTT VDDSPD NC Input/Output Reference Termination Voltage SPD Power Reserved for future use 1 1 2 1 2 Total: 204 Pin Name DQ[63:0] DM[7:0] DQS[7:0] DQS[7:0] EVENT TEST RESET VDD VSS Description Data Input/Output Data Masks Data strobes Data strobes, negative line Temperature event pin Logic Analyzer specific test pin (No connect on SODIMM) Reset Pin Core and I/O Power Ground Num ber 64 8 8 8 1 1 1 18 52 Rev. 0.1 / Feb. 2010 5 Input/Output Functional Descriptions Symbol CK0/CK0 CK1/CK1 Type Polarity Function The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock. Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refresh mode. Enables the associated DDR3 SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is selected by S1. Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR3 SDRAM mode register. When sampled at the cross point of the rising edge of CK, signals CAS, RAS, and WE define the operation to be executed by the SDRAM. Reference voltage for SSTL15 inputs. IN Cross Point CKE[1:0] IN Active High S[1:0] IN Active Low ODT[1:0] RAS, CAS, WE VREFDQ VREFCA BA[2:0] IN IN Supply IN Active High Active Low — Selects which SDRAM internal bank of eight is activated. During a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of CK and falling edge of CK. During a Read of Write command cycle, defines the column address when sampled at the cross point of the rising edge of CK and falling edge of CK. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high autoprecharge is selected and BA0-BAn defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to precharge. A12(BC) is samples during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop: LOW, burst chopped). Data Input/Output pins. The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect. Power supplies for core, I/O, Serial Presence Detect, and ground for the module. A[9:0], A10/AP, A11, A12/BC A[15:13] IN — DQ[63:0] DM[7:0] VDD, VDDSPD VSS I/O IN — Active High Supply DQS[7:0], DQS[7:0] I/O The data strobes, associated with one data byte, sourced with data transfers. In Write mode, the data strobe is sourced by the controller and is centered in the data window. Cross Point In Read mode, the data strobe is sourced by the DDR3 SDRAMs and is sent at the leading edge of the data window. DQS signals are complements, and timing is relative to the crosspoint of respective DQS and DQS. — These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. SA[1:0] IN Rev. 0.1 / Feb. 2010 6 Symbol SDA Type I/O Polarity — Function This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to VDDSPD on the system planar to act as a pullup. This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to VDDSPD on the system planar to act as a pullup. SCL IN OUT (open drain) Supply IN — EVENT This signal indicates that a thermal event has been detected in the thermal sensing device.The system should guarantee the electrical level requirement is met for the Active Low EVENT pin on TS/SPD part. No pull-up resister is provided on DIMM. Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation. The RESET pin is connected to the RESET pin on the register and to the RESET pin on the DRAM. Used by memory bus analysis tools (unused (NC) on memory DIMMs) VDDSPD RESET TEST Rev. 0.1 / Feb. 2010 7 Pin Assignments Pin # 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 Front Side VREFDQ VSS DQ0 DQ1 VSS DM0 VSS DQ2 DQ3 VSS DQ8 DQ9 VSS DQS1 DQS1 VSS DQ10 DQ11 VSS DQ16 DQ17 VSS DQS2 DQS2 VSS DQ18 Pin # 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 Back Side VSS DQ4 DQ5 VSS DQS0 DQS0 VSS DQ6 DQ7 VSS DQ12 DQ13 VSS DM1 RESET VSS DQ14 DQ15 VSS DQ20 DQ21 VSS DM2 VSS DQ22 DQ23 Pin # 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 Front Side DQ19 VSS DQ24 DQ25 VSS DM3 VSS DQ26 DQ27 VSS CKE0 VDD NC BA2 VDD Pin # 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 Back Side VSS DQ28 DQ29 VSS DQS3 DQS3 VSS DQ30 DQ31 VSS CKE1 VDD A152 A142 VDD A11 A7 VDD A6 A4 VDD A2 A0 VDD CK1 CK1 Pin # 105 Front Side VDD Pin # 106 108 110 112 114 116 118 120 122 124 Back Side VDD BA1 RAS VDD S0 ODT0 VDD ODT1 NC VDD Pin # 157 159 161 163 165 167 169 171 173 175 Front Side DQ42 DQ43 VSS DQ48 DQ49 VSS DQS6 DQS6 VSS DQ50 DQ51 VSS DQ56 DQ57 VSS DM7 VSS DQ58 DQ59 VSS SA0 Pin # 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 Back Side DQ46 DQ47 VSS DQ52 DQ53 VSS DM6 VSS DQ54 DQ55 VSS DQ60 DQ61 VSS DQS7 DQS7 VSS DQ62 DQ63 VSS EVENT SDA SCL VTT 107 A10/AP 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 BA0 VDD WE CAS VDD A132 S1 VDD TEST VSS DQ32 DQ33 VSS DQS4 DQS4 VSS DQ34 DQ35 VSS DQ40 DQ41 VSS DM5 VSS 126 VREFCA 177 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 VSS DQ36 DQ37 VSS DM4 VSS DQ38 DQ39 VSS DQ44 DQ45 VSS DQS5 DQS5 VSS 179 181 183 185 187 189 191 193 195 197 83 A12/BC 85 87 89 91 93 95 97 99 101 103 A9 VDD A8 A5 VDD A3 A1 VDD CK0 CK0 199 VDDSPD 200 201 203 SA1 VTT 202 204 NC = No Connect; RFU = Reserved Future Use 1. TEST (pin 125) is reserved for bus analysis probes and is NC on normal memory modules. 2. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor. Rev. 0.1 / Feb. 2010 8 Functional Block Diagram 1GB, 128Mx64 Module(1Rank of x8) S0 CKE0 ODT0 RAS CAS CK0 CK0 WE DQS0 DQS0 DM0 DQ[0:7] 240ohm +/-1% DQS1 DQS1 DM1 DQ[8:15] 240ohm +/-1% DQS DQS DM DQ [0:7] ZQ D0 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ SCL SA0 SA1 SCL A0 Temp Sensor (with SPD) A1 A2 EVENT EVENT SDA The SPD may be integrated with the Temp Sensor or may be a separate component D4 A[O:N]/BA[O:N] ODT ODT CAS RAS RAS CK CKE CAS CS CS CK CKE WE CK WE CK SCL SA0 SA1 SCL A0 A1 A2 (SPD) WP SDA Vtt Vtt SPD/TS D0–D7 D0–D7 D0–D7 D0–D7, SPD, Temp sensor D0–D7 D0–D7 Terminated near card edge NC NC NC Temp Sensor D0-D7 DQS2 DQS2 DM2 Q[16:23] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% D1 A[O:N]/BA[O:N] DQS3 DQS3 DM3 DQ[24:31] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% VDDSPD VREFCA VREFDQ VDD VSS CK0 CK0 CK1 CK1 S1 ODT1 CKE1 EVENT RESET D5 A[O:N]/BA[O:N] V1 ODT CS DQS4 DQS4 DM4 Q[32:39] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% CS D2 A[O:N]/BA[O:N] DQS5 DQS5 DM5 DQ[40:47] LDQS LDQS LDM DQ [0:7] ZQ 240ohm +/-1% D6 A[O:N]/BA[O:N] ODT CAS RAS RAS CK CKE CAS CK CKE WE CK WE CK D4 D5 D6 D7 ODT CS CS ODT CAS RAS RAS CK CKE CAS CK CKE WE CK WE CK V1 D0 D1 D2 D3 DQS3 DQS3 DM3 Q[48:55] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% D3 A[O:N]/BA[O:N] DQS7 DQS7 DM7 DQ[56:63] LDQS LDQS LDM DQ [0:7] ZQ 240ohm +/-1% D7 A[O:N]/BA[O:N] Address and Control Lines NOTES 1. DQ wiring may differ from that shown however, DQ, DM, DQS, and DQS relationships are maintained as shown Rank 0 ODT CS Rev. 0.1 / Feb. 2010 CS ODT CAS RAS RAS CK CKE CAS CK CKE WE CK WE CK Vtt V2 V3 V4 Vtt V2 V3 V4 9 2GB, 256Mx64 Module(2Rank of x8) A[O:N]/BA[O:N] Cterm ODT0 CK0 CKE0 VDD Vtt Cterm VDD Vtt CKE1 ODT1 Vtt CK1 RAS CAS CK1 S1 DQS3 DQS3 DM3 DQ[24:31] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% S0 CK0 WE D11 A[O:N]/BA[O:N] LDQS LDQS LDM DQ [0:7] ZQ 240ohm +/-1% D3 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% D4 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% D12 A[O:N]/BA[O:N] DQS4 DQS4 DM4 DQ[32:39] ODT ODT ODT CS CS CS DQS1 DQS1 DM1 DQ[8:15] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% D1 A[O:N]/BA[O:N] LDQS LDQS LDM DQ [0:7] ZQ 240ohm +/-1% D9 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% CS D14 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% ODT CAS CAS CAS RAS RAS RAS RAS CK CKE CK CKE CK CKE CAS CK CKE WE WE WE CK CK CK WE CK D6 A[O:N]/BA[O:N] DQS6 DQS6 DM6 DQ[48:55] ODT ODT ODT RAS RAS CS CS DQS0 DQS0 DM0 DQ[0:7] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% CS D0 A[O:N]/BA[O:N] LDQS LDQS LDM DQ [0:7] ZQ 240ohm +/-1% D8 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% CS D15 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% ODT CAS RAS RAS CK CKE CAS CAS CK CKE CAS CK CKE CK CKE WE WE WE CK WE CK CK CK D7 A[O:N]/BA[O:N] DQS7 DQS7 DM7 DQ[56:43] ODT ODT CAS CAS ODT CS DQS2 DQS2 DM2 DQ[6:23] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% D2 A[O:N]/BA[O:N] LDQS LDQS LDM DQ [0:7] ZQ 240ohm +/-1% D10 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% CS D13 A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] ZQ 240ohm +/-1% DQS5 DQS5 DM5 DQ[40:47] D5 A[O:N]/BA[O:N] ODT ODT ODT RAS RAS CK CKE CK CKE CS CS The SPD may be integrated with the Temp Sensor or may be a separate component SCL SA0 SA1 SCL A0 A1 A2 D9 CS CS Vtt ODT CAS RAS RAS CK CKE CAS CAS CAS CK CKE WE WE WE CK WE CK CK CK ODT RAS RAS CK CKE CK CKE CAS RAS RAS CK CKE CAS CK CKE WE WE WE CK WE CK CK CK CS CS Vtt SPD/TS D0–D15 D0–D15 D0–D15 D0–D15, SPD, Temp sensor D0–D7 D8–D15 D0–D7 D8–D15 D0-D7 D8-D15 D0–D7 D8–D15 D0–D7 D8–D15 Temp Sensor D0-D15 V2 D3 V1 V9 D12 V8 VDDSPD D6 (SPD) WP VREFCA VREFDQ VDD VSS CK0 CK1 CK0 CK1 SDA V3 D8 V7 V4 V5 D10 D5 V6 D7 SCL SA0 SA1 SCL A0 Temp Sensor (with SPD) A1 A2 EVENT EVENT SDA D0 V4 D2 V5 D13 V6 V7 CKE0 D15 CKE1 S0 S1 ODT0 ODT1 EVENT RESET NOTES 1. DQ wiring may differ from that shown however, DQ, DM, DQS, and DQS relationships are maintained as shown V3 V1 V2 D11 Vtt V1 V9 V8 D4 Rank 0 Rank 1 D1 D14 Rev. 0.1 / Feb. 2010 10 Absolute Maximum Ratings Absolute Maximum DC Ratings Absolute Maximum DC Ratings Symbol VDD VDDQ Parameter Voltage on VDD pin relative to Vss Voltage on VDDQ pin relative to Vss Rating - 0.4 V ~ 1.975 V - 0.4 V ~ 1.975 V - 0.4 V ~ 1.975 V -55 to +100 Units V V V o Notes 1, 1, 1 1, 2 VIN, VOUT Voltage on any pin relative to Vss TSTG Notes: Storage Temperature C 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. DRAM Component Operating Temperature Range Temperature Range Symbol TOPER Notes: 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions. 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability b. Hynix DDR3L SDRAMs support Auto Self-Refresh and Extended Temperature Range and please refer to Hynix component datasheet and/or the DIMM SPD for tREFI requirement in the Extended Temperature Range. Parameter Normal Operating Temperature Range Extended Temperature Range Rating 0 to 85 85 to 95 Units oC oC Notes 1,2 1,3 Rev. 0.1 / Feb. 2010 11 AC & DC Operating Conditions Recommended DC Operating Conditions Recommended DC Operating Conditions - DDR3L (1.35V) operation Symbol VDD VDDQ Notes: 1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a very long period of time (e.g., 1 sec). 2. If maximum limit is exceeded, input levels shall be governed by DDR3L specifications. 3. Under these supply voltages, the device operates to this DDR3L specification. 4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3 operation (see Figure 0). Parameter Supply Voltage Supply Voltage for Output Rating Min. 1.283 1.283 Typ. 1.35 1.35 Max. 1.45 1.45 Units V V Notes 1,2,3,4 1,2,3,4 Recommended DC Operating Conditions - - DDR3 (1.5V) operation Symbol VDD VDDQ Notes: 1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications. 2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as defined for this device. 3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3L operation (see Figure 0). Parameter Supply Voltage Supply Voltage for Output Rating Min. 1.425 1.425 Typ. 1.5 1.5 Max. 1.575 1.575 Units V V Notes 1,2,3 1,2,3 Rev. 0.1 / Feb. 2010 12 Ta CK,CK# Tb Tc Td Te Tf Tg Th Ti Tj Tk VDD, VDDQ (DDR3) VDD, VDDQ (DDR3L) Tmin = 10ns Tmin = 10ns tCKSRX Tmin = 200us T = 500us RESET# CKE Tmin = 10ns tDLLK tIS tXPR MRS tMRD MRS tMRD MRS tMRD MRS tMOD ZQCL tZQinit 1) VALID COMMAND READ 1) VALID BA READ tIS MR2 MR3 MR1 MR0 VALID tIS ODT READ Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW VALID RTT NOTE 1: From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands. TIME BREAK DON’T CARE Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3 Rev. 0.1 / Feb. 2010 13 AC & DC Input Measurement Levels AC and DC Logic Input Levels for Single-Ended Signals AC and DC Input Levels for Single-Ended Command and Address Signals Single Ended AC and DC Input Levels for Command and Address DDR3L-800/1066/1333 Symbol VIH.CA(DC90) VIL.CA(DC90) VIH.CA(AC160) VIL.CA(AC160) VIH.CA(AC135) VIL.CA(AC135) VRefCA(DC) Parameter Min DC input logic high DC input logic low AC input logic high AC input logic low AC Input logic high AC input logic low Reference Voltage for ADD, CMD inputs Vref + 0.09 VSS Vref + 0.160 Note2 Vref + 0.135 Note2 0.49 * VDD Max VDD Vref - 0.09 Note2 Vref - 0.160 Note2 Vref - 0.135 0.51 * VDD V V V V V V V 1 1 1, 2 1, 2 1, 2 1, 2 3, 4 Unit Notes Notes: 1. For input only pins except RESET, Vref = VrefCA (DC). 2. Refer to “Overshoot and Undershoot Specifications” on page 39. 3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV 5. There levels apply for 1.35 volt (see table above) operation only. If the device is operated at 1.5V (table “Single Ended AC and DC Input Levels for DQ and DM” on page 15), the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), etc.) apply. The 1.5V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), etc.) do not apply when the device is operated in the 1.35 voltage range. Rev. 0.1 / Feb. 2010 14 AC and DC Input Levels for Signal-Ended Signals DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066 as specified in table below. DDR3 SDRAM will also support corresponding tDS values (Table 41 on page 120 and Table 47on page 145 in “DDR3L Device Operation”) as well as derating tables Table 44 on page 139 in “DDR3L Device Operation” depending on Vih/Vil AC levels. Single Ended AC and DC Input Levels for DQ and DM DDR3L-800/1066 Symbol VIH.CA(DC90) VIL.CA(DC90) VIH.CA(AC160) VIL.CA(AC160) VIH.CA(AC135) VIL.CA(AC135) VRefDQ(DC) Parameter Min DC input logic high Vref + 0.09 DC input logic low VSS AC input logic high Vref + 0.160 AC input logic low Note2 AC Input logic high Vref + 0.135 AC input logic low Note2 Reference Voltage for DQ, 0.49 * VDD DM inputs Max VDD Vref - 0.09 Note2 Vref - 0.160 Note2 Vref - 0.135 0.51 * VDD Min Vref + 0.09 VSS Vref + 0.135 Note2 0.49 * VDD Max VDD Vref - 0.09 Note2 Vref - 0.135 0.51 * VDD V V V V V V V 1 1 1, 2,5 1, 2,5 1, 2,5 1, 2,5 3, 4 DDR3L-1333 Unit Notes Notes: 1. For input only pins except RESET, Vref = VrefCA (DC). 2. Refer to “Overshoot and Undershoot Specifications” on page 39. 3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV 5. There levels apply for 1.35 volt (table above) operation only. If the device is operated at 1.5V (See table above), the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), etc.) apply. The 1.5V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), etc.) do not apply when the device is operated in the 1.35 voltage range. Rev. 0.1 / Feb. 2010 15 Vref Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure below. It shows a valid reference voltage VRef (t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise). VRef (DC) is the linear average of VRef (t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in the table “Differential Input Slew Rate Definition” on page 22. Furthermore VRef (t) may temporarily deviate from VRef (DC) by no more than +/- 1% VDD. voltage VDD VRef ac-noise VRef(DC) VRef(t) VRef(DC)max VDD/2 VRef(DC)min VSS time Illustration of VRef(DC) tolerance and VRef ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on VRef. “VRef ” shall be understood as VRef(DC), as defined in figure above. This clarifies that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VRef(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRefac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings. Rev. 0.1 / Feb. 2010 16 AC and DC Logic Input Levels for Differential Signals Differential signal definition tDVAC VIL.DIFF.AC.MIN Differential Input Voltage(i.e.DQS - DQS#, CK - CK#) VIL.DIFF.MIN 0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Definition of differential ac-swing and “time above ac-level” tDVAC Rev. 0.1 / Feb. 2010 17 Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS) Differential AC and DC Input Levels DDR3L-800, 1066, 1333 Symbol VIHdiff VILdiff VIHdiff (ac) VILdiff (ac) Notes: 1. Used to define a differential signal slew-rate. 2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL (ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level applies also here. 3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications” on page 39. Parameter Min Differential input high Differential input logic low Differential input high ac Differential input low ac + 0.180 Note 3 2 x (VIH (ac) - Vref) Note 3 Max Note 3 - 0.180 Note 3 2 x (VIL (ac) - Vref) V V V V 1 1 2 2 Unit Notes Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS Slew Rate [V/ns] > 4.0 4.0 3.0 2.0 1.8 1.6 1.4 1.2 1.0 < 1.0 tDVAC [ps] @ |VIH/Ldiff (ac)| = 350mV min 75 57 50 38 34 29 22 13 0 0 max tDVAC [ps] @ |VIH/Ldiff (ac)| = 300mV min 175 170 167 163 162 161 159 155 150 150 max - Rev. 0.1 / Feb. 2010 18 ingle-ended requirements for differential signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH (ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac) / VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the singleended signals CK and CK. VDD or VDDQ VSEHmin VSEH VDD/2 or VDDQ/2 CK or DQS VSELmax VSS or VSSQ VSEL time Single-ended requirements for differential signals. Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. Rev. 0.1 / Feb. 2010 19 Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU DDR3L-800, 1066, 1333 Symbol VSEH VSEL Notes: 1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac) of DQs. 2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications” on page 39. Parameter Min Single-ended high level for strobes Single-ended high level for Ck, CK Single-ended low level for strobes Single-ended low level for CK, CK (VDD / 2) + 0.175 (VDD /2) + 0.175 Note 3 Note 3 Max Note 3 Note 3 (VDD / 2) = 0.175 (VDD / 2) = 0.175 V V V V 1,2 1,2 1,2 1,2 Unit Notes Rev. 0.1 / Feb. 2010 20 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in table below. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSS Vix Definition Cross point voltage for differential input signals (CK, DQS) DDR3L-800, 1066, 1333 Symbol VIX VIX Parameter Min Differential Input Cross Point Voltage relative to VDD/2 for CK, CK Differential Input Cross Point Voltage relative to VDD/2 for DQS, DQS -150 -175 -150 Max 150 175 150 mV mV mV 1 Unit Notes Notes: 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential slew rate of CK - CK is larger than 3 V/ns. 2. Refer to the table “Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU” on page 20 for VSEL and VSEH standard values Rev. 0.1 / Feb. 2010 21 Slew Rate Definitions for Single-Ended Input Signals See 7.5 “Address / Command Setup, Hold and Derating” on page 138 in “DDR3L Device Operation” for single-ended slew rate definitions for address and command signals. See 7.6 “Data Setup, Hold and Slew Rate Derating” on page 145 in “DDR3L Device Operation” for singleended slew rate definition for data signals. Slew Rate Definitions for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table and figure below. Differential Input Slew Rate Definition Measured Description Min Max Defined by Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Notes: VILdiffmax VIHdiffmin VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds. Differential Input Voltage (i.e. DQS-DQS; CK-CK) Delta TRdiff vIHdiffmin 0 vILdiffmax Delta TFdiff Differential Input Slew Rate Definition for DQS, DQS# and CK, CK# Differential Input Slew Rate Definition for DQS, DQS and CK, CK Rev. 0.1 / Feb. 2010 22 AC & DC Output Measurement Levels Single Ended AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals. Single-ended AC and DC Output Levels Symbol VOH(DC) VOM(DC) VOL(DC) VOH(AC) VOL(AC) Parameter DC output high measurement level (for IV curve linearity) DC output mid measurement level (for IV curve linearity) DC output low measurement level (for IV curve linearity) AC output high measurement level (for output SR) AC output low measurement level (for output SR) DDR3L-800, 1066, 1333 0.8 x VDDQ 0.5 x VDDQ 0.2 x VDDQ VTT + 0.1 x VDDQ VTT - 0.1 x VDDQ Unit V V V V V 1 1 Notes Notes: 1. The swing of ± 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ / 2. Differential AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals. Differential AC and DC Output Levels Symbol VOHdiff (AC) VOLdiff (AC) Parameter AC differential output high measurement level (for output SR) AC differential output low measurement level (for output SR) DDR3L-800, 1066, 1333 + 0.2 x VDDQ - 0.2 x VDDQ Unit V V Notes 1 1 Notes: 1. The swing of ± 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ/2 at each of the differential outputs. Rev. 0.1 / Feb. 2010 23 Single Ended Output Slew Rate When the Reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals are shown in table and figure below. Single-ended Output slew Rate Definition Description Single-ended output slew rate for rising edge Single-ended output slew rate for falling edge Measured From VOL(AC) VOH(AC) To VOH(AC) VOL(AC) Defined by [VOH(AC)-VOL(AC)] / DeltaTRse [VOH(AC)-VOL(AC)] / DeltaTFse Notes: 1. Output slew rate is verified by design and characterisation, and may not be subject to production test. Delta TRse Single Ended Output Voltage(l.e.DQ) vOH(AC) V∏ vOl(AC) Delta TFse Single Ended Output Slew Rate Definition Single Ended Output slew Rate Definition Output Slew Rate (single-ended) DDR3L-800 Parameter Single-ended Output Slew Rate Symbol SRQse Min 1.75 Max 51) DDR3L-1066 Min 1.75 Max 51) DDR3L-1333 Min 1.75 Max 51) Units V/ns Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Note 1): In two cases, a maximum slew rate of 6 V/ns applies for a single DQ signal within a byte lane. Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are static(i.e they stay at either high or low). Case_2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies. Rev. 0.1 / Feb. 2010 24 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure below. Differential Output Slew Rate Definition Measured Description From Differential output slew rate for rising edge Differential output slew rate for falling edge VOLdiff (AC) VOHdiff (AC) To VOHdiff (AC) VOLdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTRdiff [VOHdiff (AC)-VOLdiff (AC)] / DeltaTFdiff Defined by Notes: 1. Output slew rate is verified by design and characterization, and may not be subject to production test. Differential Output Voltage(i.e. DQS-DQS) Delta TRdiff vOHdiff(AC) O vOLdiff(AC) Delta TFdiff Differential Output Slew Rate Definition Differential Output slew Rate Definition Differential Output Slew Rate DDR3L-800 Parameter Differential Output Slew Rate Symbol SRQdiff Min 3.5 Max 12 DDR3L-1066 Min 3.5 Max 12 DDR3L-1333 Min 3.5 Max 12 Units V/ns Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Rev. 0.1 / Feb. 2010 25 Reference Load for AC Timing and Output Slew Rate Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ CK, CK DUT DQ DQS DQS 25 Ohm VTT = VDDQ/2 Reference Load for AC Timing and Output Slew Rate Rev. 0.1 / Feb. 2010 26 Overshoot and Undershoot Specifications Address and Control Overshoot and Undershoot Specifications AC Overshoot/Undershoot Specification for Address and Control Pins Parameter Maximum peak amplitude allowed for overshoot area. (See figure below) Maximum peak amplitude allowed for undershoot area. (See figure below) Maximum overshoot area above VDD (See figure below) Maximum undershoot area below VSS (See figure below) DDR3L800 0.4 0.4 0.67 0.67 DDR3L1066 0.4 0.4 0.5 0.5 DDR3L1333 0.4 0.4 0.4 0.4 Units V V V-ns V-ns (A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT) See figure below for each parameter definition M axim um A m plitude O vershoot A rea V olts (V) VDD V SS U ndershoot Area M axim um A m plitud e Tim e (ns) Add ress and Control O vershoot and U ndershoot D efinition Address and Control Overshoot and Undershoot Definition Rev. 0.1 / Feb. 2010 27 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask Parameter Maximum peak amplitude allowed for overshoot area. (See figure below) Maximum peak amplitude allowed for undershoot area. (See figure below) Maximum overshoot area above VDD (See figure below) Maximum undershoot area below VSS (See figure below) DDR3L800 0.4 0.4 0.25 0.25 DDR3L1066 0.4 0.4 0.19 0.19 DDR3L1333 0.4 0.4 0.15 0.15 Units V V V-ns V-ns (CK, CK, DQ, DQS, DQS, DM) See figure below for each parameter definition M a x im u m A m p litu d e O v e rs h o o t A re a V o lts (V ) VDDQ VSSQ U n d e rs h o o t A re a M a x im u m A m p litu d e T im e (n s ) C lo c k , D a ta S tro b e a n d M a s k O v e rs h o o t a n d U n d e rs h o o t D e fin itio n Clock, Data, Strobe and Mask Overshoot and Undershoot Definition Rev. 0.1 / Feb. 2010 28 Refresh parameters by device density Refresh parameters by device density Parameter REF command ACT or REF command time Average periodic refresh interval RTT_Nom Setting tRFC tREFI 85 °C < TCASE ≤ 95 °C 0 °C ≤ TCASE ≤ 85 °C 512Mb 90 7.8 3.9 1Gb 110 7.8 3.9 2Gb 160 7.8 3.9 4Gb 300 7.8 3.9 8Gb 350 7.8 3.9 Units ns us us Rev. 0.1 / Feb. 2010 29 Standard Speed Bins DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. DDR3L-800 Speed Bins For specific Notes See “Speed Bin Table Notes” on page 33. Speed Bin CL - nRCD - nRP Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 5 CL = 6 CWL = 5 CWL = 5 Supported CL Settings Supported CWL Settings Symbol tAA tRCD tRP tRC tRAS tCK(AVG) tCK(AVG) 2.5 6 5 min 15 15 15 52.5 37.5 Reserved 3.3 DDR3L-800E 6-6-6 max 20 — — — 9 * tREFI ns ns ns ns ns ns ns nCK nCK 1, 2, 3, 4 1, 2, 3 Unit Notes Rev. 0.1 / Feb. 2010 30 DDR3L-1066 Speed Bins For specific Notes See “Speed Bin Table Notes” on page 33. Speed Bin CL - nRCD - nRP Parameter Symbol Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 5 CL = 6 CL = 7 CL = 8 CWL = 5 CWL = 6 CWL = 5 CWL = 6 CWL = 5 CWL = 6 CWL = 5 CWL = 6 min 13.125 13.125 13.125 50.625 37.5 Reserved Reserved 2.5 Reserved Reserved 1.875 Reserved 1.875 6, 7, 8 5, 6 < 2.5 < 2.5 3.3 DDR3L-1066F 7-7-7 max 20 — — — 9 * tREFI ns ns ns ns ns ns ns ns ns ns ns ns ns 1, 2, 3, 4, 5 4 1, 2, 3, 5 1, 2, 3, 4 4 1, 2, 3, 4 4 1, 2, 3 Unit Note tAA tRCD tRP tRC tRAS tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) Supported CL Settings Supported CWL Settings nCK nCK Rev. 0.1 / Feb. 2010 31 DDR3L-1333 Speed Bins For specific Notes See “Speed Bin Table Notes” on page 33. Speed Bin CL - nRCD - nRP Parameter Symbol Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 5 CWL = 5 CWL = 6, 7 CWL = 5 CL = 6 CWL = 6 CWL = 7 CWL = 5 CL = 7 CWL = 6 CWL = 7 CWL = 5 CL = 8 CWL = 6 CWL = 7 CL = 9 CWL = 5, 6 CWL = 7 CWL = 5, 6 CL = 10 CWL = 7 min 13.5 (13.125)8 13.5 (13.125)8 13.5 (13.125)8 49.5 (49.125)8 36 Reserved Reserved 2.5 Reserved Reserved Reserved 1.875 Reserved Reserved Reserved 1.875 Reserved Reserved 1.5 Reserved 1.5 Reserved 6, 8, (7), 9, (10) 5, 6, 7
HMT125S6TFR8A-H9 价格&库存

很抱歉,暂时无法提供与“HMT125S6TFR8A-H9”相匹配的价格&库存,您可以联系我们找货

免费人工找货