0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
79RC32334-100BB

79RC32334-100BB

  • 厂商:

    IDT

  • 封装:

  • 描述:

    79RC32334-100BB - IDT Interprise Integrated Communications Processor - Integrated Device Technology

  • 数据手册
  • 价格&库存
79RC32334-100BB 数据手册
IDTTM InterpriseTM Integrated Communications Processor 79RC32334—Rev. Y Features ◆ RC32300 32-bit Microprocessor – Up to 150 MHz operation – Enhanced MIPS-II Instruction Set Architecture (ISA) – Cache prefetch instruction – Conditional move instruction – DSP instructions – Supports big or little endian operation – MMU with 32 page TLB – 8kB Instruction Cache, 2-way set associative – 2kB Data Cache, 2-way set associative – Cache locking per line – Programmable on a page basis to implement a write-through no write allocate, write-through write allocate, or write-back algorithms for cache management – Compatible with a wide variety of operating systems ◆ Local Bus Interface – Up to 75 MHz operation – 26-bit address bus – 32-bit data bus – Direct control of local memory and peripherals – Programmable system watch-dog timers – Big or little endian support ◆ Interrupt Controller simplifies exception management ◆ Four general purpose 32-bit timer/counters Programmable I/O (PIO) – Input/Output/Interrupt source – Individually programmable ◆ SDRAM Controller (32-bit memory only) – 4 banks, non-interleaved – Up to 512MB total SDRAM memory supported – Implements full, direct control of discrete, SODIMM, or DIMM memories – Supports 16Mb through 512Mb SDRAM device depths – Automatic refresh generation ◆ Serial Peripheral Interface (SPI) master mode interface ◆ UART Interface – Two 16550 compatible UARTs – Baud rate support up to 1.5 Mb/s – Modem control signals available on one channel ◆ Memory & Peripheral Controller – 6 banks, up to 64MB per bank – Supports 8-,16-, and 32-bit interfaces – Supports Flash ROM, SRAM, dual-port memory, and peripheral devices – Supports external wait-state generation – 8-bit boot PROM support – Flexible I/O timing protocols ◆ Block Diagram EJTAG In-Circuit Emulator Interface RISCore32300 RC5000 Enhanced MIPS-II ISA Compatible Integer CPU CP0 32-page TLB Interrupt Control Programmable I/O 32-bit Timers SPI Control DMA Control Local Memory/IO Control Dual UART IPBus Bridge 2kB 2-set, Lockable Data Cache 8kB 2-set Lockable Instr. Cache Figure 1 RC32334 Block Diagram IDT Peripheral Bus PCI Bridge SDRAM Control Note: This data sheet does not apply to revision Z silicon. Contact your IDT sales representative for information on revision Z. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. 1 of 30 © 2004 Integrated Device Technology, Inc. August 31, 2004 DSC 5701 IDT 79RC32334—Rev. Y 4 DMA Channels – 4 general purpose DMA, each with endianess swappers and byte lane data alignment – Supports scatter/gather, chaining via linked lists of records – Supports memory-to-memory, memory-to-I/O, memory-toPCI, PCI-to-PCI, and I/O-to-I/O transfers – Supports unaligned transfers – Supports burst transfers – Programmable DMA bus transactions burst size (up to 16 bytes) ◆ PCI Bus Interface – 32-bit PCI, up to 66 MHz – Revision 2.2 compatible – Target or master – Host or satellite – Three slot PCI arbiter – Serial EEPROM support, for loading configuration registers ◆ Off-the-shelf development tools ◆ JTAG Interface (IEEE Std. 1149.1 compatible) ◆ 256-ball BGA (1.0mm spacing) ◆ 3.3V operation with 5V tolerant I/O ◆ EJTAG in-circuit emulator interface ◆ CPU Execution Core The RC32334 integrates the RISCore32300, the same CPU core found in the award-winning RC32364 microprocessor. The RISCore32300 implements the Enhanced MIPS-II ISA. Thus, it is upwardly compatible with applications written for a wide variety of MIPS architecture processors, and it is kernel compatible with the modern operating systems that support IDT’s 64-bit RISController product family. The RISCore32300 was explicitly defined and designed for integrated processor products such as the RC32334. Key attributes of the execution core found within this product include: ◆ High-speed, 5-stage scalar pipeline executes to 150MHz. This high performance enables the RC32334 to perform a variety of performance intensive tasks, such as routing, DSP algorithms, etc. ◆ 32-bit architecture with enhancements of key capabilities. Thus, the RC32334 can execute existing 32-bit programs, while enabling designers to take advantage of recent advances in CPU architecture. ◆ Count leading-zeroes/ones. These instructions are common to a wide variety of tasks, including modem emulation, voice over IP compression and decompression, etc. ◆ Cache PREFetch instruction support, including a specialized form intended to help memory coherency. System programmers can allocate and stage the use of memory bandwidth to achieve maximum performance. ◆ 8kB of 2-way set associative instruction cache Device Overview The IDT RC32334 device is an integrated processor based on the RC32300 CPU core. This product incorporates a high-performance, lowcost 32-bit CPU core with functionality common to a large number of embedded applications. The RC32334 integrates these functions to enable the use of low-cost PC commodity market memory and I/O devices, allowing the aggressive price/performance characteristics of the CPU to be realized quickly into low-cost systems. Serial Channels Programmable I/O Serial EEPROM RC32334 Integrated Core Controller SDRAM Local Memory I/O Bus FLASH Local I/O 32-bit, 66MHz PCI Figure 2 RC32334 Based System Diagram 2 of 30 August 31, 2004 IDT 79RC32334—Rev. Y ◆ ◆ ◆ ◆ 2KB of 2-way set associative data cache, capable of write-back and write-through operation. Cache locking per line to speed real-time systems and critical system functions On-chip TLB to enable multi-tasking in modern operating systems EJTAG interface to enable sophisticated low-cost in-circuit emulation. ◆ ◆ ◆ ◆ ◆ ◆ ◆ Synchronous-DRAM Interface The RC32334 integrates a SDRAM controller which provides direct control of system SyncDRAM running at speeds to 75MHz. Key capabilities of the SDRAM controller include: ◆ Direct control of 4 banks of SDRAM (up to 2 64-bit wide DIMMs) ◆ On-chip page comparators optimize access latency. ◆ Speeds to 75MHz ◆ Programmable address map. ◆ Supports 16, 64, 128, 256, or 512Mb SDRAM devices ◆ Automatic refresh generation driven by on-chip timer ◆ Support for discrete devices, SODIMM, or DIMM modules. Thus, systems can take advantage of the full range of commodity memory that is available, enabling system optimization for cost, realestate, or other attributes. 66 MHz operation PCI revision 2.2 compliant Programmable address mappings between CPU/Local memory and PCI memory and I/O On-chip PCI arbiter Extensive buffering allows PCI to operate concurrently with local memory transfers Selectable byte-ordering swapper 5V tolerant I/O. On-Chip DMA Controller To minimize CPU exception handling and maximize the efficiency of system bandwidth, the RC32334 integrates a very sophisticated 4channel DMA controller on chip. The RC32334 DMA controller is capable of: ◆ Chaining and scatter/gather support through the use of a flexible, linked list of DMA transaction descriptors ◆ Capable of memorymemory, memoryI/O, and PCImemory DMA ◆ Unaligned transfer support ◆ Byte, halfword, word, quadword DMA support. On-Chip Peripherals The RC32334 also integrates peripherals that are common to a wide variety of embedded systems. ◆ Dual channel 16550 compatible UARTs, with modem control interface on one channel. ◆ SPI master mode interface for direct interface to EEPROM, A/D, etc. ◆ Interrupt Controller to speed interrupt decode and management ◆ Four 32-bit on-chip Timer/Counters ◆ Programmable I/O module Local Memory and I/O Controller The local memory and I/O controller implements direct control of external memory devices, including the boot ROM as well as other memory areas, and also implements direct control of external peripherals. The local memory controller is highly flexible, allowing a wide range of devices to be directly controlled by the RC32334 processor. For example, a system can be built using an 8-bit boot ROM, 16-bit FLASH cards (possibly on PCMCIA), a 32-bit SRAM or dual-port memory, and a variety of low-cost peripherals. Key capabilities include: ◆ Direct control of EPROM, FLASH, RAM, and dual-port memories ◆ 6 chip-select outputs, supporting up to 64MB per memory space ◆ Supports mixture of 8-, 16-, and 32-bit wide memory regions ◆ Flexible timing protocols allow direct control of a wide variety of devices ◆ Programmable address map for 2 chip selects ◆ Automatic wait state generation. Debug Support To facilitate rapid time to market, the RC32334 provides extensive support for system debug. First and foremost, this product integrates an EJTAG in-circuit emulation module, allowing a low-cost emulator to interoperate with programs executing on the controller. By using an augmented JTAG interface, the RC32334 is able to reuse the same low-cost emulators developed around the RC32364 CPU. Secondly, the RC32334 implements additional reporting signals intended to simplify the task of system debugging when using a logic analyzer. This product allows the logic analyzer to differentiate transactions initiated by DMA from those initiated by the CPU and further allows CPU transactions to be sorted into instruction fetches vs. data fetches. Finally, the RC32334 implements a full boundary scan capability, allowing board manufacturing diagnostics and debug. PCI Bus Bridge In order to leverage the wide availability of low-cost peripherals for the PC market as well as to simplify the design of add-in functions, the RC32334 integrates a full 32-bit PCI bus bridge. Key attributes of this bridge include: 3 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Packaging The RC32334 is packaged using a 256-lead PBGA package, with 1.0mm ball spacing. Thermal Considerations The RC32334 consumes less than 2.1 W peak power. The device is guaranteed in an ambient temperature range of 0° to +70° C for commercial temperature devices; -40° to +85° for industrial temperature devices. September 14, 2001: In the Reset category of Table 6: switched mem_addr[19:17] from Tsu22 and Thld22 to Tsu10 and Thld10; switched mem_addr[22:20] from Tsu10 and Thld10 to Tsu22 and Thld22; moved ejtag_pcst[2:0] from Reset to Debug Interface category under Tsu20 and Thld20. November 1, 2001: Added Input Voltage Undershoot parameter and 2 footnotes to Table 10. March 20, 2002: In Local System Interface section of AC Timing Characteristics table, changed values in Min column for last category of signals (Tdoh3) from 2.5 to 1.5 for all speeds. In Table 8, PCI Drive Output Pads, the Conditions for parameters VOL, VOH, VIL, and VIH were changed to read Per PCI 2.2. May 2, 2002: Changed upper ambient temperature for commercial uses back from +85° C to +70° C (changed erroneously from 70 to 85 on March 13, 2001). Added Reset State Status column to Table 1. Revised description of jtag_trst_n in Table 1 and changed this pin to a pull-down instead of a pull-up. July 3, 2002: This data sheet now describes revision Y silicon and is no longer applicable to revision Z. July 12, 2002: In Table 6: PCI section, changed Thld Min values from 1 to zero; DMA section, changed Thld9 Min values from 2 to 1; in PIO section, changed Thld9 Min values from 2 to 1; in Timer section, changed Thld10 Min values from 2 to 1. Revision Y data sheet changed from Preliminary to Final. September 18, 2002: Added cpu_coldreset_n rise time to Table 5, Clock Parameters. Added mem_addr[16] and sdram_addr[16] to Tables 1 and 12. Changed Logic Diagram to include sdram_addr[16]. December 18, 2002: In the Reset section of Table 6, AC Timing Characteristics, setup and hold time categories for cpu_coldreset_n have been deleted. July 30, 2003: In Table 8, added 3 new categories (Input Pads, PCI Input Pads, and All Pads) and added footnotes 2 and 3. March 24, 2004: In Table 1, changed description in Satellite Mode for pci_rst_n. Specified “cold” reset on pages 11 and 12. Changed the maximum value for Vcc to 4.0 in Table 10, Absolute Maximum Ratings, and changed footnote 1 to that table. Added Power Ramp-up section on page 21. August 31, 2004: Added ”Green” orderable parts on page 30. Revision History May 16, 2000: Initial version. June 8, 2000: In CPU Core Specific Signals section of Table 1, changed cpu_dr_r_n pin from Input to Output. Updated document from Advance to Preliminary Information. June 15, 2000: In Table 1, switched assertion and de-assertion for debug_cpu_dma_n signal. In the AC Timing Characteristics table, added SPI section and adjusted parameters in the Reset section. July 12, 2000: Removed “Preliminary Information” statement. Added information regarding external pull-ups and pull-downs to the Pin Description Table. Made minor revisions in other parts of the data sheet. August 3, 2000: Added Pin Layout diagram showing power and ground pins. Revised Power Curves section to reflect support of only 2x, 3x, and 4x. August 30, 2000: Added Standby mode and values to Power Consumption table. Extended Power Curve figure to 75 MHz. September 25, 2000: Changed MIPS32 ISA to Enhanced MIPS-II. In Local System Interface section of Table 6, changed Thld2 values for mem_data[31:0] from 1.8 to 1.5 ns and changed Tdoh3 values for mem_addr[25:2], etc. from 1.8 to 1.5 ns. December 12, 2000: Changed Max values for cpu_masterclock period in Table 5 and added footnote. In Table 1, added 2nd alternate function for spi_mosi, spi_miso, spi_sck. In Table 10, removed the “1” from Alt column for cpu_masterclk and added “2” in Alt column for pins G3, G4, H2. In RC32334 Alternate Signal Functions table: added pin T2; added pin names in Alt #2 column for pins G3, G4, H2; added PIO[11] to Alt #2 column for pin R3. January 4, 2001: In Table 6 under Interrupt Handling, moved the values for Tsu9 from the Max to the Min columns. March 13, 2001: Changed upper ambient temperature for industrial and commercial uses from +70° C to +85° C. June 7, 2001: In the Clock Parameters table, added footnote 3 to output_clk category and added NA to Min and Max columns. In Figure 3 (Reset Specification), enhanced signal line for cpu_masterclk. In Local System Interface section of AC Timing Characteristics table, changed values in Min column for last category of signals (Tdoh3) from 1.5 to 2.5 for all speeds. In SDRAM Controller section of same table, changed values in Min column for last category of signals (9 signals) from 1 to 2.5 for all speeds. 4 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Pin Description Table The following table lists the pins provided on the RC32334. Note that those pin names followed by ”_n” are active-low signals. All external pull-ups and pull-downs require 10 kΩ resistor. Name Type Reset Drive State Strength Status Capability Description Local System Interface mem_data[31:0] mem_addr[25:2] I/O I/O Z [25:10] Z [9:2] L High Local System Data Bus Primary data bus for memory. I/O and SDRAM. [25:17] Low Memory Address Bus These signals provide the Memory or DRAM address, during a Memory or DRAM bus transaction. During [16:2] High each word data, the address increments either in linear or sub-block ordering, depending on the transaction type. The table below indicates how the memory write enable signals are used to address discreet memory port width types. Port Width Pin Signals mem_we_n[3] mem_we_n[3] mem_we_n[2] mem_we_n[1] mem_we_n[0] mem_we_n[0] mem_we_n[0] Byte Low Write Enable Byte Write Enable DMA (32-bit) mem_we_n[3] 32-bit 16-bit 8-bit mem_we_n[2] mem_we_n[1] mem_we_n[2] mem_we_n[1] Not Used (Driven Low) mem_addr[0] Byte High Write Enable mem_addr[1] Not Used (Driven High) mem_addr[1] mem_addr[22] Alternate function: reset_boot_mode[1]. mem_addr[21] Alternate function: reset_boot_mode[0]. mem_addr[20] Alternate function: reset_pci_host_mode. mem_addr[19] Alternate function: modebit [9]. mem_addr[18] Alternate function: modebit [8]. mem_addr[17] Alternate function: modebit [7]. mem_addr[16] Alternate function: sdram_addr[16]. mem_addr[15] Alternate function: sdram_addr[15]. mem_addr[14] Alternate function: sdram_addr[14]. mem_addr[13] Alternate function: sdram_addr[13]. mem_addr[11] Alternate function: sdram_addr[11]. mem_addr[10] Alternate function: sdram_addr[10]. mem_addr[9] Alternate function: sdram_addr[9]. mem_addr[8] Alternate function: sdram_addr[8]. mem_addr[7] Alternate function: sdram_addr[7]. mem_addr[6] Alternate function: sdram_addr[6]. mem_addr[5] Alternate function: sdram_addr[5]. mem_addr[4] Alternate function: sdram_addr[4]. mem_addr[3] Alternate function: sdram_addr[3]. mem_addr[2] Alternate function: sdram_addr[2]. mem_cs_n[5:0] Output H Low with internal pull-up High Memory Chip Select Negated Recommend external pull-up. Signals that a Memory Bank is actively selected. Memory Output Enable Negated Recommend external pull-up. Signals that a Memory Bank can output its data lines onto the cpu_ad bus. Table 1 Pin Description (Part 1 of 7) mem_oe_n Output H 5 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Reset Drive State Strength Status Capability Name Type Description Memory Write Enable Negated Bus Signals which bytes are to be written during a memory transaction. Bits act as Byte Enable and mem_addr[1:0] signals for 8-bit or 16-bit wide addressing. Memory Wait Negated Requires external pull-up. SRAM/IOI/IOM modes: Allows external wait-states to be injected during last cycle before data is sampled. DPM (dual-port) mode: Allows dual-port busy signal to restart memory transaction. Alternate function: sdram_wait_n. Memory FCT245 Output Enable Negated Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to a memory or I/O bank. Memory FCT245 Direction Xmit/Rcv Negated Recommend external pull-up. Alternate function: cpu_dt_r_n. See CPU Core Specific Signals below. Output Clock Optional clock output. mem_we_n[3:0] Output H High mem_wait_n Input — mem_245_oe_n Output H Low mem_245_dt_r_n Output Z High output_clk PCI Interface pci_ad[31:0] Output cpu_mas terclk High I/O Z PCI PCI Multiplexed Address/Data Bus Address driven by Bus Master during initial frame_n assertion, and then the Data is driven by the Bus Master during writes; or the Data is driven by the Bus Slave during reads. PCI Multiplexed Command/Byte Enable Bus Command (not negated) Bus driven by the Bus Master during the initial frame_n assertion. Byte Enable Negated Bus driven by the Bus Master during the data phase(s). PCI Parity Even parity of the pci_ad[31:0] bus. Driven by Bus Master during Address and Write Data phases. Driven by the Bus Slave during the Read Data phase. PCI Frame Negated Driven by the Bus Master. Assertion indicates the beginning of a bus transaction. De-assertion indicates the last datum. PCI Target Ready Negated Driven by the Bus Slave to indicate the current datum can complete. PCI Initiator Ready Negated Driven by the Bus Master to indicate that the current datum can complete. PCI Stop Negated Driven by the Bus Slave to terminate the current bus transaction. PCI Initialization Device Select Uses pci_req_n[2] pin. See the PCI subsection. PCI Parity Error Negated Driven by the receiving Bus Agent 2 clocks after the data is received, if a parity error occurs. System Error External pull-up resistor is required. Driven by any agent to indicate an address parity error, data parity during a Special Cycle command, or any other system error. PCI Clock Clock for PCI Bus transactions. Uses the rising edge for all timing references. Table 1 Pin Description (Part 2 of 7) pci_cbe_n[3:0] I/O Z PCI pci_par I/O Z PCI pci_frame_n I/O Z PCI pci_trdy_n pci_irdy_n pci_stop_n pci_idsel_n pci_perr_n pci_serr_n I/O I/O I/O Input I/O I/O Opencollector Input Z Z Z PCI PCI PCI — Z Z PCI PCI pci_clk — 6 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Reset Drive State Strength Status Capability Name Type Description PCI Reset Negated Host mode: Resets all PCI related logic. Satellite mode: Resets all PCI related logic and also warm resets the 32334. PCI Device Select Negated Driven by the target to indicate that the target has decoded the present address as a target address. PCI Bus Request #2 Negated Requires external pull-up. Host mode: pci_req_n[2] is an input indicating a request from an external device. Satellite mode: used as pci_idsel pin which selects this device during a configuration read or write. Alternate function: pci_idsel (satellite). PCI Bus Request #1 Negated Requires external pull-up. Host mode: pci_req_n[1] is an input indicating a request from an external device. Alternate function: Unused (satellite). PCI Bus Request #0 Negated Requires external pull-up for burst mode. Host mode: pci_req_n[0] is an input indicating a request from an external device. Satellite mode: pci_req_n[0] is an output indicating a request from this device. PCI Bus Grant #2 Negated Recommend external pull-up. Host mode: pci_gnt_n[2] is an output indicating a grant to an external device. Satellite mode: pci_gnt_n[2] is used as the pci_inta_n output pin. Alternate function: pci_inta_n (satellite). PCI Bus Grant #1 Negated Recommend external pull-up. Host mode: pci_gnt_n[1] is an output indicating a grant to an external device. Satellite mode: Used as pci_eprom_cs output pin for Serial Chip Select for loading PCI Configuration Registers in the RC32334 Reset Initialization Vector PCI boot mode. Defaults to the output direction at reset time. 1st Alternate function: pci_eeprom_cs (satellite). 2nd Alternate function: PIO[11]. PCI Bus Grant #0 Negated Host mode: pci_gnt_n[0] is an output indicating a grant to an external device. Recommend external pullup. Satellite mode: pci_gnt_n[0] is an input indicating a grant to this device. Require external pull-up. PCI Interrupt #A Negated Uses pci_gnt_n[2]. See the PCI subsection. PCI Lock Negated Driven by the Bus Master to indicate that an exclusive operation is occurring. pci_rst_n Input L — pci_devsel_n pci_req_n[2] I/O Input Z Z PCI — pci_req_n[1] Input Z — pci_req_n[0] I/O Z High pci_gnt_n[2] Output Z1 High pci_gnt_n[1] / pci_eeprom_cs I/O X for 1 pci clock then H2 High pci_gnt_n[0] I/O Z High pci_inta_n Output Opencollector Input Z PCI pci_lock_n — 1 Z in host mode; L in satellite non-boot mode; Z in satellite boot mode. 2 H in host mode; L in satellite non-boot and boot modes. X = unknown. SDRAM Control Interface sdram_addr_12 Output L High SDRAM Address Bit 12 and Precharge All SDRAM mode: Provides SDRAM address bit 12 (10 on the SDRAM chip) during row address and "precharge all" signal during refresh, read and write command. SDRAM RAS Negated SDRAM mode: Provides SDRAM RAS control signal to all SDRAM banks. Table 1 Pin Description (Part 3 of 7) sdram_ras_n Output H High 7 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Reset Drive State Strength Status Capability Name Type Description SDRAM CAS Negated SDRAM mode: Provides SDRAM CAS control signal to all SDRAM banks. SDRAM WE Negated SDRAM mode: Provides SDRAM WE control signal to all SDRAM banks. SDRAM Clock Enable SDRAM mode: Provides clock enable to all SDRAM banks. SDRAM Chip Select Negated Bus Recommend external pull-up. SDRAM mode: Provides chip select to each SDRAM bank. SODIMM mode: Provides upper select byte enables [7:4]. SDRAM SODIMM Select Negated Bus SDRAM mode: Not used. SDRAM SODIMM mode: Upper and lower chip selects. SDRAM Byte Enable Mask Negated Bus (DQM) SDRAM mode: Provides byte enables for each byte lane of all DRAM banks. SODIMM mode: Provides lower select byte enables [3:0]. SDRAM FCT245 Output Enable Negated Recommend external pull-up. SDRAM mode: Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to any DRAM bank. SDRAM FCT245 Direction Transmit/Receive Recommend external pull-up. Uses cpu_dt_r_n. See CPU Core Specific Signals below. sdram_cas_n sdram_we_n sdram_cke sdram_cs_n[3:0] Output Output Output Output H H H H High High High High sdram_s_n[1:0] Output H High sdram_bemask_n [3:0] sdram_245_oe_n Output H High Output H Low sdram_245_dt_r_n Output Z High On-Chip Peripherals dma_ready_n[1:0] / dma_done_n[1:0] I/O Z Low DMA Ready Negated Bus Requires external pull-up. Ready mode: Input pin for each general purpose DMA channel that can initiate the next datum in the current DMA descriptor frame. Done mode: Input pin for each general purpose DMA channel that can terminate the current DMA descriptor frame. dma_ready_n[0] 1st Alternate function PIO[1]; 2nd Alternate function: dma_done_n[0]. dma_ready_n[1] 1st Alternate function PIO[0]; 2nd Alternate function: dma_done_n[1]. Programmable Input/Output General purpose pins that can each be configured as a general purpose input or general purpose output. These pins are multiplexed with other pin functions: uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0], pci_gnt_n[1], spi_mosi, spi_miso, spi_sck, spi_ss_n, uart_rx[0], uart_tx[0], uart_rx[1], uart_tx[1], timer_tc_n[0], dma_ready_n[0], dma_ready_n[1]. Note that pci_gnt_n[1], spi_mosi, spi_sck, and spi_ss_n default to outputs at reset time. The others default to inputs. Timer Terminal Count Overflow Negated Terminal count mode (timer_tc_n): Output indicating that the timer has reached its count compare value and has overflowed back to 0. Gate mode (timer_gate_n): input indicating that the timer may count one tick on the next clock edge. 1st Alternate function: PIO[2]. 2nd Alternate function: timer_gate_n[0]. UART Receive Data Bus UART mode: Each UART channel receives data on their respective input pin. uart_rx[0] Alternate function: PIO[6]. uart_rx[1] Alternate function: PIO[4]. Table 1 Pin Description (Part 4 of 7) pio[15:0] I/O See related pins Low timer_tc_n[0] / timer_gate_n[0] I/O Z Low uart_rx[1:0] I/O Z Low 8 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Reset Drive State Strength Status Capability Name Type Description UART Transmit Data Bus UART mode: Each UART channel sends data on their respective output pin. Note that these pins default to inputs at reset time and must be programmed via the PIO interface before being used as UART outputs. uart_tx[0] Alternate function: PIO[5]. uart_tx[1] Alternate function: PIO[3]. UART Transmit Data Bus UART mode: Data bus modem control signal pins for UART channel 0. uart_cts_n[0] Alternate function: PIO[15]. uart_dsr_n[0] Alternate function: PIO[14]. uart_dtr_n[0] Alternate function: PIO[13]. uart_rts_n[0] Alternate function: PIO[12]. SPI Data Output Serial mode: Output pin from RC32334 as an Input to a Serial Chip for the Serial data input stream. In PCI satellite mode, acts as an Output pin from RC32334 that connects as an Input to a Serial Chip for the Serial data input stream for loading PCI Configuration Registers in the RC32334 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[10]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_mdo. SPI Data Input Serial mode: Input pin to RC32334 from the Output of a Serial Chip for the Serial data output stream. In PCI satellite mode, acts as an Input pin from RC32334 that connects as an output to a Serial Chip for the Serial data output stream for loading PCI Configuration Registers in the RC32334 Reset Initialization Vector PCI boot mode. Defaults to input direction at reset time. 1st Alternate function: PIO[7]. 2nd Alternate function: pci_eeprom_mdi. SPI Clock Serial mode: Output pin for Serial Clock. In PCI satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the RC323334 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[9]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_sk. SPI Chip Select Output pin selecting the serial protocol device as opposed to the PCI satellite mode EEPROM device. Alternate function: PIO[8]. Defaults to the output direction at reset time. uart_tx[1:0] I/O Z Low uart_cts_n[0] uart_dsr_n[0] uart_dtr_n[0] uart_rts_n[0] I/O Z Low spi_mosi I/O L Low spi_miso I/O Z Low spi_sck I/O L Low spi_ss_n I/O H Low CPU Core Specific Signals cpu_nmi_n Input — CPU Non-Maskable Interrupt Requires external pull-up. This interrupt input is active low to the CPU. CPU Master System Clock Provides the basic system clock. CPU Interrupt Requires external pull-up. These interrupt inputs are active low to the CPU. CPU Cold Reset This active-low signal is asserted to the RC32334 after Vcc becomes valid on the initial power-up. The Reset initialization vectors for the RC32334 are latched by cold reset. Table 1 Pin Description (Part 5 of 7) cpu_masterclk cpu_int_n[5:4], [2:0] Input Input — — cpu_coldreset_n Input L — 9 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Reset Drive State Strength Status Capability Name Type Description CPU Direction Transmit/Receive This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during read operations. 1st Alternate function: mem_245_dt_r_n. 2nd Alternate function: sdram_245_dt_r_n. cpu_dt_r_n Output Z — JTAG Interface Signals jtag_tck Input — JTAG Test Clock Requires external pull-down. An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of the system and the processor clock with nominal 50% duty cycle. JTAG Test Data In Requires an external pull-up on the board. On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register, depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG). This pin is also used as the ejtag_dint_n signal in the EJTAG mode. JTAG Test Data Out The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck. When no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a nonsequential program counter at the processor clock or at a division of processor clock. This pin is also used as the ejtag_tpc signal in the EJTAG mode. JTAG Test Mode Select Requires external pull-up. The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation. jtag_tms is sampled on the rising edge of the jtag_tck. JTAG Test Reset When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven low (pulled down) or the jtag_tms/ejtag_tms signals must be pulled up and jtag_clk actively clocked. EJTAG Test Clock Processor Clock. During Real Time Mode, this signal is used to capture address and data from the ejtag_tpc signal at the processor clock speed or any division of the internal pipeline. EJTAG PC Trace Status Information 111 (STL) Pipe line Stall 110 (JMP) Branch/Jump forms with PC output 101 (BRT) Branch/Jump forms with no PC output 100 (EXP) Exception generated with an exception vector code output 011 (SEQ) Sequential performance 010 (TST) Trace is outputted at pipeline stall time 001 (TSQ) Trace trigger output at performance time 000 (DBM) Run Debug Mode Alternate function: modebit[2:0]. EJTAG DebugBoot The ejtag_debugboot input is used during reset and forces the CPU core to take a debug exception at the end of the reset sequence instead of a reset exception. This enables the CPU to boot from the ICE probe without having the external memory working. This input signal is level sensitive and is not latched internally. This signal will also set the JtagBrk bit in the JTAG_Control_Register[12]. jtag_tdi, ejtag_dint_n Input — jtag_tdo, ejtag_tpc Output Z High jtag_tms Input — jtag_trst_n Input L — ejtag_dclk Output Z — ejtag_pcst[2:0] I/O Z Low ejtag_debugboot Input — Requires external pulldown ejtag_tms Input EJTAG Test Mode Select — Requires An external pull-up on the board is required. external pull- The ejtag_tms is sampled on the rising edge of jtag_tck. up Table 1 Pin Description (Part 6 of 7) 10 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Reset Drive State Strength Status Capability Name Type Description Debug Signals debug_cpu_dma_n I/O Z Low Debug CPU versus DMA Negated De-assertion high during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction was generated from the CPU. Assertion low during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction was generated from DMA. Alternate function: modebit[6]. Debug CPU Acknowledge Negated Indicates either a data acknowledge to the CPU or DMA. Alternate function: modebit[4]. Debug CPU Address/Data Strobe Negated Assertion indicates that either a CPU or a DMA transaction is beginning and that the mem_data[31:4] bus has the current block address. Alternate function: modebit[5]. Debug CPU Instruction versus Data Negated Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a CPU or DMA data transaction. De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a CPU instruction transaction. Alternate function: modebit[3]. Table 1 Pin Description (Part 7 of 7) debug_cpu_ack_n I/O Z Low debug_cpu_ads_n I/O Z Low debug_cpu_i_d_n I/O Z Low Mode Bit Settings to Configure Controller on Reset The following table lists the mode bit settings to configure the controller on cold reset. Pin ejtag_pcst[2:0] Mode Bit 2:0 MSB (2) Description Clock Multiplier MasterClock is multiplied internally to generate PClock Value 0 1 2 3 4 5 6 7 debug_cpu_i_d_n debug_cpu_ack_n debug_cpu_ads_n debug_cpu_dma_n mem_addr[17] 3 4 5 6 7 EndBit Reserved Reserved TmrIntEn Enables/Disables the timer interrupt on Int*[5] Reserved for future use Table 2 Boot-Mode Configuration Settings (Part 1 of 2) 0 1 0 0 0 1 1 Enables timer interrupt Disables timer interrupt Mode Setting Multiply by 2 Multiply by 3 Multiply by 4 Reserved Reserved Reserved Reserved Reserved Little-endian ordering Big-endian ordering 11 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Pin mem_addr[19:18] Mode Bit 9:8 MSB (9) Description Boot-Prom Width specifies the memory port width of the memory space which contains the boot prom. Value 00 01 10 11 Table 2 Boot-Mode Configuration Settings (Part 2 of 2) Mode Setting 8 bits 16 bits 32 bits Reserved reset_boot_mode Settings By using the non-boot mode cold reset initialization mode the user can change the internal register addresses from base 1800_0000 to base 1900_0000, as required. The RC32334 cold reset-boot mode initialization setting values and mode descriptions are listed below. Pin Reset Boot Mode Description Tri-state memory bus and EEPROM bus during cold reset_n assertion Reserved PCI-boot mode (pci_host_mode must be in satellite mode) RC32334 will reset either from a cold reset or from a PCI reset. Boot code is provided via PCI. Standard-boot mode Boot from the RC32334’s memory controller (typical system). Table 3 RC32334 reset_boot_mode Initialization Settings Value Mode Settings 11 10 01 PCI_boot_mode Tri-state_bus_mode mem_addr[22:21] 1:0 MSB (1) 00 standard_boot_mode pci_host_mode Settings During cold reset initialization, the RC32334’s PCI interface can be set to the Satellite or Host mode settings. When set to the Host mode, the CPU must configure the RC32334’s PCI configuration registers, including the read-only registers. If the RC32334’s PCI is in the PCI-boot mode Satellite mode, read-only configuration registers are loaded by the serial EEPROM. Pin Reset Boot Mode Description PCI is in satellite mode PCI is in host mode (typical system) Table 4 RC32334 pci_host_mode Initialization Settings Value Mode Settings 1 0 PCI_satellite PCI_host mem_addr[20] PCI host mode 12 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Logic Diagram — RC32334 CPU Core signals mem_addr[25:2] cpu_masterclk cpu_coldreset_n cpu_nmi_n cpu_int_n[5:4],[2:0] cpu_dt_r_n mem_data[31:0] mem_cs_n[5:0] mem_oe_n mem_we_n[3:0] mem_wait_n mem_245_oe_n mem_245_dt_r_n PCI Interface RC32334 pci_gnt_n[2:0] Symbol Logic sdram_ras_n sdram_cas_n sdram_we_n sdram_cke sdram_cs_n[3:0] sdram_bemask_n[3:0] sdram_245_oe_n sdram_245_dt_r_n sdram_s_n_[1:0] dma_ready_n[1:0] pci_inta_n pci_lock_n pci_eeprom_mdi pci_eeprom_mdo pci_eeprom_cs pci_eeprom_sk jtag_tck jtag_tms jtag_tdi jtag_tdo jtag_trst_n JTAG Interface timer_tc_n[0] uart_rx[1:0] uart_tx[1:0] uart_cts_n[0] uart_rts_n[0] uart_dtr_n[0] uart_dsr_n[0] Vss ejtag_dclk ejtag_pcst[2:0] ejtag_tms ejtag_debugboot ejtag_tpc debug_cpu_dma_n debug_cpu_ack_n debug_cpu_i_d_n debug_cpu_ads_n Gnd Debug pio[15:0] 13 of 30 PIO Interface Vcc to I/O Vcc to core VccP VssP Power/ Ground Vcc I/O Vcc core EJTAG UART Timer DMA Interface SDRAM Signals pci_cbe_n[3:0] pci_ad[31:0] pci_par pci_frame_n pci_trdy_n pci_irdy_n pci_stop_n pci_idsel pci_perr_n pci_serr_n pci_clk pci_rst_n pci_devsel_n pci_req_n[2:0] output_clk spi_mosi spi_ss_n spi_sck sdram_addr[16:13] sdram_addr[12] sdram_addr[11:2] SPI Interface spi_miso Local System Interface August 31, 2004 IDT 79RC32334—Rev. Y Clock Parameters — RC32334 (Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, Vcc I/O = +3.3V±5%,Vcc Core = +3.3V±5%) RC32334 100MHz Min cpu_masterclock HIGH cpu_masterclock LOW cpu_masterclock period1 cpu_masterclock Rise & Fall Time2 cpu_masterclock Jitter pci_clk Rise & Fall Time pci_clk Period1 jtag_tck Rise & Fall Time ejtag_dck period jtag_tck clock period ejtag_dclk High, Low Time ejtag_dclk Rise, Fall Time output_clk3 cpu_coldreset_n Asserted during power-up cpu_coldreset_n Rise Time 1. Parameter Symbol tMCHIGH tMCLOW tMCP Test Conditions Transition ≤ 2ns Transition ≤ 2ns — RC32334 133MHz Min 6.75 6.75 15 — — — 15 — 10 100 4 — N/A 120 — Max — — 66.6 3 + 250 1.6 — 5 — — — 1 N/A — 5 RC32334 150MHz Min 6 6 13.33 — — — 15 — 10 100 4 — N/A 120 — Max — — 66.6 3 + 200 1.6 — 5 — — — 1 N/A — 5 Units ns ns ns ns ps ns ns ns ns ns ns ns — ms ns Max — — 66.6 3 + 250 1.6 — 5 — — — 1 N/A — 5 8 8 20 — — — 15 tMCRise, tMCFall — tJITTER tPCRise, tPCFall tPCP tJCRise, tJCFall tDCK, t11 tTCK, t3 tDCK High, t9 tDCK Low, t10 tDCK Rise, t9 tDCK Fall, t10 Tdo21 power-on sequence tCRRise — — PCI 2.2 — 10 100 4 — N/A 120 — Table 5 Clock Parameters - RC32334 cpu_masterclock frequency should never be below pci_clk frequency if PCI interface is used. and fall times are measured between 10% and 90% 2. Rise 3. Output_clk should not be used in a system. Only the cpu_masterclock or its derivative must be used to drive all the subsystems with designs based on the RC32334 device. Refer to the RC3233x Device Errata for more information. Reset Specification VCC cpu_masterclk (MClk) cpu_coldreset_n tCRRise modebit[9:0] >= 110 ms 120 ms Figure 3 Mode Configuration Interface Cold Reset Sequence >= 10 ms 14 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Power Ramp-up There is no special requirement for how fast Vcc and VccP ramp up to 3.3V. However, all timing references are based on Vcc and VccP stabilized at 3.3V -5%. AC Timing Characteristics — RC32334 (Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, Vcc I/O = +3.3V±5%,Vcc Core = +3.3V±5%) Reference Edge RC323341 RC323341 RC323341 100MHz 133MHz 150MHz Min Max Min Max Min Max User Manual Unit Timing Diagram Reference ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Chapter 10, Figures 10.6 through 10.8 Chapter 9, Figures 9.2 and 9.3 Signal Symbol Local System Interface mem_data[31:0] (data phase) mem_data[31:0] (data phase) cpu_dt_r_n mem_data[31:0] mem_data[31:0] output hold time mem_data[31:0] (tristate disable time) mem_data[31:0] (tristate to data time) mem_wait_n mem_wait_n mem_addr[25:2] mem_cs_n[5:0] mem_oe_n, mem_245_oe_n mem_we_n[3:0] mem_245_dt_r_n mem_addr[25:2] mem_cs_n[5:0] mem_oe_n, mem_we_n[3:0], mem_245_dt_r_n, mem_245_oe_n PCI pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, Tsu pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n, pci_lock_n3 pci_idsel, pci_req_n[2], pci_req_n[1], pci_req_n[0], Tsu pci_gnt_n[0], pci_inta_n pci_gnt_n[0] Tsu pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, Thld pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_rst_n, pci_devsel_n, pci_lock_n3 pci_idsel, pci_req_n[2], pci_req_n[1], pci_req_n[0], Thld pci_gnt_n[0], pci_inta_n pci_eeprom_mdi Tsu pci_clk rising 3 — 3 — 3 — ns Tsu2 Thld2 Tdo3 Tdo4 Tdoh1 Tdz Tzd Tsu6 Thld8 Tdo5 Tdo6 Tdo7 Tdo7a Tdo8 Tdoh3 cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising 6 1.5 — — 1 — — 9 1 — — — — — 1.5 — — 15 12 — 122 122 — — 12 12 12 15 15 — 5 1.5 — — 1 — — 7 1 — — — — — 1.5 — — 12 10 — 102 102 — — 9 9 9 12 12 — 4.8 1.5 — — 1 — — 6 1 — — — — — 1.5 — — 10 9.3 — 9.32 9.32 — — 8 8 8 10 10 — pci_clk rising pci_clk rising pci_clk rising 5 5 0 — — — 5 5 0 — — — 5 5 0 — — — ns ns ns Per PCI 2.2 pci_clk rising pci_clk rising, pci_eeprom_sk falling 0 15 — — 0 12 — — 0 10 — — ns ns Table 6 AC Timing Characteristics - RC32334 (Part 1 of 4) 15 of 30 August 31, 2004 IDT 79RC32334—Rev. Y RC323341 RC323341 RC323341 100MHz 133MHz 150MHz Min 15 — — 2 Max — 15 15 6 Min 12 — — 2 Max — 12 12 6 Min 10 — — 2 Max — 10 10 6 User Manual Unit Timing Diagram Reference ns ns ns ns Per PCI 2.2 pci_clk rising 2 6 2 6 2 6 ns Signal Symbol Reference Edge pci_clk rising, pci_eeprom_sk falling pci_clk rising, pci_eeprom_sk falling pci_clk rising pci_clk rising pci_eeprom_mdi pci_eeprom_mdo, pci_eeprom_cs pci_eeprom_sk Thld Tdo Tdo pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, Tdo pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n pci_req_n[0], pci_gnt_[2], pci_gnt_n[1], pci_gnt_n[0], pci_inta_n SDRAM Controller sdram_245_dt_r_n sdram_ras_n, sdram_cas_n, sdram_we_n, sdram_cs_n[3:0], sdram_s_n[1:0], sdram_bemask_n[3:0], sdram_cke sdram_addr_12 sdram_245_oe_n sdram_245_dt_r_n sdram_ras_n, sdram_cas_n, sdram_we_n, sdram_cs_n[3:0], sdram_s_n[1:0], sdram_bemask_n[3:0] sdram_cke, sdram_addr_12, sdram_245_oe_n DMA dma_ready_n[1:0], dma_done_n[1:0] dma_ready_n[1:0], dma_done_n[1:0] Interrupt Handling cpu_int_n[5:4], cpu_int_n[2:0], cpu_nmi_n cpu_int_n[5:4], cpu_int_n[2:0], cpu_nmi_n PIO PIO[15:0] PIO[15:0] PIO[15:10], PIO[8:0] PIO[9] PIO[15:10], PIO[8:0] PIO[9] Timer timer_tc_n[0], timer_gate_n[0] timer_tc_n[0], timer_gate_n[0] timer_tc_n[0], timer_gate_n[0] timer_tc_n[0], timer_gate_n[0] Tsu8 Thld10 Tdo15 Tdoh6 Tsu7 Thld9 Tdo16 Tdo19 Tdoh7 Tdoh7 Tsu9 Thld13 Tsu7 Thld9 Tdo8 Tdo9 Tdo cpu_masterclk rising cpu_masterclk rising — — 15 12 — — 12 9 — — 10 8 ns ns Tdo10 Tdo11 Tdoh4 Tdoh4 cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising — — 1 2.5 12 12 — — — — 1 2.5 9 9 — — — — 1 2.5 8 8 — — ns ns ns ns Chapter 11, Figures 11.4 and 11.5 cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising 9 1 9 1 9 1 — — 1 1 9 1 — 1 — — — — — — 15 15 — — — — 15 — 7 1 9 1 7 1 — — 1 1 7 1 — 1 — — — — — — 12 12 — — — — 12 — 6 1 6 1 6 1 — — 1 1 6 1 — 1 — — — — — — 10 10 — — — — 10 — ns ns ns ns ns ns ns ns ns ns ns ns ns ns Chapter 13, Figure 13.4 Chapter 14, Figure 14.12 Chapter 15, Figures 15.9 and 15.10 Chapter 16, Figures 16.6 and 16.7 Table 6 AC Timing Characteristics - RC32334 (Part 2 of 4) 16 of 30 August 31, 2004 IDT 79RC32334—Rev. Y RC323341 RC323341 RC323341 100MHz 133MHz 150MHz Min Max Min Max Min Max User Manual Unit Timing Diagram Reference ns ns ns ns Chapter 17, Figure 17.16 Signal Symbol Reference Edge UARTs uart_rx[1:0], uart_tx[1:0], uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0] uart_rx[1:0], uart_tx[1:0], uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0] uart_rx[1:0], uart_tx[1:0], uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0] uart_rx[1:0], uart_tx[1:0], uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0] SPI Interface spi_clk, spi_mosi, spi_miso spi_clk, spi_mosi, spi_miso spi_clk, spi_mosi, spi_miso spi_clk, spi_mosi, spi_miso Reset mem_addr[19:17] mem_addr[19:17] mem_addr[22:20], mem_addr[22:20] Debug Interface debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n, ejtag_pcst[2:0] debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n, ejtag_pcst[2:0] debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n JTAG Interface jtag_tms, jtag_tdi, jtag_trst_n jtag_tms, jtag_tdi, jtag_trst_n jtag_tdo t5 t6 t4 jtag_tck rising jtag_tck rising jtag_tck falling 10 10 — — — 10 10 10 — — — 10 10 10 — — — 10 ns ns ns See Figure 4 below. Tsu20 cpu_coldreset_n rising 10 — 10 — 10 — ms Tsu10 Thld10 Tsu22 Thld22 cpu_coldreset_n rising cpu_coldreset_n rising cpu_masterclk rising cpu_masterclk rising 10 1 9 1 — — — — 10 1 7 1 — — — — 10 1 6 1 — — — — ms ns ns ns Chapter 19 Figures 19.8 and 19.9 Tsu7 Thld9 Tdo16 Tdoh8 cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising 15 15 — 1 — — 15 — 12 12 — 1 — — 12 — 10 10 — 1 — — 10 — ns ns ns ns Chapter 18, Figures 18.8 and 18.9 Tsu7 Thld9 Tdo16 Tdoh8 cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising cpu_masterclk rising 15 15 — 1 — — 15 — 12 12 — 1 — — 12 — 10 10 — 1 — — 10 — Thld20 cpu_coldreset_n rising 1 — 1 — 1 — ns Tdo20 Tdoh20 cpu_masterclk rising cpu_masterclk rising — 1 15 — — 1 12 — — 1 10 — ns ns Chapter 19, Figure 19.9 and Chapter 9, Figure 9.2 Table 6 AC Timing Characteristics - RC32334 (Part 3 of 4) 17 of 30 August 31, 2004 IDT 79RC32334—Rev. Y RC323341 RC323341 RC323341 100MHz 133MHz 150MHz Min Max Min Max Min Max User Manual Unit Timing Diagram Reference ns ns ns ns ns ns ns ns ns See Figure 4 below. Signal Symbol Reference Edge EJTAG Interface ejtag_tms, ejtag_debugboot ejtag_tms, ejtag_debugboot jtag_tdo Output Delay Time jtag_tdi Input Setup Time jtag_tdi Input Hold Time jtag_trst_n Low Time jtag_trst_n Removal Time ejtag_tpc Output Delay Time ejtag_pcst Output Delay Time 1. t5 t6 tTDODO, t4 tTDIS, t5 tTDIH, t6 tTRSTR, t13 tTPCDO, t8 jtag_tclk rising jtag_clk rising jtag_tck falling jtag_tck rising jtag_tck rising jtag_tck rising ejtag_dclk rising 4 2 — 4 2 100 3 -1 -1 — — 6 — — — — 3 3 4 2 — 4 2 100 3 -1 -1 — — 6 — — — — 3 3 4 2 — 4 2 100 3 -1 -1 — — 6 — — — — 3 3 tTRSTLow, t12 — tPCSTDO, t7 ejtag_dclk rising Table 6 AC Timing Characteristics - RC32334 (Part 4 of 4) At all pipeline frequencies. design. pci_rst_n is tested per PCI 2.2 as an asynchronous signal. 2. Guaranteed by 3. 18 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Standard EJTAG Timing — RC32334 Figure 4 represents the timing diagram for the EJTAG interface signals. The standard JTAG connector is a 10-pin connector providing 5 signals and 5 ground pins. For Standard EJTAG, a 24-pin connector has been chosen providing 12 signals and 12 ground pins. This guarantees elimination of noise problems by incorporating signal-ground type arrangement. Refer to the RC32334 User Reference Manual for connector pinout and mechanical specifications. t3 jtag_tck t14 ejtag_dclk t1 t14 t2 t15 jtag_tdi/ejtag_dint_n ejtag_tms t5 jtag_tdo t4 ejtag_pcst[2:0] t7 jtag_trst_n t6 jtag_tdo t8 ejtag_tpc,ejtag_pcst[2:0] capture t11 t15 t9 t10 jtag_tdo/ejtag_tpc, ejtag_tpc[8:2] ejtag_tpc ejtag_pcst t13 Notes to diagram: t1 = tTCKlow t2 = tTCKHIGH t3 = tTCK t4 = tTDODO t5 = tTDIS t6 = tTDIH t7 = tPCSTDO t8 = tTPCDO t9 = tDCKHIGH t10 = tDCKLOW Figure 4 Standard EJTAG Timing t11 = t12 = t13 = t14 = t15 = tDCK tTRSTDO tTRSTR tTCK RISE, tTCK FALL tDCK RISE, tDCK FALL t12 19 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Output Loading for AC Testing To Device Under Test VREF +1.5V – + CLD Signal All High Drive Signals All Low Drive Signals Cld 50 pF 25 pF Figure 5 Output Loading for AC Testing Note: PCI pins have been correlated to PCI 2.2. Recommended Operation Temperature and Supply Voltage Grade Commercial Industrial Temperature 0°C to +70°C (Ambient) -40°C to +85°C (Ambient) Gnd 0V 0V VccIO 3.3V±5% 3.3V±5% VccCore 3.3V±5% 3.3V±5% VccP 3.3V±5% 3.3V±5% Table 7 Temperature and Voltage DC Electrical Characteristics — RC32334 Commercial Temperature Range—RC32334 (Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, Vcc I/O = +3.3V±5%, Vcc Core = +3.3V±5%) Parameter Input Pads LOW Drive Output Pads VIL VIH VOL VOH VIL VIH HIGH Drive Output Pads VOL VOH VIL VIH PCI Drive Input Pads VIL VIH RC323341 Minimum — 2.0V — Maximum 0.8V — 0.4V — 0.8V — 0.4V — 0.8V — — — Table 8 DC Electrical Characteristics - RC32334 (Part 1 of 2) P1, R1, R10, T2, T3 A2-A4, A6-A11, A13, A14, B3, B4, B6-B11, B13, B16, C4, C6-C8, C10, C11, C15, C16, D1-D4, D6, D7, D10, D11, D14-D16, E14, E15, F3, F13-F16, G13-G16, H15, H16, J13, J14, K5, K13, K14, K16, L13-L16, M2, M13, M16, P2, P4, R1, R3, R4 A1, A12, A15, A16, B1, B2, B12, B15, C1-C3, C12, C13, C14, D12, D13, E1- E4, F1, F2, G1-G4, H1, H2, J1, J2, K2-K4, L1, L3, L4, P3, P14, R2, R15, R16, T16 Pin Numbers B14, E13, F4, K1, L2, M1, M3, M4, M14, N1-N3, P14, R2, R16 Conditions — — |IOUT| = 6mA |IOUT| = 8mA — — |IOUT| = 7mA |IOUT| = 16mA — — Per PCI 2.2 Vcc - 0.4V — 2.0V — Vcc - 0.4V — 2.0V — — 20 of 30 August 31, 2004 IDT 79RC32334—Rev. Y RC323341 Minimum — — — — — 5pF — — — — Maximum — — — — 10pF 12pF 8pF 10pF 10µA 50µA All input pads except T3 and R3 T3 R3 All output pads All non-internal pull-up pins All internal pull-up pins — Per PCI 2.2 Per PCI 2.2 — Input/Output Leakage Input/Output Leakage Parameter PCI Drive Output Pads VOL VOH VIL VIH All Pads CIN CIN CIN 2 3 Pin Numbers M15, N4-N7, N10-N16, P5-P13, P15, P16, R5-R9, R11-R14, T4T15 Conditions Per PCI 2.2 COUT I/OLEAK I/OLEAK 1. Table 8 DC Electrical Characteristics - RC32334 (Part 2 of 2) At all pipeline frequencies. T3. Applies only to pad R3. 2. Applies only to pad 3. Capacitive Load Deration — RC32334 Refer to the IDT document 79RC32334 IBIS Model located on the company’s web site. Power Consumption — RC32334 Note: This table is based on a 2:1 pipeline-to-bus clock ratio. Parameter 100MHz RC32334 Typical ICC Power Dissipation Normal mode Standby mode1 Normal mode Standby mode 1 133MHz RC32334 Typical 480 330 1.5 1.1 Max. 630 480 2.2 1.7 150MHz RC32334 Typical 550 390 1.7 1.3 Max. 700 540 2.4 1.9 Unit mA mA W W Conditions CL = (See Figure 5, Output Loading for AC Testing) Ta = 25oC Vcc core = 3.46V (for max. values) Vcc I/O = 3.46V (for max. values) Vcc core = 3.3V (for typical values) Vcc I/O = 3.3V (for typical values) Max. 480 370 1.7 1.3 360 250 1.2 .87 Table 9 Power Consumption 1. RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function. Power Ramp-up There is no special requirement for how fast Vcc I/O ramps up to 3.3V. However, all timing references are based on a stable Vcc I/O. 21 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Power Curves The following two graphs contain the simulated power curves that show power consumption at various bus frequencies. Note: Only pipeline frequencies that are integer multiples (2x, 3x, 4x) of bus frequencies are supported. ICC (mA @3.3V I/O & Core) 600.0 500.0 400.0 4x 300.0 200.0 100.0 15 20 25 30 35 40 45 50 55 60 65 70 75 System Bus Speed (MHz) Figure 6 Typical Power Usage - RC32334 2x 3x . 800.0 700.0 600.0 500.0 400.0 300.0 200.0 100.0 15 20 25 30 35 40 45 50 55 60 65 70 75 System Bus Speed (MHz) Figure 7 Maximum Power Usage - RC32334 ICC (mA @ 3.46V I/O & core) 2x 3x 4x 22 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Absolute Maximum Ratings Symbol VCC Vi Vimin Tstg 1. Functional Parameter Supply Voltage Input Voltage Input Voltage - undershoot2 Storage Temperature Min1 -0.3 -0.3 -0.6 -40 Max1 4.0 5.5 — 125 Unit V V V degrees C Table 10 Absolute Maximum Ratings and tested operating conditions are given in Table 7. Absolute maximum ratings are stress ratings only, and functional operation is not guaranteed beyond recommended operating voltages and temperatures. Stresses beyond those listed may affect device reliability or cause permanent damage to the device. PCI pads are fully compatible with PCI Specification version 2.2. 2. All Package Pin-out — 256-PBGA Pinout for RC32334 The following table lists the pin numbers and signal names for the RC32334. Signal names ending with an “_n” are active when low. Pin A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 B1 B2 B3 B4 B5 B6 B7 B8 Function uart_cts_n[0] sdram_245_oe_n sdram_cas_n sdram_bemask_n[1] sdram_ras_n mem_addr[3] mem_addr[7] mem_addr[11] sdram_cke sdram_bemask_n[2] mem_addr[15] mem_addr[19] mem_data[10] mem_data[20] mem_addr[23] timer_tc_n[0] uart_rts_n[0] uart_dsr_n[0] sdram_we_n sdram_bemask_n[0] sdram_cs_n[1] mem_addr[2] mem_addr[6] mem_addr[10] 1 1 1 2 1 1 1 1 1 1 1 Alt 1 Pin E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 F1 F2 F3 F4 F5 F6 F7 F8 Function mem_cs_n[4] mem_cs_n[5] mem_cs_n[3] mem_cs_n[2] Vcc IO Vcc IO Vcc IO Vcc IO Vcc IO Vcc IO Vcc IO Vcc IO cpu_masterclk mem_data[15] mem_data[16] Vcc core mem_cs_n[0] mem_cs_n[1] mem_oe_n mem_wait_n Vcc IO Vss Vss Vss 1 Alt Pin J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 K1 K2 K3 K4 K5 K6 K7 K8 Function debug_cpu_dma_n debug_cpu_ack_n Vcc IO Vss Vcc IO Vss Vss Vss Vss Vss Vss Vcc IO mem_data[26] mem_data[5] Vcc core Vss ejtag_debugboot ejtag_dclk debug_cpu_i_d_n debug_cpu_ads_n Vcc IO Vss Vss Vss 1 1 Alt 1 1 Pin N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 P1 P2 P3 P4 P5 P6 P7 P8 Function cpu_int_n[1] cpu_int_n[0] jtag_tdi pci_ad[30] pci_ad[26] pci_ad[23] pci_ad[19] Vcc core Vss pci_trdy_n pci_perr_n pci_ad[15] pci_ad[1] pci_ad[3] pci_ad[4] pci_ad[2] pci_rst_n pci_gnt_n[2] dma_ready_n[1] pci_req_n[0] pci_ad[27] pci_cbe_n[3] pci_ad[20] pci_ad[16] 1 2 Alt Table 11 RC32334 256-pin PBGA Package Pin-Out (Part 1 of 3) 23 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Pin B9 B10 B11 B12 B13 B14 B15 B16 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 Function sdram_addr_12 sdram_bemask_n[3] mem_addr[16] mem_addr[20] mem_data[11] cpu_coldreset_n mem_addr[25] mem_data[12] uart_rx[0] uart_tx[0] uart_dtr_n[0] sdram_cs_n[0] sdram_s_n[0] mem_addr[4] mem_addr[9] output_clk mem_addr[12] sdram_cs_n[3] mem_addr[14] mem_addr[18] mem_addr[22] mem_addr[24] mem_data[19] mem_data[13] mem_we_n[1] mem_we_n[3] mem_we_n[2] mem_we_n[0] sdram_s_n[1] mem_addr[5] mem_addr[8] Vss Vcc core sdram_cs_n[2] mem_addr[13] mem_addr[17] mem_addr[21] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Alt Pin F9 F10 F11 F12 F13 F14 F15 F16 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 Vss Vss Vss Vcc IO mem_data[1] mem_data[30] mem_data[31] mem_data[0] dma_ready_n[0] mem_245_oe_n spi_mosi spi_miso Vcc IO Vss Vss Vss Vss Vss Vss Vcc IO mem_data[3] mem_data[28] mem_data[29] mem_data[2] spi_ss_n spi_sck Vcc IO Vcc core Vcc IO Vss Vss Vss Vss Vss Vss Vcc IO VssP 1 2 2 2 2 Function Alt Pin K9 K10 K11 K12 K13 K14 K15 K16 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 Vss Vss Vss Vcc IO cpu_dt_r_n mem_data[6] mem_data[24] mem_data[25] ejtag_pcst[0] jtag_trst_n ejtag_pcst[1] ejtag_pcst[2] Vcc IO Vss Vss Vss Vss Vss Vss Vcc IO mem_data[7] mem_data[8] mem_data[22] mem_data[23] jtag_tms jtag_tdo ejtag_tms jtag_tck Vcc IO Vcc IO Vcc IO Vcc IO Vcc IO Vcc IO Vcc IO Vcc IO mem_data[9] 1 1 2 Function Alt Pin P9 P10 P11 P12 P13 P14 P15 P16 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 Function pci_cbe_n[2] pci_devsel_n pci_serr_n pci_ad[14] pci_ad[11] cpu_int_n[5] pci_ad[6] pci_ad[5] pci_req_n[2] cpu_int_n[2] pci_gnt_n[1] pci_gnt_n[0] pci_ad[29] pci_ad[25] pci_ad[22] pci_ad[18] pci_irdy_n pci_lock_n pci_cbe_n[1] pci_ad[12] pci_ad[10] pci_cbe_n[0] uart_tx[1] cpu_int_n[4] Vss pci_req_n[1] pci_clk pci_ad[31] pci_ad[28] pci_ad[24] pci_ad[21] pci_ad[17] pci_frame_n pci_stop_n pci_par pci_ad[13] pci_ad[9] 1 1 2 1 Alt Table 11 RC32334 256-pin PBGA Package Pin-Out (Part 2 of 3) 24 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Pin D14 D15 D16 Function mem_data[17] mem_data[14] mem_data[18] Alt Pin H14 H15 H16 VccP mem_data[27] mem_data[4] Function Alt Pin M14 M15 M16 Function cpu_nmi_n pci_ad[0] mem_data[21] Alt Pin T14 T15 T16 Function pci_ad[8] pci_ad[7] uart_rx[1] 1 Alt Table 11 RC32334 256-pin PBGA Package Pin-Out (Part 3 of 3) 25 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Pin Layout 1 A B C D E F G H J K L M N P R T Vss 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Vss Vcc Core Vcc Core Vcc IO Vcc Core Vss VssP VccP Vcc IO Vss Vcc Core Vss Vcc I/O Vcc Core Vss The lighter shaded area shows the ground pins (Vss) The darker shaded area shows the supply voltage pins (Vcc I/O) Vcc Core VccP, VssP Figure 8 RC32334 Chip — Top View 26 of 30 August 31, 2004 IDT 79RC32334—Rev. Y RC32334 Alternate Signal Functions Pin A1 A6 A7 A8 A11 A12 A16 B1 B2 B6 B7 B8 B11 B12 C1 C2 Alt #1 PIO[15] sdram_addr[3] sdram_addr[7] sdram_addr[11] sdram_addr[15] modebit[9] PIO[2] PIO[12] PIO[14] sdram_addr[2] sdram_addr[6] sdram_addr[10] sdram_addr[16] reset_pci_host_mode PIO[6] PIO[5] timer_gate_n[0] Alt #2 Pin C3 C6 C7 C11 C12 C13 D6 D7 D11 D12 D13 F4 G1 G3 G4 H1 Alt #1 PIO[13] sdram_addr[4] sdram_addr[9] sdram_addr[14] modebit[8] reset_boot_mode[1] sdram_addr[5] sdram_addr[8] sdram_addr[13] modebit[7] reset_boot_mode[0] sdram_wait_n PIO[1] PIO[10] PIO[7] PIO[8] dma_done_n[0] pci_eeprom_mdo pci_eeprom_mdi C3 Alt #2 Pin H2 J1 J2 K3 K4 K13 L1 L3 L4 P2 P3 R1 R3 R15 T2 T16 PIO[9] modebit[6] modebit[4] modebit[3] modebit[5] mem_245_dt_r_n modebit[0] modebit[1] modebit[2] pci_inta_n (satellite) PIO[0] pci_idsel (satellite) pci_eeprom_cs (satellite) PIO[3] Unused (satellite) PIO[4] PIO[11] dma_done_n[1] sdram_245_dt_r_n Alt #1 Alt #2 pci_eeprom_sk 27 of 30 August 31, 2004 IDT 79RC32334—Rev. Y RC32334 Package Drawing — 256-pin PBGA 28 of 30 August 31, 2004 IDT 79RC32334—Rev. Y RC32334 Package Drawing — Page Two 29 of 30 August 31, 2004 IDT 79RC32334—Rev. Y Ordering Information 79RCXX Product Type V Operating Voltage DDD Device Type SSS CPU Frequency PP Package Temp range/ Process Blank = Commercial Temperature (0° C to +70° C Ambient) I = Industrial Temperature (-40° C to +85° C Ambient) 100 MHz 133MHz 150MHz BB = 256-pin PBGA BBG = 256-pin PBGA (Green package) 334 V = 3.3V ±5% 79RC32 = 32-bit family product Valid Combinations 79RC32V334 - 100BB, 133BB, 150BB 79RC32V334 - 100BBG, 133BBG, 150BBG 79RC32V334 - 100BBI, 133BBI, 150BBI 79RC32V334 - 100BBGI, 133BBGI, 150BBGI Commercial Commercial Green Industrial Industrial Green CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com 30 of 30 for Tech Support: email: rischelp@idt.com phone: 408-284-8208 August 31, 2004
79RC32334-100BB 价格&库存

很抱歉,暂时无法提供与“79RC32334-100BB”相匹配的价格&库存,您可以联系我们找货

免费人工找货