0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
WEDEMO

WEDEMO

  • 厂商:

    ICHAUS

  • 封装:

  • 描述:

    WEDEMO - 3-CHANNEL 75 Ω LINE DRIVER - IC-Haus GmbH

  • 数据手册
  • 价格&库存
WEDEMO 数据手册
iC-WE 3-CHANNEL 75 Ω LINE DRIVER Rev D1, Page 1/10 FEATURES Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë 3 current-limited and short-circuit-proof push-pull drivers Built-in adaption to 75 Ω characteristic impedance High driver current of 300 mA at 24 V typ. Low saturation voltage up to 30 mA load current Short switching times and high slew rates by npn circuitry Wide driver supply range VB = 4.5 V to 30 V Internal free-wheeling diodes to VB and GND Schmitt trigger inputs with integrated pull-up current sources Inputs compatible to TTL and CMOS Inverting and non-inverting driver mode Bus capability due to Tri-State switching Compatible to EIA standard RS-422 Thermal shutdown with hysteresis Short-circuit-proof OC error output reports thermal shutdown or undervoltage at VCC or VB Driver disabled in case of fault extended temperature range of up to 130 °C in TSSOP20tp 4.4 mm package APPLICATIONS Ë Ë 24 V signal transfer Line driver in PLC environment PACKAGES SO20 TSSOP20 thermal pad SO16W BLOCK DIAGRAM 2 VCC 10 TNER VB NER 3 12 MODE ERROR 8 9 TRI INV LOW VOLTAGE T.SHUTDOWN SO20 1 E1 iC-WE A1 11 CHAN 1 20 E2 A2 13 CHAN 2 19 E3 A3 18 CHAN 3 GND 4-7,14-17 Copyright © 2003, iC-Haus www.ichaus.com iC-WE 3-CHANNEL 75 Ω LINE DRIVER Rev D1, Page 2/10 DESCRIPTION The iC-WE is a high-speed monolithic line driver circuit for three independent channels with built-in characteristic impedance adaption for 75Ω lines. The push-pull outputs are designed for a high driver power of typ. 300mA at 24V. They are current-limited and short-circuit protected by thermal shut-down at overtemperature. Clamp diodes to VB and to GND protect the IC outputs against echoes of mismatched lines and against damage due to ESD according to MIL-STD-883. All inputs are Schmitt triggers and contain current sources from the 5V supply VCC which select a defined High Level without external wiring. Clamp diodes to VCC and to GND furnish ESD protection. Using the INVert input it is possible to switch all channels to inverting or non-inverting operation. This enables a data transmission with balanced line activation using two iC-WE devices. For bus applications the final stages can be forced to a high impedance state using the TRI-State input. The circuit monitors supply voltages VB and VCC as well as the chip temperature and switches all final stages to high impedance in the event of a fault. The NER output which is constructed as an open collector and is also short-circuit proof reports the fault via the connected line. The error input TNER can be linked to message outputs of other ICs and allows iC-WE to report a system fault message. If the supply voltage VCC cancels, NER becomes highly resistive. PACKAGES SO20, SO16W, TSSOP20 to JEDEC Standard PIN CONFIGURATION, top view (scale 2:1) SO20 SO16W (low power applications only) TSSOP20tp 4.4 mm PIN FUNCTIONS Name Function VCC E1 E2 E3 TRI INV TNER +5 V (± 10 %) Input Supply Voltage Channel 1 Input Channel 2 Input Channel 3 Input Tristate Input, high active Invert Mode Input, high active Error Input Name VB A1 A2 A3 NER GND Function +4.5..+30 V Driver Supply Voltage Channel 1 Output Channel 2 Output Channel 3 Output Error Output, low active Ground To enhance heat removal, the TSSOP20 package offers a large area pad to be soldered (a connection is only permitted to GND). iC-WE 3-CHANNEL 75 Ω LINE DRIVER Rev D1, Page 3/10 ABSOLUTE MAXIMUM RATINGS Values beyond which damage may occur; device operation is not guaranteed. Item Symbol Parameter Supply Voltage Driver Supply Voltage Output Current in A1..3 Input Current in E1..3, INV, TRI, TNER Voltage at NER Current in NER ESD Susceptibility at all pins Operating Junction Temperature Storage Temperature Range MIL-STD-883, Method 3015, HBM 100 pF discharged through 1.5 kΩ -40 -40 Conditions Fig. Min. G001 VCC G002 VB G003 I(A) G004 I(E) G005 V(NER) G006 I(NER) E001 Vd() TG1 Tj TG2 Ts 0 0 -800 -4 Max. 7 32 800 4 32 25 2 165 150 V V mA mA V mA kV °C °C Unit THERMAL DATA Operating Conditions: VB = 4.5..30 V, VCC = 5 V ± 10 % Item T1 Symbol Ta Parameter Conditions Fig. Min. Operating Ambient Temperature iC-WE SO16W Range iC-WE SO20, iC-WE TSSOP20 (extended range to -40 °C on request) Thermal Resistance SO20 Chip to Ambient Thermal Resistance SO16W Chip to Ambient Thermal Resistance TSSOP20 Chip to Ambient surface mounted with ca. 2 cm2 heat sink at leads (see Demo Board) surface mounted with ca. 2 cm2 heat sink at leads surface mounted, thermal pad soldered to ca. 2 cm2 heat sink -25 -25 35 55 30 Typ. Max. 125 130 45 75 40 °C °C K/W K/W K/W Unit T2 T3 T4 Rthja Rthja Rthja All voltages are referenced to ground unless otherwise noted. All currents into the device pins are positive; all currents out of the device pins are negative. iC-WE 3-CHANNEL 75 Ω LINE DRIVER Rev D1, Page 4/10 ELECTRICAL CHARACTERISTICS Operating Conditions: VB = 4.5..30 V, VCC = 5 V ± 10 %, Tj = -40..125 °C, unless otherwise noted Item Symbol Parameter Conditions Tj °C Total Device 001 VCC 002 I(VCC) Permissible Supply Voltage Range Supply Current in VCC -40 27 80 125 4.5 8 8 8 8 4.5 A1..3 = lo -40 27 80 125 -40 27 80 125 -40 -40 27 80 125 -40 27 80 125 -40 27 80 125 -40 27 80 125 -800 300 40 -500 500 75 250 1500 -50 0.4 -1.5 50 1.5 -0.4 40 30 Vhys = Vt()hi - Vt()lo 35 110 8 6 5 4 7 6 4 3 16 14 12 11 11 9 7 5 15 14 13 12 5.5 24 23 21 19 30 24 21 18 15 14 12 10 8 1.2 1.4 1.15 1.05 1.05 1.0 1.55 1.5 1.5 1.4 1.1 1.0 1.0 0.9 1.45 1.4 1.4 1.3 -300 800 100 V mA mA mA mA V mA mA mA mA mA mA mA mA mA mA V V V V V V V V V V V V V V V V mA mA Ω V/µs V/µs µA V V %VCC %VCC mV Fig. Min. Typ. Max. Unit 003 VB 004 I(VB)lo Permissible Driver Supply Voltage Range Supply Current in VB 005 I(VB)hi Supply Current in VB A1..3 = hi, I(A1..3) = 0 006 I(VB)Tri Supply Current in VB, Outputs Tri-State Saturation Voltage lo TRI = hi, V(A1..3) = -0.3..VB + 0.3 V I(A) = 10 mA Driver Outputs A1..3 101 Vs()lo 102 Vs()lo Saturation Voltage lo I(A) = 30 mA 103 Vs()hi Saturation Voltage hi Vs()hi = VB - V(A), I(A) = -10 mA 104 Vs()hi Saturation Voltage hi Vs()hi = VB - V(A), I(A) = -30 mA 105 Isc()hi 106 Isc()lo 107 Rout() 108 SR()hi 109 SR()lo 110 I0() 111 Vc()hi 112 Vc()lo Inputs E1..3 201 Vt()hi 202 Vt()lo 203 Vt()hys Short-Circuit Current hi Short-Circuit Current lo Output Impedance Slew-Rate hi Slew-Rate lo Off-State Current Clamp Voltage hi Clamp Voltage lo Threshold Voltage hi Threshold Voltage lo Input Hysteresis VB = 30 V, V(A) = 0 VB = 30 V, V(A) = VB VB = 30 V, V(A) = 15 V VB = 30 V, CL = 100 pF VB = 30 V, CL = 100 pF TRI = hi, V(A) = 0..VB Vc()hi = V(A) - VB, TRI = hi, I(A) = 100 mA TRI = hi, I(A) = -100 mA iC-WE 3-CHANNEL 75 Ω LINE DRIVER Rev D1, Page 5/10 ELECTRICAL CHARACTERISTICS Operating Conditions: VB = 4.5..30 V, VCC = 5 V ± 10 %, Tj = -40..125 °C, unless otherwise noted Item Symbol Parameter Conditions Tj °C Inputs E1..3 (continued) 204 Ipu() 205 Vc()hi 206 Vc()lo 207 tp(E-A) Pull-Up Current Clamp Voltage hi Clamp Voltage lo Propagation Delay E6 A V(E) = 0..VCC - 1 V Vc(E)hi = V(E) - VCC, I(E) = 4 mA I(E) = -4 mA 80 125 25 40 0.4 -1.25 200 280 1.25 -0.4 300 330 330 150 µA V V ns ns ns ns Fig. Min. Typ. Max. Unit 208 ∆tp()INV Delay Skew E6 A for INV = lo vs. INV = hi Error Detection 301 VCCon 302 VCCoff 303 VCChys 304 VBon 305 VBoff 306 VBhys 307 VCC Turn-on Threshold VCC Undervoltage Threshold at VCC Hysteresis Turn-on Threshold VB -40 Undervoltage Threshold at VB Hysteresis Supply Voltage VCC for NER Operation I(NER) = 5 mA V(NER) = 0..30 V V(NER) = 0..30 V, NER = off or VCC < 0.3 V 150 decreasing temperature Thys = Toff - Ton 125 5 decreasing Supply VB Vbhys = Vbon - VBoff decreasing Supply VCC VCChys = VCCon - VCCoff 4.0 3.8 130 4.0 4.0 3.8 130 2.6 4.49 4.30 4.49 4.6 4.35 5.5 0.7 30 10 175 160 20 40 V V mV V V V mV V V mA µA °C °C °C %VCC %VCC mV 308 Vs(NER) Saturation Voltage lo at NER 309 Isc(NER) Short-Circuit Current lo in NER 310 I0(NER) 311 Toff 312 Ton 313 Thys 401 Vt()hi 402 Vt()lo 403 Vt()hys 404 Ipu() 405 Vc()hi 406 Vc()lo 407 tpz (TRI-A) Collector Off-State Current in NER Thermal Shutdown Threshold Thermal Lock-on Threshold Thermal Shutdown Hysteresis Threshold Voltage hi Threshold Voltage lo Input Hysteresis Pull-Up Current Clamp Voltage hi Clamp Voltage lo Propagation Delay TRI 6 A (A: lo,hi 6 Tri-State) Mode Select INV, TRI, TNER 30 Vt()hys = Vt()hi - Vt()lo V() = 0..VCC - 0.8 V Vc()hi = V() - VCC, I() = 4 mA I() = -4 mA RL(A) = 1 kΩ, RL(VCC,A) = 1 kΩ 40 35 0.4 -1.25 90 100 250 1.25 -0.4 5 5 5 µA V V µs µs µs 408 tp(INV-A) Propagation Delay INV 6 A 409 tp(TNER- Propagation Delay TNER 6 NER NER) iC-WE 3-CHANNEL 75 Ω LINE DRIVER Rev D1, Page 6/10 APPLICATIONS INFORMATION Line drivers for automation & control equipment connect digital signals with TTL or CMOS levels to 24 V systems via cables. Due to possible short-circuits, the drivers are current-limited and lock out in the event of overtemperature. 32 The maximum permissible signal frequency depends on the capacitive load of the outputs (cable length) or the 28 consequential power dissipation in the iC-WE. VB = 30V 24 Except for saturation voltages, the maximum output voltage corresponds to supply voltage VB when the output is open. Fig. 1 shows the typical DC output characteristic of a driver as a function of the load. The differential output resistance is about 75 Ω in broad ranges. Every open-circuited input is set to high level by an internal pull-up current source; an additional interconnection with VCC enhances the interference immunity. An input can be set to low level in response to a short-circuit or a resistance (
WEDEMO 价格&库存

很抱歉,暂时无法提供与“WEDEMO”相匹配的价格&库存,您可以联系我们找货

免费人工找货