0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IDT709099L9PF

IDT709099L9PF

  • 厂商:

    IDT

  • 封装:

  • 描述:

    IDT709099L9PF - HIGH-SPEED 128K x 8 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM - Integrated Device T...

  • 数据手册
  • 价格&库存
IDT709099L9PF 数据手册
HIGH-SPEED 128K x 8 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM Features x x IDT709099L x x x x True Dual-Ported memory cells which allow simultaneous access of the same memory location High-speed clock to data access – Commercial: 7.5/9/12ns (max.) Low-power operation – IDT709099L Active: 1.2W (typ.) Standby: 2.5mW (typ.) Flow-Through or Pipelined output mode on either Port via the FT/PIPE pins Counter enable and reset features Dual chip enables allow for depth expansion without additional logic x x x x Full synchronous operation on both ports – 4ns setup to clock and 0ns hold on all control, data, and address inputs – Data input, address, and control registers – Fast 7.5ns clock to data out in the Pipelined output mode – Self-timed write allows fast cycle time – 12ns cycle time, 83MHz operation in Pipelined output mode TTL- compatible, single 5V (±10%) power supply Industrial temperature range (–40°C to +85°C) is available for selected speeds Available in a 100-pin Thin Quad Flatpack (TQFP) package Functional Block Diagram R/WL OEL CE0L CE1L R/WR OER CE0R CE1R 1 0 0/1 1 0 0/1 FT/PIPEL 0/1 1 0 0 1 0/1 FT/PIPER I/O0L - I/O7L I/O Control I/O Control I/O0R - I/O7R A16L A0L CLKL ADSL CNTENL CNTRSTL Counter/ Address Reg. MEMORY ARRAY Counter/ Address Reg. A16R A0R CLKR ADSR CNTENR CNTRSTR 4846 drw 01 JANUARY 2001 1 ©2000 Integrated Device Technology, Inc. D SC-4846/3 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Description The IDT709099 is a high-speed 128K x 8 bit synchronous DualPort RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT709099 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by CE0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using IDT’s CMOS high-performance technology, these devices typically operate on only 1.2W of power. Pin Configurations(1,2,3) Index NC NC A7L A8L A9L A10L A11L A12L A13L A14L A15L A16L VCC NC NC NC NC CE0L CE1L CNTRSTL R/WL OEL FT/PIPEL NC NC 10099 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 2 74 3 73 4 72 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 NC NC A6L A5L A4L A3L A2L A1L A0L CNTENL CLKL ADSL GND ADSR CLKR CNTENR A0R A1R A2R A3R A4R A5R A6R NC NC IDT709099PF PN100-1(4) 100-PIN TQFP TOP VIEW(5) 52 51 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NC NC A7R A8R A9R A10R A11R A12R A13R A14R A15R A16R GND NC NC NC NC CE0R CE1R CNTRSTR R/WR OER FT/PIPER GND NC 4846 drw 02 . NOTES: 1. All VCC pins must be connected to power supply. 2. All GND pins must be connected to ground. 3. Package body is approximately 14mm x 14mm x 1.4mm 4. This package code is used to reference the package diagram. 5. This text does not indicate orientation of the actual part-marking. GND NC I/O7L I/O6L I/O5L I/O4L I/O3L I/O2L GND I/O1L I/O0L VCC GND I/O0R I/O1R I/O2R VCC I/O3R I/O4R I/O5R I/O6R I/O7R NC NC NC 2 6.42 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Pin Names Left Port CE0L, CE1L R/WL OEL A0L - A16L I/O0L - I/O7L CLK L ADSL CNTENL CNTRSTL FT/PIPEL Right Port CE0R, CE1R R/WR OER A0R - A16R I/O0R - I/O7R CLKR ADSR CNTENR CNTRSTR FT/PIPER VCC GND Names Chip Enables Read/Write Enable Output Enable Address Data Input/Output Clock Address Strobe Counter Enable Counter Reset Flow-Through/Pipeline Power Ground 4846 tbl 01 Truth Table I—Read/Write and Enable Control(1,2,3) OE X X X L H CLK ↑ ↑ ↑ ↑ X CE0 H X L L L CE1 X L H H H R/W X X L H X I/O0-7 High-Z High-Z DATA IN DATAOUT High-Z Deselected—Power Down Deselected—Power Down Write Read Outputs Disabled 4846 tbl 02 Mode NOTES: 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. ADS, CNTEN, CNTRST = X. 3. OE is an asynchronous input signal. Truth Table II—Address Counter Control(1,2,6) Address X An An X Previous Address X X Ap Ap Addr Used 0 An Ap Ap + 1 CLK ↑ ↑ ↑ ↑ ADS X L(4) H H CNTEN X X H L (5) CNTRST L H H H I/O(3) DI/O(0) DI/O(n) DI/O(n) DI/O(n+1) Mode Counter Reset to Address 0 External Address Utilized External Address Blocked —Counter Disabled (Ap reused) Counter Enable —Internal Address Generation 4846 tbl 03 NOTES: 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. CE0 and OE = VIL; CE1 and R/W = VIH. 3. Outputs configured in Flow-Through Output mode: if outputs are in Pipelined mode the data out will be delayed by one cycle. 4. ADS is independent of all other signals including CE0 and CE1. 5. The address counter advances if CNTEN = V IL on the rising edge of CLK, regardless of all other signals including CE0 and CE1. 6. While an external address is being loaded (ADS = VIL), R/W = VIH is recommended to ensure data is not written arbitrarily. 6.42 3 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Recommended Operating Recommended DC Operating (1) Temperature and Supply Voltage Conditions Grade Commercial Industrial Ambient Temperature(2) 0OC to +70OC -40OC to +85OC GND 0V 0V Vcc 5.0V + 10% 5.0V + 10% 4846 tbl 04 Symbol VCC GND VIH VIL Parameter Supply Voltage Ground Input High Voltage Input Low Voltage Min. 4.5 0 2.2 -0.5 (2) Typ. 5.0 0 ____ Max. 5.5 0 6.0 (1) Unit V V V V 4846 tbl 05 NOTES: 1. Industrial temperature: for specific speeds, packages and powers contact your sales office. 2. This is the parameter TA. This is the "instant on" case temperature. ____ 0.8 NOTES: 1. VTERM must not exceed V cc + 10%. 2. VIL > -1.5V for pulse width less than 10ns. Absolute Maximum Ratings(1) Symbol VTERM (2) Capacitance(1) Unit V Symbol CIN COUT(3) Rating Terminal Voltage with Respect to GND Temperature Under Bias Storage Temperature DC Output Current Commercial & Industrial -0.5 to +7.0 (TA = +25°C, f = 1.0MHz) Parameter Input Capacitance Output Capacitance Conditions(2) VIN = 3dV VOUT = 3dV Max. 9 10 Unit pF pF 4846 tbl 07 TBIAS TSTG IOUT -55 to +125 -65 to +150 50 o C C o mA 4846 tbl 06 NOTES: 1. These parameters are determined by device characterization, but are not production tested. 2. 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V. 3. COUT also references CI/O. NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%. DC Electrical Characteristics Over the Operating Temperature Supply Voltage Range (VCC = 5.0V ± 10%) 709099L Symbol |ILI| |ILO| VOL VOH Parameter Input Leakage Current (1) Test Conditions VCC = 5.5V, VIN = 0V to V CC CE0 = VIH or CE1 = VIL, VOUT = 0V to V CC IOL = + 4mA IOH = -4mA Min. ___ Max. 5 5 0.4 ___ Unit µA µA V V 4846 tbl 08 Output Leakage Current Output Low Voltage Output High Voltage ___ ___ 2.4 NOTE: 1. At Vcc < 2.0V input leakages are undefined. 4 6.42 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range(3,6) (VCC = 5V ± 10%) 709099L7 Com'l Only Symbol ICC Parameter Dynamic Operating Current (Both Ports Active) Standby Current (Both Ports - TTL Level Inputs) Standby Current (One Port - TTL Level Inputs) Full Standby Current (Both Ports CMOS Level Inputs) Full Standby Current (One Port CMOS Level Inputs) Test Condition CEL and C ER= VIL Outputs Disabled f = fMAX(1) CEL = C ER = VIH f = fMAX(1) CE"A" = VIL and CE"B" = VIH(3) Active Port Outputs Disabled, f=fMAX(1) Both Ports CER and CEL > VCC - 0.2V VIN > VCC - 0.2V or VIN < 0.2V, f = 0(2) CE"A" < 0.2V and CE"B" > VCC - 0.2V(5) VIN > VCC - 0.2V or VIN < 0.2V, Active Port Outp uts Disabled, f = fMAX(1) Version COM'L IND COM'L IND COM'L IND COM'L IND COM'L IND L L L L L L L L L L Typ.(4) 275 ____ 709099L9 Com'l Only Typ.(4) 250 ____ 709099L12 Com'l Only Typ.(4) 230 ____ Max. 465 ____ Max. 400 ____ Max. 355 ____ Unit mA ISB1 95 ____ 150 ____ 80 ____ 135 ____ 70 ____ 110 ____ mA ISB2 200 ____ 295 ____ 175 ____ 275 ____ 150 ____ 240 ____ mA ISB3 0.5 ____ 3 ____ 0.5 ____ 3 ____ 0.5 ____ 3 ____ mA ISB4 190 ____ 290 ____ 170 ____ 270 ____ 140 ____ 225 ____ mA NOTES: 1. At f = f MAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC , using "AC TEST CONDITIONS" at input levels of GND to 3V. 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby. 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A". 4. Vcc = 5V, TA = 25°C for Typ, and are not production tested. I CC DC(f=0) = 150mA (Typ). 5. CE X = VIL means CE0X = VIL and CE1X = VIH CE X = VIH means CE0X = VIH or CE1X = V IL CE X < 0.2V means CE0X < 0.2V and CE1X > VCC - 0.2V CE X > VCC - 0.2V means CE0X > VCC - 0.2V or CE1X < 0.2V "X" represents "L" for left port or "R" for right port. 6. Industrial temperature: for specific speeds, packages and powers contact your sales office. 4846 tbl 09 6.42 5 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges AC Test Conditions Input Pulse Levels Input Rise/Fall Times Input Timing Reference Levels Output Reference Levels Output Load GND to 3.0V 3ns Max. 1.5V 1.5V Figures 1,2 and 3 4846 tbl 10 5V 893Ω DATAOUT 347Ω 30pF DATAOUT 347Ω 5V 893Ω 5pF* 4846 drw 04 4846 drw 05 Figure 1. AC Output Test load. Figure 2. Output Test Load (For tCKLZ , tCKHZ, tOLZ, and tOHZ). *Including scope and jig. 8 7 6 tCD1, tCD2 (Typical, ns) 5 4 3 2 1 0 -1 - 10pF is the I/O capacitance of this device, and 30pF is the AC Test Load Capacitance 20 40 60 80 100 120 140 160 180 200 Capacitance (pF) 4846 drw 06 Figure 3. Typical Output Derating (Lumped Capacitive Load). 6 6.42 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing)(3,4) (VCC = 5V ± 10%, TA = 0°C to +70°C) 709099L7 Com'l Only Symbol tCYC1 tCYC2 tCH1 tCL1 tCH2 tCL2 tR tF tSA tHA tSC tHC tSW tHW tSD tHD tSAD tHAD tSCN tHCN tSRST tHRST tOE tOLZ tOHZ tCD1 tCD2 tDC tCKHZ tCKLZ Clock Cycle Time (Flow-Through) Clock Cycle Time (Pipelined) (2) (2) (2) 709099L9 Com'l Only Min. 25 15 12 12 6 6 ____ ____ 709099L12 Com'l Only Min. 30 20 12 12 8 8 ____ ____ Parameter Min. 22 12 7.5 7.5 5 5 ____ ____ Max. ____ ____ ____ ____ ____ ____ Max. ____ ____ ____ ____ ____ ____ Max. ____ ____ ____ ____ ____ ____ Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Clock High Time (Flow-Through) Clock Low Time (Flow-Through)(2) Clock High Time (Pipelined) Clock Low Time (Pipelined) Clock Rise Time Clock Fall Time Address Setup Time Address Hold Time Chip Enable Setup Time Chip Enable Hold Time R/W Setup Time R/W Hold Time Input Data Setup Time Input Data Hold Time ADS Setup Time ADS Hold Time CNTEN Setup Time CNTEN Hold Time CNTRST Setup Time CNTRST Hold Time Output Enable to Data Valid Output Enable to Output Low-Z(1) Output Enable to Output High-Z(1) Clock to Data Valid (Flow-Through) Clock to Data Valid (Pipelined) (2) (2) (2) (2) 3 3 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 3 3 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 3 3 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 4 0 4 0 4 0 4 0 4 0 4 0 4 0 ____ 4 1 4 1 4 1 4 1 4 1 4 1 4 1 ____ 4 1 4 1 4 1 4 1 4 1 4 1 4 1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 9 ____ 12 ____ 12 ____ 2 1 ____ ____ 2 1 ____ ____ 2 1 ____ ____ 7 18 7.5 ____ 7 20 9 ____ 7 25 12 ____ Data Output Hold After Clock High Clock High to Output High-Z (1) 2 2 2 2 2 2 2 2 2 9 ____ 9 ____ 9 ____ Clock High to Output Low-Z(1) Port-to-Port Delay tCWDD tCCS Write Port Clock High to Read Data Delay Clock-to-Clock Setup Time ____ ____ 28 10 ____ ____ 35 15 ____ ____ 40 15 ns ns 4846 tbl 11 NOTES: 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested. 2. The Pipelined output parameters (tCYC2, tCD2) to either the Left or Right ports when FT/PIPE = VIH. Flow-Through parameters (tCYC1, tCD1) apply when FT/PIPE = VIL for that port. 3. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPER and FT/PIPEL. 4. Industrial temperature: for specific speeds, packages and powers contact your sales office. 6.42 7 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Read Cycle for Flow-Through Output (FT/PIPE"X" = VIL)(3,6) tCYC1 tCH1 CLK CE0 tSC CE1 tHC tSC (4) tCL1 tHC R/W tSW tSA tHW tHA An + 1 tCD1 tDC Qn tCKLZ (1) Qn + 1 tOHZ (1) ADDRESS (5) An An + 2 An + 3 tCKHZ (1) Qn + 2 tOLZ (1) DATAOUT tDC OE (2) tOE 4846 drw 07 Timing Waveform of Read Cycle for Pipelined Operation (FT/PIPE"X" = VIH)(3,6) tCYC2 tCH2 CLK CE0 tSC CE1 tSB R/W tSW tSA ADDRESS (5) tCL2 tHC tSC (4) tHC tHB tHW tHA An + 1 (1 Latency) tCD2 Qn tCKLZ (1) An An + 2 tDC Qn + 1 An + 3 DATAOUT Qn + 2 tOLZ (1) (6) tOHZ (1) OE (2) tOE NOTES: 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). 2. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge. 3. ADS = VIL, CNTEN and CNTRST = VIH. 4. The output is disabled (High-Impedance state) by CE0 = V IH or CE1 = V IL following the next rising edge of the clock. Refer to Truth Table 1. 5. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 6. 'X' here denotes Left or Right port. The diagram is with respect to that port. 4846 drw 08 8 6.42 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of a Bank Select Pipelined Read(1,2) tCH2 CLK tSA ADDRESS(B1) tSC tHA A0 tHC tSC tCD2 DATAOUT(B1) tSA ADDRESS(B2) tHA A0 A1 A2 A3 A4 A5 A6 Q0 tDC tHC tCD2 tCKHZ Q1 tDC (3) tCYC2 tCL2 A1 A2 A3 A4 A5 A6 CE0(B1) tCD2 Q3 tCKLZ (3) tCKHZ (3) tSC CE0(B2) tSC tHC tHC tCD2 DATAOUT(B2) tCKLZ (3) tCKHZ Q2 (3) tCD2 tCKLZ (3) 4846 drw 09 Q4 Timing Waveform of Write with Port-to-Port Flow-Through Read(4,5,7) CLK "A" tSW tHW R/W "A" tSA ADDRESS "A" tHA NO MATCH MATCH tSD DATAIN "A" tHD VALID tCCS CLK "B" (6) tCD1 R/W "B" tSW tSA ADDRESS "B" tHW tHA NO MATCH MATCH tCWDD DATAOUT "B" tDC (6) tCD1 VALID VALID tDC 4846 drw 10 NOTES: 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT709099 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation. 2. OE, and ADS = VIL; CE1(B1) , CE1(B2) , R/W, CNTEN, and CNTRST = V IH. 3. Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2). 4. CE0 and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. 5. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to. 6. If tCCS < maximum specified, then data from right port READ is not valid until the maximum specified for tCWDD. If tCCS > maximum specified, then data from right port READ is not valid until tCCS + tCD1. t CWDD does not apply in this case. 7. All timing is the same for both Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite from Port "A". 6.42 9 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Pipelined Read-to-Write-to-Read (OE = VIL)(3) tCYC2 tCH2 CLK tCL2 CE0 tSC CE1 tSW tHW R/W tSW tHW tHC ADDRESS (4) An tSA tHA An +1 An + 2 An + 2 tSD tHD Dn + 2 An + 3 An + 4 DATAIN (2) tCD2 Qn READ tCKHZ (1) tCKLZ (1) tCD2 Qn + 3 DATAOUT NOP(5) WRITE READ 4846 drw 11 Timing Waveforn of Pipelined Read-to-Write-to-Read (OE Controlled)(3) tCH2 CLK CE0 tSC CE1 tSW tHW R/W tSW tHW tHC tCYC2 tCL2 ADDRESS (4) An tSA tHA An +1 An + 2 tSD tHD An + 3 An + 4 An + 5 DATAIN (2) tCD2 Qn tOHZ (1) Dn + 2 Dn + 3 tCKLZ(1) tCD2 Qn + 4 DATAOUT OE READ WRITE READ 4846 drw 12 NOTES: 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 3. CE0 and ADS = VIL; CE 1, CNTEN, and CNTRST = VIH. "NOP" is "No Operation". 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. 10 6.42 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Flow-Through Read-to-Write-to-Read (OE = VIL)(3) tCH1 CLK tCYC1 tCL1 CE0 tSC CE1 tSW tHW R/W tSW tHW tHC ADDRESS (4) An tSA tHA An +1 An + 2 An + 2 tSD tHD An + 3 An + 4 DATAIN (2) Dn + 2 tCD1 Qn tDC READ tCD1 Qn + 1 tCKHZ (5) NOP (1) tCD1 Qn + 3 tCKLZ WRITE (1) tCD1 DATAOUT tDC READ 4846 drw 13 Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(3) tCYC1 tCH1 tCL1 CLK CE0 tSC tHC CE1 tSW tHW R/W ADDRESS (4) tSW tHW An tHA An +1 An + 2 tSD tHD Dn + 2 (2) An + 3 An + 4 An + 5 tSA DATAIN Dn + 3 tCD1 Qn tDC tOE tCD1 (1) tCD1 Qn + 4 tDC DATAOUT tOHZ OE READ (1) tCKLZ WRITE READ 4846 drw 14 NOTES: 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). 2. Output state (High, Low, or High-impedance is determined by the previous cycle control signals. 3. CE 0 and ADS = VIL; CE 1, CNTEN, and CNTRST = V IH. "NOP" is "No Operation". 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. 6.42 11 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Pipelined Read with Address Counter Advance(1) tCH2 CLK tSA ADDRESS tHA tCYC2 tCL2 An tSAD tHAD ADS tSAD tHAD CNTEN tCD2 DATAOUT Qx - 1(2) Qx tDC READ EXTERNAL ADDRESS READ WITH COUNTER Qn tSCN tHCN Qn + 1 Qn + 2(2) Qn + 3 COUNTER HOLD READ WITH COUNTER 4846 drw 15 Timing Waveform of Flow-Through Read with Address Counter Advance(1) tCH1 CLK tSA ADDRESS tHA tCYC1 tCL1 An tSAD tHAD ADS tSAD tHAD tSCN tHCN CNTEN tCD1 DATAOUT Qx(2) tDC READ EXTERNAL ADDRESS READ WITH COUNTER COUNTER HOLD READ WITH COUNTER 4846 drw 16 Qn Qn + 1 Qn + 2 Qn + 3(2) Qn + 4 NOTES: 1. CE0 and OE = VIL; CE 1, R/W, and CNTRST = VIH. 2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then the data output remains constant for subsequent clocks. 12 6.42 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Write with Address Counter Advance (Flow-Through or Pipelined Outputs)(1) tCH2 CLK tSA ADDRESS tHA An tCYC2 tCL2 INTERNAL(3) ADDRESS tSAD tHAD ADS An(7) An + 1 An + 2 An + 3 An + 4 CNTEN tSD tHD DATAIN Dn WRITE EXTERNAL ADDRESS Dn + 1 Dn + 1 Dn + 2 Dn + 3 Dn + 4 WRITE WRITE WITH COUNTER COUNTER HOLD WRITE WITH COUNTER 4846 drw 17 Timing Waveform of Counter Reset (Pipelined Outputs)(2) tCH2 CLK tSA tHA ADDRESS(4) INTERNAL(3) ADDRESS R/W ADS CNTEN tSRST tHRST CNTRST DATAIN DATAOUT(5) COUNTER(6) RESET WRITE ADDRESS 0 READ ADDRESS 0 READ ADDRESS 1 tSD tHD D0 Q0 READ ADDRESS n Q1 READ ADDRESS n+1 4846 drw 18 tCYC2 tCL2 An Ax(6) tSW tHW An + 1 An + 2 0 1 An An + 1 Qn . NOTES: 1. CE0 and R/W = VIL; CE1 and CNTRST = VIH. 2. CE0 = VIL; CE1 = VIH. 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH. 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset cycle. 7. CNTEN = VIL advances Internal Address from ‘An’ to ‘An +1’. The transition shown indicates the time required for the counter to advance. The ‘An +1’ Address is written to during this cycle. 6.42 13 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges A Functional Description The IDT709099 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications. CE0 = VIL or CE1 = VIL for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT709099's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with CE0 = VIL and CE1 = VIH to reactivate the outputs. Depth and Width Expansion The IDT709099 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth. The 709099 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 16-bit or wider applications. A17 IDT709099 CE0 CE1 VCC IDT709099 CE0 CE1 VCC Control Inputs Control Inputs IDT709099 CE1 CE0 IDT709099 CE1 CE0 CNTRST CLK ADS CNTEN R/W OE Control Inputs Control Inputs 4846 drw 19 Figure 4. Depth and Width Expansion with IDT709099 14 6.42 IDT709099L High-Speed 128K x 8 Synchronous Pipelined Dual-Port Static RAM Industrial and Commercial Temperature Ranges Ordering Information IDT XXXXX Device Type A Power 99 Speed A Package A Process/ Temperature Range Blank I(1) Commercial (0°C to +70°C) Industrial (-40°C to +85°C) PF 100-pin TQFP (PN100-1) 7 9 12 L Commercial Only Commercial Only Commercial Only Low Power Speed in nanoseconds 709099 1024K (128K x 8-Bit) Synchronous Dual-Port RAM NOTE: 1. Industrial temperature range is available. For specific speeds, packages and powers contact your sales office. 4846 drw 20 Datasheet Document History 9/30/99: 11/10/99: 12/22/99: 1/5/01: Initial Public Release Replaced IDT logo Page 1 Added missing diamond Page 3 Changed information in Truth Table II Page 4 Increased storage temperature parameter Clarified TA parameter Page 5 DC Electrical parameters–changed wording from "open" to "disabled" Added overbar to CE in notes Changed ±200mV to 0mV in notes Removed Preliminary status CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com 6.42 15 for Tech Support: 831-754-4613 DualPortHelp@idt.com The IDT logo is a registered trademark of Integrated Device Technology, Inc.
IDT709099L9PF 价格&库存

很抱歉,暂时无法提供与“IDT709099L9PF”相匹配的价格&库存,您可以联系我们找货

免费人工找货