0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HMT41GV7AMR4C-H9

HMT41GV7AMR4C-H9

  • 厂商:

    HYNIX(海力士)

  • 封装:

  • 描述:

    HMT41GV7AMR4C-H9 - 240pin DDR3 SDRAM VLP Registered DIMM - Hynix Semiconductor

  • 数据手册
  • 价格&库存
HMT41GV7AMR4C-H9 数据手册
240pin DDR3 SDRAM VLP Registered DIMM DDR3 SDRAM VLP Registered DIMM Based on 2Gb A version HMT325V7AFR8C HMT351V7AFR8C HMT351V7AFR4C HMT41GV7AMR8C HMT41GV7AMR4C ** Contents may be changed at any time without any notice. Rev. 0.02 / Apr. 2009 1 Revision History Revision No. 0.01 0.02 History Initial Release Added IDD Specificaion Draft Date 2009-04 2009-04 Remark Rev. 0.02 / Apr. 2009 2 Table of Contents 1. Description 1.1 Device Features and Ordering Information 1.1.1 Features 1.1.2 Ordering Information 1.2 Speed Grade & Key Parameters 1.3 Address Table 2. Pin Architecture 2.1 Pin Definition 2.2 Input/Output Functional Description 2.3 Pin Assignment 3. Functional Block Diagram 3.1 2GB, 256Mx72 Module(1Rank of x8) 3.2 4GB, 512Mx72 Module(2Rank of x8) 3.3 4GB, 512Mx72 Module(1Rank of x4) 3.4 8GB, 1Gx72 Module(4Rank of x8) 3.5 8GB, 1Gx72 Module(2Rank of x4) 4. Input/Output Capacitance & AC Parametrics 5. IDD Specifications 6. DIMM Outline Diagram 6.1 2GB, 256Mx72 Module(1Rank of x8) 6.2 4GB, 512Mx72 Module(2Rank of x8) 6.3 4GB, 512Mx72 Module(1Rank of x4) 6.4 8GB, 1Gx72 Module(4Rank of x8) 6.5 8GB, 1Gx72 Module(2Rank of x4) Rev. 0.02 / Apr. 2009 3 1. Description This Hynix DDR3 VLP (Very Low Profile) registered Dual In-Line Memory Module (DIMM) series consists of 2Gb A generation. These are intended for use as main memory in server and workstation systems, providing a high performance 8 byte interface in 133.35mm width form factor of industry standard. It is suitable for easy interchange and addition. 1.1 Device Features & Ordering Information 1.1.1 Features • VDD=VDDQ=1.5V • VDDSPD=3.3V to 3.6V • Fully differential clock inputs (CK, CK) operation • Differential Data Strobe (DQS, DQS) • On chip DLL align DQ, DQS and /DQS transition with CK transition • DM masks write data-in at the both rising and falling edges of the data strobe • All addresses and control inputs except data, data strobes and data masks latched on the rising edges of the clock • Programmable CAS latency 5, 6, 7, 8, 9, 10, and (11) supported • Programmable additive latency 0, CL-1, and CL-2 sup ported • Programmable CAS Write latency (CWL) = 5, 6, 7, 8 • Programmable burst length 4/8 with both nibble sequential and interleave mode • BL switch on the fly • 8banks • 8K refresh cycles /64ms • DDR3 SDRAM Package: JEDEC standard 78ball FBGA(x4/x8) with support balls • Driver strength selected by EMRS • Dynamic On Die Termination supported • Asynchronous RESET pin supported • ZQ calibration supported • TDQS (Termination Data Strobe) supported (x8 only) • Write Levelization supported • Auto Self Refresh supported • 8 bit pre-fetch • SPD with Integrated TS of Class B 1.1.2 Ordering Information Organizatio n 256Mx72 512Mx72 512Mx72 1Gx72 1Gx72 # of DRAMs 9 18 18 36 36 # of ranks 1 2 1 4 2 Part Name HMT325V7AFR8C-G7/H9 HMT351V7AFR8C-G7/H9 HMT351V7AFR4C-G7/H9 HMT41GV7AMR8C-G7/H9 HMT41GV7AMR4C-G7/H9 Density 2GB 4GB 4GB 8GB 8GB Materials Halogen free Halogen free Halogen free Halogen free Halogen free FDHS X X X O O *Please Contact local sales administrator for more details of part number Rev. 0.02 / Apr. 2009 4 1.2 Speed Grade & Key Parameters MT/S Grade tCK (min) CAS Latency tRCD (min) tRP (min) tRAS (min) tRC (min) CL-tRCD-tRP DDR3-1066 -G7 1.875 7 13.125 13.125 37.5 50.625 7-7-7 DDR3-1333 Unit -H9 1.5 9 13.5 13.5 36 49.5 9-9-9 ns tCK ns ns ns ns tCK 1.3 Address Table 2GB(1Rx8) Organization Refresh Method Row Address Column Address Bank Address Page Size # of Rank # of Device 256M x 72 8K/64ms A0-A13 A0-A9 BA0-BA2 1KB 1 9 4GB(2Rx8) 512M x 72 8K/64ms A0-A13 A0-A9 BA0-BA2 1KB 2 18 4GB(1Rx4) 512M x 72 8K/64ms A0-A13 A0-A9,A11 BA0-BA2 1KB 1 18 8GB(4Rx8) 1G x 72 8K/64ms A0-A13 A0-A9,A11 BA0-BA2 1KB 4 36 8GB(2Rx4) 1G x 72 8K/64ms A0-A13 A0-A9,A11 BA0-BA2 1KB 2 36 Rev. 0.02 / Apr. 2009 5 2. Pin Architecture 2.1 Pin Definition Pin Name A0–A9,A11 A13-A15 BA0–BA2 RAS CAS WE S0–S3 CKE0–CKE1 ODT0–ODT1 DQ0–DQ63 CB0–CB7 DQS0–DQS8 DQS0–DQS8 Description Address Inputs SDRAM Bank Addresses Row Address Strobe Column Address Strobe Write Enable Chip Selects Clock Enables On-die termination Inputs Data Input/Output Data Check Bits Input/Output Data Strobes Data Strobes, Negative Line Num -ber 14 3 1 1 1 4 2 2 64 8 9 9 9 Pin Name A10/AP A12/BC SCL SDA SA0–SA2 Par_in ERR_OUT EVENT TEST RESET VDD VSS VREFDQ VREFCA VTT 9 1 1 VDDSPD CK1 CK1 Description Address Input/Autoprecharge Address Input/Autoprecharge Serial Presence Detect (SPD) Clock Input SPD Data Input/Output SPD Address Inputs Parity Bit For The Address and Control Bus Parity Error Found on the Address and Control Bus Reserved for Optional Hardware temperature Sensing Memory Bus Test Tool (Not Connected and Not Usable on DIMMs) Register and SDRAM control pin Power Supply Ground Reference Voltage for DQ Reference Voltage for CA Termination Voltage SPD Power Clock Input, positive line Clock Input, negative line Num -ber 1 1 1 1 3 1 1 1 1 1 22 59 1 1 4 1 1 1 Data Masks DM0–DM8 DQS9-DQS17 Data Strobes TDQS9-TDQS17 Termination Data Strobes DQS9–DQS17 Data Strobes, Negative Line TDQS9–TDQS17 Termination Data Strobes CK0 CK0 Clock Input, positive line Clock Input, positive Line Rev. 0.02 / Apr. 2009 6 2.2 Input/Output Functional Description Symbol CK0 CK0 CK1 CK1 Type IN IN IN IN Polarity Positive Line Negative Line Function Positive line of the differential pair of system clock inputs that drives input to the on-DIMM Clock Driver. Negative line of the differential pair of system clock inputs that drives the input to the on-DIMM Clock Driver. Positive Line Terminated but not used on RDIMMs Negative Line Terminated but not used on RDIMMs CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank) Enables the command decoders for the associated rank of SDRAM when low and disables decoders.When decoders are disabled, new commands are ignored and previous operations continue.Other combinations of these input signals perform unique functions, including disabling all outputs (except CKE and ODT) of the register(s) on the DIMM or accessing internal control words in the register device(s).For modules with two registers,S[3:2] operate similarly to S[1:0] for the second set of register outputs or register control words. When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the operation to be executed by the SDRAM. On-Die Termination control signals Reference voltage for DQ0-DQ63 and CB0-CB7 Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In, ODT0 and ODT1. Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered DIMM designs, VDDQ shares the same power plane as VDD pins. Selects which SDRAM bank of eight is activated. BA0-BA2 define to which bank an Active, Read, Write or Precharge command is being applied.Bank address also determines mode register is to be accessed during an MRS cycle. Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands to select one location out of the memory array in the respective bank.A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH).If only one bank is to be precharged, the bank is selected by BA.A12 is also utilized for BL 4/8 identification for “BL on the fly” during CAS command. The address inputs also provide the op-code during Mode Register Set commands. Data and Check Bit Input/Output pins. CKE0–CKE1 IN Active High S0–S3 IN Active Low RAS, CAS, WE ODT0–ODT1 VREFDQ VREFCA IN IN Supply Supply Active Low Active High VDDQ Supply BA0–BA2 IN — A0-A9 A10/AP A11 A12/BC A13-A15 IN — DQ0–DQ63, CB0–CB7 I/O — Rev. 0.02 / Apr. 2009 7 Symbol DM0–DM8 VDD, VSS VTT DQS0-DQS17 DQS0–DQS17 Type IN Supply Supply I/O I/O Polarity Active High Function Masks write data when high, issued concurrently with input data. Power and ground for the DDR3 SDRAM input buffers, and core logic. Termination Voltage for Address/Command/Control/Clock nets. Positive Edge Positive line of the differential data strobe for input and output data. Negative Edge Negative line of the differential data strobe for input and output data. TDQS/TDQS is applicable for x8 DRAMs only. WHen enabled via Mode Register A11=1 in MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used.x4/x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1. — These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected from the SDA bus line to VDDSPD to act as a pullup on the system board. This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL bus time to VDDSPD to act as a pull up. Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation. Active Low This signal indicates that a thermal event has been detected in the thermal sensing device. The system should guarantee the electrical level requirement is met for the EVENT pin on TS/SPD part. The RESET pin is connected to the RESET pin on the register and to the RESET pin on the DRAM. When low, all register outputs will be driven low and the Clock Driver clocks to the DRAMs and register(s) will be set to low level (the Clock Driver will remain synchronized with the input clock) Parity bit for the Address and Control bus.(“1”:Odd, “0”:Even) Parity error detected on the Address and Control bus.A resistor may be connected from Err_Out bus line to VDD on the system planar to act as a pull up. Used by memory bus analysis tools (unused (NC) on memory DIMMs) TDQS9-TDQS17 TDQS9-TDQS17 OUT SA0–SA2 SDA I/O — SCL IN — VDDSPD Supply OUT (open drain) EVENT RESET IN Par_In Err_Out TEST IN OUT (open drain) Rev. 0.02 / Apr. 2009 8 2.3 Pin Assignment Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Front Side (left 1–60) VREFDQ VSS DQ0 DQ1 VSS DQS0 DQS0 VSS DQ2 DQ3 VSS DQ8 DQ9 VSS DQS1 DQS1 VSS DQ10 DQ11 VSS DQ16 DQ17 VSS DQS2 DQS2 VSS DQ18 DQ19 VSS DQ24 DQ25 VSS DQS3 Pin # 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 Back Side (right 121–180) VSS DQ4 DQ5 VSS DM0,DQS9,TDQS9 NC, DQS9,TDQS9 VSS DQ6 DQ7 VSS DQ12 DQ13 VSS DM1,DQS10,TDQS10 NC,DQS10,TDQS10 VSS DQ14 DQ15 VSS DQ20 DQ21 VSS DM2,DQS11,TDQS11 NC,DQS11,TDQS11 VSS DQ22 DQ23 VSS DQ28 DQ29 VSS DM3,DQS12,TDQS12 NC, DQS12,TDQS12 Pin # 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 Front Side (left 61–120) A2 VDD NC, CK1 NC, CK1 VDD VDD VREFCA Par_in, NC VDD A10 / AP BA0 VDD WE CAS VDD S1, NC ODT1, NC VDD S2, NC VSS DQ32 DQ33 VSS DQS4 DQS4 VSS DQ34 DQ35 VSS DQ40 DQ41 VSS DQS5 Pin # 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 Back Side (right 181–240) A1 VDD VDD CK0 CK0 VDD EVENT, NC A0 VDD BA1 VDD RAS S0 VDD ODT0 A13 VDD S3, NC VSS DQ36 DQ37 VSS DM4,DQS13,TDQS13 NC, DQS13,TDQS13 VSS DQ38 DQ39 VSS DQ44 DQ45 VSS DM5,DQS14,TDQS14 NC, DQS14,TDQS14 NC = No Connect; RFU = Reserved Future Use Rev. 0.02 / Apr. 2009 9 Pin # 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Front Side (left 1–60) DQS3 VSS DQ26 DQ27 VSS CB0, NC CB1, NC VSS DQS8 DQS8 VSS CB2, NC CB3, NC VSS VTT, NC KEY VTT, NC CKE0 VDD BA2 Err_Out, NC VDD A11 A7 VDD A5 A4 VDD Pin # 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 Back Side (right 121–180) VSS DQ30 DQ31 VSS CB4, NC CB5, NC VSS DM8,DQS17,TDQS17 NC NC,DQS17,TDQS17 VSS CB6, NC CB7, NC VSS NC(TEST) RESET KEY CKE1, NC VDD A15 A14 VDD A12 / BC A9 VDD A8 A6 VDD A3 Pin # 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 Front Side (left 61–120) DQS5 VSS DQ42 DQ43 VSS DQ48 DQ49 VSS DQS6 DQS6 VSS DQ50 DQ51 VSS DQ56 DQ57 VSS DQS7 DQS7 VSS DQ58 DQ59 VSS SA0 SCL SA2 VTT Pin # 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 Back Side (right 181–240) VSS DQ46 DQ47 VSS DQ52 DQ53 VSS DM6,DQS15,TDQS15 NC, DQS15,TDQS15 VSS DQ54 DQ55 VSS DQ60 DQ61 VSS DM7,DQS16,TDQS16 NC, DQS16,TDQS16 VSS DQ62 DQ63 VSS VDDSPD SA1 SDA VSS VTT NC = No Connect; RFU = Reserved Future Use Rev. 0.02 / Apr. 2009 10 3. Functional Block Diagram 3.1 2GB, 256Mx72 Module(1Rank of x8) A[N:O]A /BA[N:O]A A[N:O]B /BA[N:O]B ZQ RS0A_n RRASA_n RS0B_n RRASB_n PCK0A_c RCKE0A RCASB_n RCASA_n RWEA_n RODT0A PCK0B_c RCKE0B CK_n CKE CK_n CKE CK_n CKE PCK0A_t RWEB_n PCK0B_t RODT0B ODT ODT A[N:O]/BA[N:O] D8 WE_n CK_n CKE CK_t ODT D4 CAS_n WE_n CK_t A[O:N]/BA[N:O] D3 WE_n CK_n CKE CK_t ODT D5 WE_n CK_t RAS_n CAS_n CS_n A[O:N]/BA[N:O] D2 WE_n CK_n CKE CK_t D6 WE_n CK_t RAS_n CAS_n CS_n ODT A[N:O]/BA[N:O] D1 WE_n CK_n CKE CK_t ODT D7 WE_n CK_n CKE CK_t ODT A[N:O]/BA[N:O] DQS1_t DQS1_c DM1/DQS10_t DQS10_c DQ[15:8] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] RAS_n CAS_n CS_n ZQ DQS7_t DQS7_c DM7/DQS16_t DQS16_c DQ[63:56] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] RAS_n CAS_n CS_n A[O:N]/BA[N:O] ZQ DQS2_t DQS2_c DM2/DQS11_t DQS11_c DQ[23:16] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ DQS6_t DQS6_c DM6/DQS15-t DQS15_c DQ[55:48] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] RAS_n CAS_n CS_n ODT A[O:N]/BA[N:O] ZQ DQS3_t DQS3_c DM3/DQS12_t DQS12_c DQ[31:24] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ DQS5_t DQS5_c DM5/DQS14_t DQS14_c DQ[47:40] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] RAS_n CAS_n CS_n A[O:N]/BA[O:N] ZQ DQS8_t DQS8_c DM8/DQS17_t DQS17_c CB[7:0] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] RAS_n CAS_n CS_n ZQ DQS4_t DQS4_c DM4/DQS13_t DQS13_c DQ[39:32] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] RAS_n CS_n VDDSPD VDD VTT VREFCA VREFDQ VSS SPD D0–D8 D0–D8 D0–D8 D0–D8 D0 WE_n CK_n CKE CK_t ODT A[N:O]/BA[N:O] DQS0_t DQS0_c DM0/DQS9_t DQS9_c DQ[7:0] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] RAS_n CAS_n CS_n ZQ Vtt Note: 1.DQ-to-I/O wiring may be changed within byte. 2.ZQ resistors are 240Ω ± 1%.For all other resistor values refer to the appropriate wiring diagram. Vtt S0_n S1_n BA[N:0] A[N:0] RAS_n CAS_n WE_n CKE0 ODT0 CK0_t CK0_c CK1_t CK1_c PAR_IN 120Ω ± 1% 120Ω ± 1% 1: 2 R E G I S T E R / P L L OERR_n RST_n RS0A_n → CS0_n: SDRAMs D[3:0], D8 RS0BCK_n → CS0_n: SDRAMs D[7:4] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D8 RBA[N:0]B → BA[N:0]: SDRAMs D[7:4] RA[N:0]A → A[N:0]: SDRAMs D[3:0], D8 RA[N:0]B → A[N:0]: SDRAMs D[7:4] RRASA_n → RAS_n: SDRAMs D[3:0], D8 RRASB_n → RAS_n: SDRAMs D[7:4] RCASA_n → CAS_n: SDRAMs D[3:0], D8 RCASB_n → CAS_n: SDRAMs D[7:4] RWEA_n → WE_n: SDRAMs D[3:0], D8 RWEB_n → WE_n: SDRAMs D[7:4] RCKE0A → CKE0: SDRAMs D[3:0], D8 RCKE0B → CKE0: SDRAMs D[7:4] RODT0A → ODT0: SDRAMs D[3:0], D8 RODT0B → ODT0: SDRAMs D[7:4] PCK0A_t → CK_t: SDRAMs D[3:0], D8 PCK0B_t → CK_t: SDRAMs D[7:4] PCK0A_c → CK_c: SDRAMs D[3:0], D8 PCK0B_c → CK_c: SDRAMs D[7:4] Err_Out_n VDDSPD EVENT SCL SDA VDDSPD SA0 SA0 SA1 SA2 VSS EVENT SPD with SA1 Integrated SA2 SCL TS VSS SDA Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative RST_n: SDRAMs D[8:0] S[3:2], CKE1, ODT1, are NC (Unused register inputs ODT1 and CKE1 have a 120...330Ω resistor to ground RESET_n Rev. 0.02 / Apr. 2009 11 3.2 4GB, 512Mx72 Module(2Rank of x8) A[N:O]A /BA[N:O]A PCK1A_c RCKE1A RODT1A A[N:O]B /BA[N:O]B RS0A_n RRASA_n RCASA_n PCK0A_c RCKE0A RWEA_n PCK0A_t PCK1A_t RODT0A RODT0B PCK0B RCKE0B RS1A_c RS1B RODT1B A[O:N]/BA[N:O] ODT A[N:O]/BA[N:O] ODT A[N:O]/BA[N:O] ODT A[N:O]/BA[N:O] ODT A[N:O]/BA[N:O] D8 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] D17 CAS_n WE_n CK_c CKE CK_t ODT D4 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] DQS8_t DQS8_c DM8/DQS17_t DQS17_c CB[7:0] RAS_n RAS_n RAS_n RAS_n CAS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS4_t DQS4_c DM4/DQS13-t DQS13_c DQ[39:32] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n D13 WE_n WE_n WE_n WE_n CK_c CKE CK_c CKE CK_c CKE CK_c CKE CK_t CK_t CK_t CK_t A[N:O]/BA[N:O] D3 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] D12 CAS_n WE_n CK_c CKE CK_t ODT D5 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] DQS3_t DQS3_c DM3/DQS12_t DQS12_c DQ[31:24] RAS_n RAS_n RAS_n RAS_n A[N:O]/BA[N:O] D2 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] D11 CAS_n WE_n CK_c CKE CK_t ODT D6 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] DQS2_t DQS2_c DM2/DQS11_t DQS11_c DQ[23:16] RAS_n RAS_n RAS_n RAS_n A[O:N]/BA[N:O] D1 CAS_n WE_n CK_c CKE CK_t ODT A[O:N]/BA[N:O] D10 CAS_n WE_n CK_c CKE CK_t ODT D7 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] DQS1_t DQS1_c DM1/DQS10_t DQS10_c DQ[15:8] RAS_n RAS_n RAS_n RAS_n A[N:O]/BA[N:O] D0 CAS_n WE_n CK_c CKE CK_t ODT D9 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] DQS0_t DQS0_c DM0/DQS9_t DQS9_c DQ[7:0] RAS_n RAS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n Vtt VDDSPD EVENT_n Vtt VDDSPD CAS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS7_t DQS7_c DM7/DQS16_t DQS16_c DQ[63:56] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n CAS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS6_t DQS6_c DM6/DQS15_t DQS15_c DQ55:48] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n CAS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS5_t DQS5_c DM5/DQS14_t DQS14_ DQ[47:40] DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n DQS_t DQS_c TDQS_t TDQS_c DQ [7:0] ZQ CS_n D14 D15 D16 SA0 SCL SDA EVENT SPD with SA1 Integrated SA2 SCL TS VSS SDA Note: 1. DQ-to-I/O wiring may be changed within a byte. 2. Unless otherwise noted, resistor values are 15Ω ± 5%. 3. ZQ resistors are 240Ω ± 1%. For all other resistor values refer to the appropriate wiring diagram. 4. See the wiring diagrams for all resistors associated with the command, address and control bus. Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative VDDSPD VDD VTT VREFCA VREFDQ VSS Serial PD D0–D17 D0–D17 D0–D17 D0–D17 D0–D17 Rev. 0.02 / Apr. 2009 PCK1B RCKE1B RS0B RRASB RCASB PCK0B RWEB PCK1B SA0 SA1 SA2 VSS 12 S0_n S1_n S[3:2] NC BA[N:0] A[N:0] RAS_n CAS_n WE_n CKE0 ODT0 1:2 R E G I S T E R / P L L RS0A_n → CS0_n: SDRAMs D[3:0], D8 RS0B_n → CS0_n: SDRAMs D[7:4] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D17 RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13] RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D17 RA[N:0]B → A[N:0]: SDRAMs D[7:4], D[16:13] RRASA_n → RAS_n: SDRAMs D[3:0], D[12:8], D17 RRASB_n → RAS_n: SDRAMs D[7:4], D[16:13] RCASA_n → CAS_n: SDRAMs D[3:0], D[12:8], D17 RCASB_n → CAS_n: SDRAMs D[7:4], D[16:13] RWEA_n → WE_n: SDRAMs D[3:0], D[12:8], D17 RWEB_n → WE_n: SDRAMs D[7:4], D[16:13] RCKE0A → CKE0: SDRAMs D[3:0], D8 RCKE0B → CKE0: SDRAMs D[7:4] RODT0A → ODT0: SDRAMs D[3:0], D8 RODT0B → ODT0: SDRAMs D[7:4] PCK0A_t → CK-t: SDRAMs D[3:0], D8 PCK0B_t → CK_t: SDRAMs D[7:4] PCK0A_c → CK_c: SDRAMs D[3:0], D8 PCK0B_c → CK_c: SDRAMs D[7:4] CK0_t 120Ω CK0_c CK1_t CK1_c PAR_IN RESET_n RST_n 120Ω Err_Out_n RST_n: SDRAMs D[17:0] Rev. 0.02 / Apr. 2009 13 3.3 4GB, 512Mx72 Module(1Rank of x4) A[N:O]A /BA[N:O]A A[O:N]B /BA[O:N]B ZQ RCASA_n RS0A_n RRASA_n RS0B_n RRASB_n PCK0A_c RCKE0A RCASB_n RWEA_n RODT0A PCK0B_c RCKE0B PCK0A_t RWEB_n PCK0B_t A[N:O]/BA[N:O] A[N:O]/BA[N:O] A[N:O]/BA[N:O] D8 CAS_n WE_n CK_c CKE CK_t ODT D17 CAS_n WE_n CK_c CKE CK_t ODT D4 CAS_n WE_n CK_c CKE CK_t ODT D13 CAS_n WE_n CK_c CKE CK_t ODT ODT ODT ODT A[N:O]/BA[N:O] ZQ VSS VSS VSS RAS_n RAS_n RAS_n A[N:O]/BA[N:O] A[N:O]/BA[N:O] A[N:O]/BA[N:O] D3 CAS_n WE_n CK_c CKE CK_t ODT D12 CAS_n WE_n CK_c CKE CK_t ODT D5 CAS_n WE_n CK_c CKE CK_t ODT D14 CAS_n WE_n CK_c CKE CK_t A[N:O]/BA[N:O] ZQ VSS VSS VSS RAS_n RAS_n RAS_n A[N:O]/BA[N:O] A[N:O]/BA[N:O] A[N:O]/BA[N:O] D2 CAS_n WE_n CK_c CKE CK_t ODT D11 CAS_n WE_n CK_c CKE CK_t ODT D6 CAS_n WE_n CK_c CKE CK_t ODT D15 CAS_n WE_n CK_c CKE CK_t A[N:O]/BA[N:O] ZQ VSS VSS VSS RAS_n RAS_n RAS_n A[N:O]/BA[N:O] A[N:O]/BA[N:O] A[N:O]/BA[N:O] D1 CAS_n WE_n CK_c CKE CK_t ODT D10 CAS_n WE_n CK_c CKE CK_t ODT D7 CAS_n WE_n CK_c CKE CK_t ODT D16 CAS_n WE_n CK_c CKE CK_t A[N:O]/BA[N:O] VSS VSS VSS RAS_n RAS_n RAS_n A[N:O]/BA[N:O] D0 CAS_n WE_n CK_c CKE CK_t ODT D9 CAS_n WE_n CK_c CKE CK_t ODT A[N:O]/BA[N:O] VSS RAS_n Vtt VDDSPD EVENT SCL SDA VDDSPD EVENT SCL SDA RAS_n CS_n CS_n SA0 SA0 SA1 SA2 VSS VSS DQS0_t DQS0_c VSS DQ[3:0] DQS_t DQS_c DM DQ [3:0] ZQ DQS9_t DQS9_c VSS DQ[7:4] DQS_t DQS_c DM DQ [3:0] ZQ Vtt SPD with SA1 Integrated SA2 TS VSS Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative VDDSPD VDD VTT VREFCA VREFDQ VSS SPD D0–D17 Note: 1. DQ-to-I/O wiring may be changed within a nibble. 2. Unless otherwise noted, resistor values are 15 ± 5 %. Ω 3. See the wiring diagrams for all resistors associated with the command, address and control bus. 4. ZQ resistors are 240Ω ± 1 %. For all other resistor values refer to the appropriate wiring diagram. RAS_n CS_n CS_n CS_n CS_n D0–D17 D0–D17 D0–D17 Rev. 0.02 / Apr. 2009 VSS DQS1_t DQS1_c VSS DQ[11;8] DQS_t DQS_c DM DQ [3:0] ZQ DQS10_t DQS10_c VSS DQ[15:12] DQS_t DQS_c DM DQ [3:0] ZQ DQS7_t DQS7_c VSS DQ[59:56] DQS_t DQS_c DM DQ [3:0] ZQ DQS16_t DQS16_c VSS DQ[63:60] DQS_t DQS_c DM DQ [3:0] RAS_n CS_n CS_n CS_n CS_n VSS DQS2_t DQS2_c VSS DQ[19:16] DQS_t DQS_c DM DQ [3:0] ZQ DQS11_t DQS11_c VSS DQ23:20] DQS_t DQS_c DM DQ [3:0] ZQ DQS6_t DQS6_c VSS DQ[51:48] DQS_t DQS_c DM DQ [3:0] ZQ DQS15_t DQS15_c VSS DQ[55;52] DQS_t DQS_c DM DQ [3:0] RAS_n CS_n CS_n CS_n CS_n VSS DQS3_t DQS3_c VSS DQ[27:24] DQS_t DQS_c DM DQ [3:0] ZQ DQS12_t DQS12_c VSS DQ[31:28] DQS_t DQS_c DM DQ [3:0] ZQ DQS5_t DQS5_c VSS DQ[43:40] DQS_t DQS_c DM DQ [3:0] ZQ DQS14_t DQS14_c VSS DQ[47:44] DQS_t DQS_c DM DQ [3:0] RAS_n CS_n CS_n CS_n CS_n VSS DQS8_t DQS8_c VSS CB[3:0] DQS_t DQS_c DM DQ [3:0] ZQ DQS17_t DQS17_c VSS CB[7:4] DQS_t DQS_c DM DQ [3:0] ZQ RODT0B DQS4_t DQS4_c VSS DQ[35:32] DQS_t DQS_c DM DQ [3:0] DQS13_t DQS13_c VSS DQ[39:36] DQS_t DQS_c DM DQ [3:0] ZQ 14 S0_n S1_n BA[2:0] A[15:0] RAS_n CAS_n WE_n CKE[1:0] ODT[1:0] 1:2 R E G I S T E R / P L L RS0A_n → CS0A_n: SDRAMs D[3:0], D8, D[12:9], D17 RS1A_n → CS1A_n: SDRAMs D[21:18], D26, D[30:27], D35 RS0B_n → CS0B_n: SDRAMs D[7:4], D[16:13] RS1B_n → CS1B_n: SDRAMs D[25:22], D[34:31] RBA[2:0]A → BA[2:0]: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35 RBA[2:0]B → BA[2:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RA[15:0]A → A[15:0]: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35 RA[15:0]B → A[15:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RRASA_n → RAS_n: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35 RRASB_n → RAS_n: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RCASA_n → CAS_n: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35 RCASB_n → CAS_n: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RWEA_n → WE_n: SDRAMs D[3:0], D8, D[12:9], D17, D[21:18], D26, D[30:27], D35 RWEB_n → WE_n: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RCKE0A → CKE[1:0]A_n: SDRAMs D[3:0], D8. D[12:9], D17 RCKE0B → CKE[1:0]B_n: SDRAMs D[21:18], D26, D[30:27], D35 RODT[1:0]A → ODT0: SDRAMs D[3:0], D8. D[12:9], D17 RODT[1:0]B → ODT0: SDRAMs D[21:18], D26, D[30:27], D35 CK0A_t_R0 → CK-t: SDRAMs D[3:0], D8, D[21:18], D26 CK0B_t_R0 → CK_t: SDRAMs D[7:4], D[25:22] CK0A_t_R1 → CK-t: SDRAMs D[12:9], D17, D[30:27], D35 CK0B_t_R1 → CK_t: SDRAMs D[16:13], D[34:31] CK0A_c_R0 → CK_c: SDRAMs D[3:0], D8, D[21:18], D26 CK0B_c_R0 → CK_c: SDRAMs D[7:4], D[25:22] CK0A_c_R1 → CK_c: SDRAMs D[12:9], D17, D[30:27], D35 CK0B_c_R1 → CK_c: SDRAMs D[16:13], D[34:31] CK0_t 120Ω CK0_c CK1_t CK1_c PAR_IN RESET_n RST_n 120Ω Err_Out_n RST_n: All SDRAMs * S[3:2]_n are NC (Note: Otherwise stated differently all resistors values on this base are 22Ω+-5%) Rev. 0.02 / Apr. 2009 15 VSS DQS1_t DQS1_c DM1/TDQS10_t TDQS10_c DQ[15:8] VSS DQS8_t DQS8_c DM8/TDQS17_t TDQS17_c CB[7:0] VSS DQS2_t DQS2_c DM2/TDQS11_t TDQS11_c DQ[23:16] VSS DQS3_t DQS3_c DM3/TDQS12_t TDQS12_c DQ[31:24] VSS DQS0_t DQS0_c DM0/TDQS9_t TDQS9_c DQ[7:0] Vtt CS_n CS_n CS_n CS_n CS_n RS0_n RRASA_n RCASA_n RWEA_n PCK0A_t ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n WE_n CK_t CK_t CK_t CK_t WE_n WE_n WE_n CAS_n CAS_n CAS_n RAS_n RAS_n RAS_n ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n Rev. 0.02 / Apr. 2009 CAS_n WE_n CK_t D9 CK_c CK_c CK_c CK_c D10 D11 D12 D17 CK_c PCK0A_c RCKE0A RODT0A RA[N:0]A /RBA[N:0]A CKE ODT A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] ODT ODT ODT CKE CKE CKE CKE ODT A[N:O]/BA[N:0] VSS VSS VSS VSS VSS CS_n RAS_n CAS_n WE_n CK_t CK_t CK_t CK_t WE_n WE_n WE_n CAS_n CAS_n CAS_n RAS_n RAS_n RAS_n CS_n CS_n CS_n CS_n RS1_n ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n WE_n CK_t D0 CK_c CKE ODT A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] ODT ODT ODT CKE CKE CKE CK_c CK_c CK_c D1 D2 D3 D8 CK_c CKE RCKE1A VDD ODT 3.4 8GB, 1Gx72 Module(4Rank of x8) A[N:O]/BA[N:0] A[N:O]/BA[N:0] VSS VSS VSS VSS VSS CS_n RAS_n CAS_n WE_n CK_t CK_t CK_t WE_n WE_n CAS_n CAS_n RAS_n RAS_n CS_n CS_n CS_n CS_n RAS_n CAS_n WE_n CK_t RS2_n ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n WE_n CK_t PCK1A_t D27 CK_c CKE ODT A[N:O]/BA[N:0] A[N:O]/BA[N:0] ODT ODT CKE CKE CK_c CK_c D28 D29 D30 D35 CK_c CK_c CKE ODT PCK1A_c RODT1A A[N:O]/BA[N:0] CKE ODT A[N:O]/BA[N:0] A[N:O]/BA[N:0] VSS VSS VSS VSS VSS CS_n RAS_n CAS_n WE_n CK_t CK_t WE_n CAS_n RAS_n CS_n CS_n CS_n RAS_n CAS_n WE_n CK_t CS_n RAS_n CAS_n WE_n CK_t RS3_n ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n WE_n CK_t D18 CK_c CKE ODT A[N:O]/BA[N:0] CKE ODT CK_c D19 D20 D21 D26 CK_c CK_c CKE ODT CK_c CKE ODT CKE ODT VDD A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] 16 /RBA[N:0]A RRASA_n RCASA_n RA[N:0]A PCK0A_c PCK1A_c RWEA_n PCK0A_t PCK1A_t RODT0A RS1_n RS2_n RODT1A RCKE0A RCKE1A RS0_n RS3_n VDD A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] D13 WE_n CK_c CK_t ODT CKE D4 WE_n CK_c CK_t ODT CKE D31 WE_n CK_c CK_t ODT CKE D22 WE_n CK_c CK_t ODT ODT ODT ODT CKE CKE CKE CKE A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] D14 WE_n CK_c CK_t ODT CKE D5 WE_n CK_c CK_t ODT CKE D32 WE_n CK_c CK_t ODT CKE D23 WE_n CK_c CK_t A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] D15 WE_n CK_c CK_t ODT CKE D6 WE_n CK_c CK_t ODT CKE D33 WE_n CK_c CK_t ODT CKE D24 WE_n CK_c CK_t A[N:O]/BA[N:0] A[N:O]/BA[N:0] A[N:O]/BA[N:0] D16 WE_n CK_c CK_t ODT CKE D7 WE_n CK_c CK_t ODT CKE D34 WE_n CK_c CK_t ODT CKE D25 WE_n CK_c CK_t Vtt VDDSPD EVENT SCL SDA Note: VDDSPD SA0 SA0 SA1 SA2 VSS Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative VDDSPD VDD VTT VREFCA VREFDQ VSS D0-D35 D0-D35 D0-D35 EVENT SPD with SA1 Integrated SA2 SCL TS VSS SDA A[N:O]/BA[N:0] VSS DQS7_t DQS7_c DM7/TDQS16_t TDQS16_c DQ[63:56] ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n A[N:O]/BA[N:0] VSS DQS6_t DQS6_c DM6/TDQS15_t TDQS15_c DQ[55:48] ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n A[N:O]/BA[N:0] VSS DQS5_t DQS5_c DM5/TDQS14_t TDQS14_c DQ[47:40] ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n A[N:O]/BA[N:0] VSS DQS4_t DQS4_c DM4/TDQS13_t TDQS13_c DQ[39:32] ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VSS ZQ DQS DQS TDQS TDQS DQ [7:0] RAS_n CAS_n CS_n VDD Serial PD D0-D35 1. DQ-to-I/O wiring may be changed within a nibble. 2. Unless otherwise noted, resistor values are 15 ± 5 %. Ω 3. See the wiring diagrams for all resistors associated with the command, address and control bus. 4. ZQ resistors are 240Ω ± 1 %. For all other resistor values refer to the appropriate wiring diagram. Rev. 0.02 / Apr. 2009 17 S0_n S1_n S2_n S3_n BA[N:0] A[N:0] RAS_n CAS_n WE_n CKE0 CKE1 ODT0 ODT1 CK0_t 120Ω 1:2 R E G I S T E R / P L L CK0_c CK1_t CK1_c PAR_IN RESET_n RST_n 120Ω RS0_n → CS1_n: SDRAMs D[17:9] RS1_n → CS0_n: SDRAMs D[8:0] RS2_n → CS1_n: SDRAMs D[35:27] RS3_n → CS0_n: SDRAMs D[26:18] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RA[N:0]B → A[N:0]: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RRASA_n → RAS_n: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RRASB_n → RAS_n: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RCASA_n → CAS_n: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RCASB_n → CAS_n: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RWEA_n → WE_n: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RWEB_n → WE_n: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RCKE0A → CKE1: SDRAMs D[12:9], D17, D[30:27], D35 RCKE0B → CKE1: SDRAMs D[16:13], D[34:31] RCKE1A → CKE0: SDRAMs D[3:0], D8, D[21:18], D26 RCKE1B → CKE0: SDRAMs D[7:4], D[25:22] RODT0A → ODT1: SDRAMs D[12:9], D17 RODT0B → ODT1: SDRAMs D[16:13] RODT1A → ODT1: SDRAMs D[30:27], D35 RODT1B → ODT1: SDRAMs D[34:31] PCK0A_t → CK_t: SDRAMs D[3:0], D[12:8], D17 PCK0B_t → CK_t: SDRAMs D[7:4], D[16:13] PCK1A_t → CK_t: SDRAMs D[21:18], D[30:26], D35 PCK1B_t → CK_t: SDRAMs D[25:22], D[34:31] PCK0A_c → CK_c: SDRAMs D[3:0], D[12:8], D17 PCK0B_c → CK_c: SDRAMs D[7:4], D[16:13] PCK1A_c → CK_c: SDRAMs D[21:18], D[30:26], D35 PCK1B_c → CK_c: SDRAMs D[25:22], D[34:31] Err_Out_n RESET_n: SDRAMs D[35:0] Rev. 0.02 / Apr. 2009 18 3.5 8GB, 1Gx72 Module(2Rank of x4) VSS RS0_n RS1_n DM CS_n ZQ DQS0_t DQS0_c DQ[3:0] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS9_t DQS9_c DQ[7:4] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D0 D18 D9 D27 DM CS_n ZQ DQS1_t DQS1_c DQ[11:8] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS10_t DQS10_c DQ[12:15] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D1 D19 D10 D28 DM CS_n ZQ DQS2_t DQS2_c DQ[16:19] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS11_t DQS11_c DQ[20:23] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D2 D20 D11 D29 DM CS_n ZQ DQS3_t DQS3_c DQ[24:27] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS12_t DQS12_c DQ[28:31] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D3 D21 D12 D30 DM CS_n ZQ DQS4_t DQS4_c DQ[32:35] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS13_t DQS13_c DQ[36:39] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D4 D22 D13 D31 DM CS_n ZQ DQS5_t DQS5_c DQ[40:43] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS14_t DQS14_c DQ[44:47] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D5 D23 D14 D32 DM CS_n ZQ DQS6_t DQS6_c DQ[48:51] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS15_t DQS15_c DQ[52:55] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D6 D24 D15 D33 DM CS_n ZQ DQS7_t DQS7_c DQ[56:59] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS16_t DQS16_c DQ[60:63] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D7 D25 D16 D34 DM CS_n ZQ DQS8_t DQS8_c CB[3:0] DQS_t DQS_c DQ [3:0] VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS17_t DQS17_c CB[7:4] DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS DQS_t DQS_c DQ [3:0] DM CS_n ZQ VSS D8 D26 D17 D35 VDDSPD VDDSPD VDDSPD SA0 SA0 SA1 SA2 VSS SPD D0–D17 VDD VTT VREFCA VREFDQ VSS EVENT SCL SDA EVENT SPD with SA1 Integrated SA2 SCL TS VSS SDA D0–D17 D0–D17 D0–D17 Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative Note: 1. DQ-to-I/O wiring may be changed within a nibble. 2. ZQ pins of each SDRAM are connected to individual RZQ resistors (240+/-1%) ohms. Rev. 0.02 / Apr. 2009 19 S0_n S1_n S2_n S3_n BA[N:0] A[N:0] RAS_n CAS_n WE_n CKE0 CKE1 ODT0 ODT1 CK0_t 120Ω 1:2 R E G I S T E R / P L L CK0_c CK1_t CK1_c PAR_IN RESET_n RST_n 120Ω RS0_n → CS1_n: SDRAMs D[17:9] RS1_n → CS0_n: SDRAMs D[8:0] RS2_n → CS1_n: SDRAMs D[35:27] RS3_n → CS0_n: SDRAMs D[26:18] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RA[N:0]B → A[N:0]: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RRASA_n → RAS_n: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RRASB_n → RAS_n: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RCASA_n → CAS_n: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RCASB_n → CAS_n: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RWEA_n → WE_n: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RWEB_n → WE_n: SDRAMs D[7:4], D[16:13], U[25:22], U[34:31] RCKE0A → CKE1: SDRAMs D[12:9], D17, D[30:27], D35 RCKE0B → CKE1: SDRAMs D[16:13], D[34:31] RCKE1A → CKE0: SDRAMs D[3:0], D8, D[21:18], D26 RCKE1B → CKE0: SDRAMs D[7:4], D[25:22] RODT0A → ODT1: SDRAMs D[12:9], D17 RODT0B → ODT1: SDRAMs D[16:13] RODT1A → ODT1: SDRAMs D[30:27], D35 RODT1B → ODT1: SDRAMs D[34:31] PCK0A_t → CK_t: SDRAMs D[3:0], D[12:8], D17 PCK0B_t → CK_t: SDRAMs D[7:4], D[16:13] PCK1A_t → CK_t: SDRAMs D[21:18], D[30:26], D35 PCK1B_t → CK_t: SDRAMs D[25:22], D[34:31] PCK0A_c → CK_c: SDRAMs D[3:0], D[12:8], D17 PCK0B_c → CK_c: SDRAMs D[7:4], D[16:13] PCK1A_c → CK_c: SDRAMs D[21:18], D[30:26], D35 PCK1B_c → CK_c: SDRAMs D[25:22], D[34:31] Err_Out_n RESET_n: SDRAMs D[35:0] Rev. 0.02 / Apr. 2009 20 4. Pin Capacitance (VDD=1.5V, VDDQ=1.5V) 2GB: HMT325V7AFR8C Pin CK0, CK0 CKE, ODT CS Address, RAS, CAS, WE DQ, DM, DQS, DQS Symbol Min Max Unit pF pF pF pF pF CCK CI1 CI2 CI3 CIO TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 4GB: HMT351V7AFR8C Pin CK0, CK0 CKE, ODT CS Address, RAS, CAS, WE DQ, DM, DQS, DQS Symbol Min Max Unit pF pF pF pF pF CCK CI1 CI2 CI3 CIO TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 4GB: HMT351V7AFR4C Pin CK0, CK0 CKE, ODT CS Address, RAS, CAS, WE DQ, DM, DQS, DQS Symbol Min Max Unit pF pF pF pF pF CCK CI1 CI2 CI3 CIO TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 8GB: HMT41GV7AMR8C Pin CK0, CK0 CKE, ODT CS Address, RAS, CAS, WE DQ, DM, DQS, DQS Symbol Min Max Unit pF pF pF pF pF CCK CI1 CI2 CI3 CIO TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 8GB: HMT41GV7AMR4C Pin CK0, CK0 CKE, ODT CS Address, RAS, CAS, WE DQ, DM, DQS, DQS Note: 1. Pins not under test are tied to GND. 2. These value are guaranteed by design and tested on a sample basis only. Symbol Min Max Unit pF pF pF pF pF CCK CI1 CI2 CI3 CIO TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD Rev. 0.02 / Apr. 2009 21 5. IDD Specifications(Tcase: 0 to 95oC) 2GB, 256M x 72 R-DIMM: HMT325V7AFR8C Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 DDR3 1066 1439 1529 1169 1214 336 498 1169 1259 543 2024 2069 2654 336 363 363 2654 DDR3 1333 1484 1574 1214 1259 336 543 1214 1304 543 2159 2204 2654 336 363 363 2834 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note 4GB, 512M x 72 R-DIMM: HMT351V7AFR8C Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 DDR3 1066 1844 1934 1574 1664 444 768 1574 1754 858 2429 2474 3059 444 498 498 3059 DDR3 1333 1934 2024 1664 1754 444 858 1664 1844 858 2609 2654 3104 444 498 498 3284 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note Rev. 0.02 / Apr. 2009 22 4GB, 512M x 72 R-DIMM: HMT351V7AFR4C Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDDET IDD6TC IDD7 DDR3 1066 2114 2294 1574 1664 444 768 1574 1754 858 3284 3374 4544 444 498 498 4554 DDR3 1333 2204 2384 1664 1754 444 858 1664 1844 858 3554 3644 4544 444 498 498 4904 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note 8GB, 1D x 72 R-DIMM: HMT41GR7AMR8C Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDDET IDD6TC IDD7 DDR3 1066 2654 2744 2384 2564 660 1308 2384 2744 1488 3239 3284 3869 660 768 768 3869 DDR3 1333 2834 2924 2564 2744 660 1488 2564 2924 1488 3509 3554 4004 660 768 768 4184 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note Rev. 0.02 / Apr. 2009 23 8GB, 1G x 72 R-DIMM: HMT41GV7AMR4C Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDDET IDD6TC IDD7 DDR3 1066 2924 3104 2384 2564 660 1308 2384 2744 1488 4094 4184 5354 660 768 768 5354 DDR3 1333 3104 3284 2564 2744 660 1488 2564 2924 1488 4454 4544 5444 660 768 768 5804 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note Rev. 0.02 / Apr. 2009 24 6. Dimm Outline Diagram 6.1 256Mx72 - HMT325V7AFR8C Front 2.10 ± 0.15 14.90 Detail C 3 ± 0.1 13.60 18.75 ± 0.15 Registering Clock Driver 15.80 ± 0.1 3 ± 0.1 1 120 8.00 ± 0.1 2X3.0 ± 0.10 5.175 47.00 Detail A Detail B 128.95 133.35 71.00 Back 240 SPD/TS 121 Side Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C 3.65mm max 14.90 0.4 2.50 ± 0.20 2.50 ± 0.20 6.2 256Mx72 - HMT125V7BFR8C 0.20 0.3 ± 0.15 13.60 3.80 0.3~0.1 1.00 1.50 ± 0.10 5.00 6.2 512Mx72 - HMT351V7AFR8C 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 25 Front 2.10 ± 0.15 14.90 Detail C 3 ± 0.1 13.60 18.75 ± 0.15 Registering Clock Driver 15.80 ± 0.1 3 ± 0.1 1 120 8.00 ± 0.1 2X3.0 ± 0.10 5.175 47.00 Detail A Detail B 128.95 133.35 71.00 Back 240 SPD/TS 121 Side Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C 3.65mm max 14.90 0.4 2.50 ± 0.20 2.50 ± 0.20 0.3 ± 0.15 13.60 0.20 3.80 0.3~0.1 6.3 512Mx72 - HMT351V7AFR4C 5.00 1.00 1.50 ± 0.10 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 26 Front 2.10 ± 0.15 14.90 Detail C 3 ± 0.1 13.60 18.75 ± 0.15 Registering Clock Driver 15.80 ± 0.1 3 ± 0.1 1 120 8.00 ± 0.1 2X3.0 ± 0.10 5.175 47.00 Detail A Detail B 128.95 133.35 71.00 Back 240 SPD/TS 121 Side Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C 3.65mm max 14.90 0.4 2.50 ± 0.20 2.50 ± 0.20 0.3 ± 0.15 13.60 0.20 3.80 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 27 6.4 1Gx72 - HMT41GV7AMR8C Front 2.10 ± 0.15 14.90 Detail C 3 ± 0.1 13.60 18.75 ± 0.15 Registering Clock Driver DDP DDP DDP DDP DDP DDP DDP DDP 3 ± 0.1 1 DDP 15.80 ± 0.1 120 8.00 ± 0.1 2X3.0 ± 0.10 5.175 47.00 Detail A Detail B 128.95 133.35 71.00 Back SPD/TS DDP DDP DDP DDP DDP DDP DDP 240 DDP DDP 121 Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C Side 3.95mm max 14.90 0.4 2.50 ± 0.20 2.50 ± 0.20 0.3 ± 0.15 13.60 0.20 3.80 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 28 6.4 512Mx72 - HMT41GV7AMR4C (Heat Sink) Front 36.58 36.58 18.75 ± 0.15 12.3 13.3 SPD/TS DDP 1 DDP DDP DDP DDP SPD/TS DDP DDP DDP DDP 240 DDP 121 Detail of Contacts A 0.80 ± 0.05 0.3 ± 0.15 2.50 ± 0.20 0.3~0.1 1.00 1.50 ± 0.10 5.00 2.50 ± 0.20 0.20 3.80 Rev. 0.02 / Apr. 2009 DDP DDP DDP Detail of Contacts B 2.50 DDP DDP DDP DDP DDP 120 126.8 Back Detail of Contacts C Side 9.35mm max 14.90 0.4 13.60 2.15mm 1.27 ± 010mm max 29 6.4 1Gx72 - HMT41GV7AMR8C Front 52.9 ± 0.10 2.10 ± 0.15 9.8 3 ± 0.1 6.3 9.8 2.1 5.3 Detail C 18.75 ± 0.15 Registering Clock Driver DDP DDP DDP DDP DDP DDP DDP DDP 3 ± 0.1 1 DDP 15.80 ± 0.1 120 8.00 ± 0.1 2X3.0 ± 0.10 5.175 47.00 Detail A Detail B 128.95 133.35 71.00 Back SPD/TS DDP DDP DDP DDP DDP DDP DDP 240 DDP DDP 121 Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C Side 3.95mm max 9.8 0.4 2.50 ± 0.20 2.50 ± 0.20 0.3 ± 0.15 8.5 0.20 3.80 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 30 6.4 512Mx72 - HMT351V7AMP4C (Heat Spreader) Front 29 29 18.75 ± 0.15 12.3 13.3 DDP 1 DDP DDP DDP DDP DDP DDP DDP DDP DDP 127 Back SPD/TS 120 DDP DDP DDP DDP DDP DDP DDP 240 SPD/TS DDP 121 Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C Side 7.4mm max 9.8 0.4 2.50 ± 0.20 2.50 ± 0.20 0.3 ± 0.15 8.5 0.20 3.80 0.3~0.1 1.00 1.50 ± 0.10 5.00 6.2mm 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 31 6.5 1Gx72 - HMT41GV7AMR4C Front 2.10 ± 0.15 14.90 Detail C 3 ± 0.1 13.60 18.75 ± 0.15 Registering Clock Driver DDP DDP DDP DDP DDP DDP DDP DDP 3 ± 0.1 1 DDP 15.80 ± 0.1 120 8.00 ± 0.1 2X3.0 ± 0.10 5.175 47.00 Detail A Detail B 128.95 133.35 71.00 Back DDP DDP DDP DDP SPD/TS DDP DDP DDP DDP 240 DDP 121 Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C Side 3.95mm max 14.90 0.4 2.50 ± 0.20 2.50 ± 0.20 0.3 ± 0.15 13.60 0.20 3.80 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 32 6.5 1Gx72 - HMT41GV7AMR4C (Heat Sink) Front 36.58 36.58 18.75 ± 0.15 12.3 13.3 SPD/TS DDP 1 DDP DDP DDP DDP SPD/TS DDP DDP DDP DDP 240 DDP 121 Detail of Contacts A 0.80 ± 0.05 0.3 ± 0.15 2.50 ± 0.20 0.3~0.1 1.00 1.50 ± 0.10 5.00 2.50 ± 0.20 0.20 3.80 Rev. 0.02 / Apr. 2009 DDP DDP DDP Detail of Contacts B 2.50 DDP DDP DDP DDP DDP 120 126.8 Back Detail of Contacts C Side 9.35mm max 14.90 0.4 13.60 2.15mm 1.27 ± 010mm max 33 6.5 1Gx72 - HMT41GV7AMR4C Front 52.9 ± 0.10 2.10 ± 0.15 9.8 3 ± 0.1 6.3 9.8 2.1 5.3 Detail C 18.75 ± 0.15 Registering Clock Driver DDP DDP DDP DDP DDP DDP DDP DDP 3 ± 0.1 1 DDP 15.80 ± 0.1 120 8.00 ± 0.1 2X3.0 ± 0.10 5.175 47.00 Detail A Detail B 128.95 133.35 71.00 Back SPD/TS DDP DDP DDP DDP DDP DDP DDP 240 DDP DDP 121 Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C Side 3.95mm max 9.8 0.4 2.50 ± 0.20 2.50 ± 0.20 0.3 ± 0.15 8.5 0.20 3.80 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 34 6.5 1Gx72 - HMT41GV7AMR4C (Heat Spreader) Front 29 29 18.75 ± 0.15 12.3 13.3 DDP 1 DDP DDP DDP DDP DDP DDP DDP DDP DDP 127 Back SPD/TS 120 DDP DDP DDP DDP DDP DDP DDP 240 SPD/TS DDP 121 Detail of Contacts A 0.80 ± 0.05 Detail of Contacts B 2.50 Detail of Contacts C Side 7.4mm max 9.8 0.4 2.50 ± 0.20 2.50 ± 0.20 0.3 ± 0.15 8.5 0.20 3.80 0.3~0.1 1.00 1.50 ± 0.10 5.00 6.2mm 1.27 ± 010mm max Rev. 0.02 / Apr. 2009 35
HMT41GV7AMR4C-H9 价格&库存

很抱歉,暂时无法提供与“HMT41GV7AMR4C-H9”相匹配的价格&库存,您可以联系我们找货

免费人工找货