0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IDT7140LA

IDT7140LA

  • 厂商:

    IDT

  • 封装:

  • 描述:

    IDT7140LA - HIGH SPEED 1K X 8 DUAL-PORT STATIC SRAM - Integrated Device Technology

  • 数据手册
  • 价格&库存
IDT7140LA 数据手册
HIGH SPEED 1K X 8 DUAL-PORT STATIC SRAM Features High-speed access – Commercial: 20/25/35/55/100ns (max.) – Industrial: 25/55/100ns (max.) – Military: 25/35/55/100ns (max.) Low-power operation – IDT7130/IDT7140SA — Active: 550mW (typ.) — Standby: 5mW (typ.) – IDT7130/IDT7140LA — Active: 550mW (typ.) — Standby: 1mW (typ.) MASTER IDT7130 easily expands data bus width to 16-ormore-bits using SLAVE IDT7140 IDT7130SA/LA IDT7140SA/LA ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ On-chip port arbitration logic (IDT7130 Only) BUSY output flag on IDT7130; BUSY input on IDT7140 INT flag for port-to-port communication Fully asynchronous operation from either port Battery backup operation–2V data retention (LA only) TTL-compatible, single 5V ±10% power supply Military product compliant to MIL-PRF-38535 QML Industrial temperature range (–40°C to +85°C) is available for selected speeds Available in 48-pin DIP, LCC and Ceramic Flatpack, 52-pin PLCC, and 64-pin STQFP and TQFP Green parts available, see ordering information Functional Block Diagram OEL CEL R/WL OER CER R/WR I/O0L- I/O7L I/O Control BUSYL (1,2) I/O0R-I/O7R I/O Control BUSYR Address Decoder 10 , (1,2) A9L A0L MEMORY ARRAY 10 Address Decoder A9R A0R CEL OEL R/WL ARBITRATION and INTERRUPT LOGIC CER OER R/WR INTL (2) INTR 2689 drw 01 (2) NOTES: 1. IDT7130 (MASTER): BUSY is open drain output and requires pullup resistor. IDT7140 (SLAVE): BUSY is input. 2. Open drain output: requires pullup resistor. APRIL 2006 1 DSC-2689/13 ©2006 Integrated Device Technology, Inc. IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Description The IDT7130/IDT7140 are high-speed 1K x 8 Dual-Port Static RAMs. The IDT7130 is designed to be used as a stand-alone 8-bit Dual-Port RAM or as a "MASTER" Dual-Port RAM together with the IDT7140 "SLAVE" Dual-Port in 16-bit-or-more word width systems. Using the IDT MASTER/SLAVE Dual-Port RAM approach in 16-ormore-bit memory system applications results in full-speed, errorfree operation without the need for additional discrete logic. Both devices provide two independent ports with separate control, address, and I/O pins that permit independent asynchronous access for reads or writes to any location in memory. An automatic power down feature, controlled by CE, permits the on chip circuitry of each port to enter a very low standby power mode. Fabricated using IDT's CMOS high-performance tech-nology, these devices typically operate on only 550mW of power. Lowpower (LA) versions offer battery backup data retention capability, with each Dual-Port typically consuming 200µW from a 2V battery. The IDT7130/IDT7140 devices are packaged in 48-pin sidebraze or plastic DIPs, LCCs, flatpacks, 52-pin PLCC, and 64-pin TQFP and STQFP. Military grade products are manufactured in compliance with the latest revision of MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability. Pin Configurations(1,2,3) 01 /08/02 CEL R/WL BUSYL INTL OEL A0L A1L A2L A3L A4L A5L A6L A7L A8L A9L I/O0L I/O1L I/O2L I/O3L I/O4L I/O5L I/O6L I/O7L GND 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 IDT7130/40 41 P or C 9 (4) 40 10 P48-1 39 & 11 C48-2(4) 38 12 48-Pin 37 DIP 13 36 14 Top View(5) 35 15 34 16 33 17 32 18 31 19 30 20 29 21 28 22 27 23 26 24 25 VCC CER R/WR BUSYR INTR OER A0R A1R A2R A3R A4R A5R A6R A7R A8R A9R I/O7R I/O6R I/O5R I/O4R I/O3R I/O2R I/O1R I/O0R 2689 drw 02 01/ IN , NOTES: 1. All VCC pins must be connected to power supply. 2. All GND pins must be connected to ground supply. 3. P48-1 package body is approximately .55 in x .61 in x .19 in. C48-2 package body is approximately .62 in x 2.43 in x .15 in. L48-1 package body is approximately .57 in x .57 in x .68 in. F48-1 package body is approximately .75 in x .75 in x .11 in. 4. This package code is used to reference the package diagram. 5. This text does not indicate orientation of the actual part-marking. 2 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges 01/08/02 INDEX A1L A2L A3L A4L A5L A6L A7L A8L A9L I/O0L I/O1L I/O2L I/O3L 8 9 10 11 12 13 14 15 16 17 18 19 20 A0L OEL N/C INTL BUSYL R/WL CEL VCC 76 54 32 1 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 OER A0R A1R A2R A3R A4R A5R A6R A7R A8R A9R N/C I/O7R , 2689 drw 04 IDT7130/40J J52-1(4) 52-Pin PLCC Top View(5) 21 22 23 24 25 26 27 28 29 30 31 32 33 01/08/02 INDEX OEL A0L A1L A2L A3L A4L A5L A6L N/C A7L A8L A9L N/C I/O0L I/O1L I/O2L 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 N/C N/C N/C INT L BUSYL R/W L CE L V CC V CC CE R R/WR BUSYR INTR N/C N/C N/C I/O4L I/O5L I/O6L I/O7L N/C GND I/O0R I/O1R I/O2R I/O3R I/O4R I/O5R I/O6R CER R/WR BUSYR INTR N/C Pin Configurations(1,2,3) (con't.) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 IDT7130/40TF or PF PP64-1 & PN64-1(4) 64-Pin STQFP 64-Pin TQFP Top View(5) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 OER A0R A1R A2R A3R A4R A5R A6R N/C A7R A8R A9R N/C N/C I/O7R I/O6R , 2689 drw 05 NOTES: 1. All VCC pins must be connected to power supply. 2. All GND pins must be connected to ground supply. 3. J52-1 package body is approximately .75 in x .75 in x .17 in. PP64-1 package body is approximately 10 mm x 10 mm x 1.4mm. PN64-1 package body is approximately 14mm x 14mm x 1.4mm. 4. This package code is used to reference the package diagram. 5. This text does not indicate orientation of the actual part-marking. I/O3L N/C I/O4L I/O5L I/O6L I/O7L N/C GND GND I/O0R I/O1R I/O2R I/O3R N/C I/O4R I/O5R 3 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Absolute Maximum Ratings(1) Symbol VTERM(2) Rating Terminal Voltage with Respect to GND Temperature Under Bias Storage Temperature DC Output Current Commercial & Industrial -0.5 to +7.0 Military -0.5 to +7.0 Unit V Recommended DC Operating Conditions Symbol VCC GND Parameter Supply Voltage Ground Input High Voltage Input Low Voltage Min. 4.5 0 2.2 -0.5(1) Typ. 5.0 0 ____ ____ Max. 5.5 0 6.0 (2) Unit V V V V 2689 tbl 02 TBIAS TSTG IOUT -55 to +125 -65 to +150 50 -65 to +135 -65 to +150 50 o C C VIH VIL o 0.8 mA 2689 tbl 01 NOTES: 1. VIL (min.) > -1.5V for pulse width less than 10ns. 2. VTERM must not exceed Vcc + 10%. NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%. Recommended Operating Temperature and Supply Voltage(1) Grade Military Commercial Ambient Temperature -55OC to +125OC 0 C to +70 C -40 C to +85 C O O O O GND 0V 0V 0V Vcc 5.0V + 10% 5.0V + 10% 5.0V + 10% 2689 tbl 03 Capacitance Symbol CIN COUT (TA = +25°C, f = 1.0MHz) Conditions VIN = 3dV VOUT = 3dV Max. 9 10 Unit pF pF 2689 tbl 05 Industrial STQFP and TQFP Packages Only Parameter(1) Input Capacitance Output Capacitance NOTES: 1. This is the parameter TA. This is the "instant on" case temperature. NOTES: 1. This parameter is determined by device characterization but is not production tested. 2. 3dV references the interpolated capacitance when the input and output signals switch from 0V to 3V or from 3V to 0V. DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VCC = 5.0V ± 10%) 7130SA 7140SA Symbol |ILI| |ILO| VOL VOL VOH Parameter Input Leakage Current (1) (1) 7130LA 7140LA Min. ___ Test Conditions VCC = 5.5V, VIN = 0V to V CC VCC - 5.5V, CE = VIH, VOUT = 0V to VCC IOL = 4mA IOL = 16mA IOH = -4mA Min. ___ Max. 10 10 0.4 0.5 ___ Max. 5 5 0.4 0.5 ___ Unit µA µA V V V 2689 tbl 04 Output Leakage Current ___ ___ Output Low Voltage (I/O0-I/O7) Open Drain Output Low Voltage (BUSY, INT) Output High Voltage ___ ___ ___ ___ 2.4 2.4 NOTE: 1. At Vcc < 2.0V leakages are undefined. 4 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range(1,5) (VCC = 5.0V ± 10%) 7130X20(2) 7140X20(2) Com'l Only Symbol ICC Parameter Dynamic Operating Current (Both Ports Active) Test Condition CEL and C ER = VIL, Outputs Disabled f = fMAX(3) Version COM'L MIL & IND COM'L MIL & IND ISB2 Standby Current (One Port - TTL Level Inputs) CE"A" = VIL and C E"B" = VIH(6) Active Port OutputsDisabled, f=fMAX(3) COM'L MIL & IND COM'L MIL & IND COM'L MIL & IND SA LA SA LA SA LA SA LA SA LA SA LA SA LA SA LA SA LA SA LA Typ. 110 110 ____ ____ 7130X25 7140X25 Com'l, Ind & Military Typ. 110 110 110 110 30 30 30 30 65 65 65 65 1.0 0.2 1.0 0.2 60 60 60 60 Max. 220 170 280 220 65 45 80 60 150 115 160 125 15 5 30 10 145 105 155 115 7130X35 7140X35 Com'l & Military Typ. 110 110 110 110 25 25 25 25 50 50 50 50 1.0 0.2 ____ ____ Max. 250 200 ____ ____ Max. 165 120 230 170 65 45 80 60 125 90 150 115 30 10 ____ ____ Unit mA ISB1 Standby Current (Both Ports - TTL Level Inputs) CEL and C ER = VIH f = fMAX(3) 30 30 ____ ____ 65 45 ____ ____ mA 65 65 ____ ____ 165 125 ____ ____ mA ISB3 Full Standby Current (Both Ports CMOS Level Inputs) CEL and CER > VCC - 0.2V, VIN > VCC - 0.2V or VIN < 0.2V, f = 0(4) CE"A" < 0.2V and CE"B" > VCC - 0.2V(6) VIN > VCC - 0.2V or V IN < 0.2V Active Port Outputs Disabled, f = fMAX(3) 1.0 0.2 ____ ____ 15 5 ____ ____ mA ISB4 Full Standby Current (One Port CMOS Level Inputs) 60 60 ____ ____ 155 115 ____ ____ 45 45 45 45 110 85 145 105 mA 2689 tbl 06a 7130X55 7140X55 Com'l, Ind & Military Symbol ICC Parameter Dynamic Operating Current (Both Ports Active) CEL and C ER = VIL, Outputs Disabled f = fMAX(3) Test Condition Version COM'L MIL & IND COM'L MIL & IND ISB2 Standby Current (One Port - TTL Level Inputs) CE"A" = VIL and C E"B" = VIH(6) Active Port Outputs Disabled, f=fMAX(3) COM'L MIL & IND COM'L MIL & IND COM'L MIL & IND SA LA SA LA SA LA SA LA SA LA SA LA SA LA SA LA SA LA SA LA Typ. 110 110 110 110 20 20 20 20 40 40 40 40 1.0 0.2 1.0 0.2 40 40 40 40 Max. 155 110 190 140 65 35 65 45 110 75 125 90 15 4 30 10 100 70 110 85 7130X100 7140X100 Com'l, Ind & Military Typ. 110 110 110 110 20 20 20 20 40 40 40 40 1.0 0.2 1.0 0.2 40 40 40 40 Max. 155 110 190 140 55 35 65 45 110 75 125 90 15 4 30 10 95 70 110 80 mA mA mA mA Unit mA ISB1 Standby Current (Both Ports - TTL Level Inputs) CEL and C ER = VIH f = fMAX(3) ISB3 Full Standby Current (Both Ports CMOS Level Inputs) CEL and CER > VCC - 0.2V, VIN > VCC - 0.2V or VIN < 0.2V, f = 0(4) CE"A" < 0.2V and CE"B" > VCC - 0.2V(6) VIN > VCC - 0.2V or V IN < 0.2V Active Port Outputs Disabled, f = fMAX(3) ISB4 Full Standby Current (One Port CMOS Level Inputs) 2689 tbl 06b NOTES: 1. 'X' in part numbers indicates power rating (SA or LA). 2. PLCC , TQFP and STQFP packages only. 3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tCYC, and using “AC TEST CONDITIONS” of input levels of GND to 3V. 4. f = 0 means no address or control lines change. Applies only to inputs at CMOS level standby. 5. Vcc = 5V, TA=+25°C for Typ and is not production tested. Vcc DC = 100 mA (Typ) 6. Port "A" may be either left or right port. Port "B" is opposite from port "A". 5 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Data Retention Characteristics Symbol VDR ICCDR Parameter VCC for Data Retention Data Retention Current (LA Version Only) 7130LA/7140LA Test Condition Min. 2.0 MIL. & IND. ___ Typ. (1) ___ Max. ___ Unit V µA 100 100 ___ 4000 1500 ___ VCC = 2.0V, CE > VCC -0.2V tCDR tR(3) (3) COM'L. ___ Chip Deselect to Data Retention Time Operation Recovery Time VIN > VCC -0.2V or VIN < 0.2V 0 tRC(2) ns ns 2689 tbl 07 ___ ___ NOTES: 1. VCC = 2V, TA = +25°C, and is not production tested. 2. tRC = Read Cycle Time 3. This parameter is guaranteed but not production tested. Data Retention Waveform DATA RETENTION MODE VCC 4.5V tCDR VDR ≥ 2.0V 4.5V tR CE VIH VDR VIH 2692 drw 06 , 6 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges AC Test Conditions Input Pulse Levels Input Rise/Fall Times Input Timing Reference Levels Output Reference Levels Output Load GND to 3.0V 5ns 1.5V 1.5V Figures 1,2 and 3 2689 tbl 08 5V 1250Ω DATAOUT 775Ω 30pF* *100pF for 55 and 100ns versions 5V 1250Ω DATAOUT 775Ω 5pF* Figure 1. Output Test Load Figure 2. Output Test Load (for t HZ, tLZ , tWZ, and tOW ) * including scope and jig 5V 270Ω BUSY or INT 30pF* *100pF for 55 and 100ns versions 2689 drw 07 Figure 3. BUSY and INT AC Output Test Load 7 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges AC Electrical Characteristics Over the Operating Temperature Supply Voltage Range(3) 7130X20(2) 7140X20(2) Com'l Only Symbol READ CYCLE tRC tAA tACE tAOE tOH tLZ tHZ tPU tPD Read Cycle Time Address Access Time Chip Enable Access Time Output Enable Access Time Output Hold from Address Change Output Low-Z Time (1,4) 7130X25 7140X25 Com'l, Ind & Military Min. Max. 7130X35 7140X35 Com'l & Military Min. Max. Unit Parameter Min. Max. 20 ____ ____ ____ 25 ____ ____ ____ 35 ____ ____ ____ ns ns ns ns ns ns ns ns ns 2689 tbl 09a 20 20 11 ____ ____ 25 25 12 ____ ____ 35 35 20 ____ ____ ____ ____ ____ 3 0 ____ 3 0 ____ 3 0 ____ Output High-Z Time (1,4) Chip Enable to Power Up Time (4) Chip Disable to Power Down Time (4) 10 ____ 10 ____ 15 ____ 0 ____ 0 ____ 0 ____ 20 25 35 7130X55 7140X55 Com'l, Ind & Military Symbol READ CYCLE tRC tAA tACE tAOE tOH tLZ tHZ tPU tPD Read Cycle Time Address Access Time Chip Enable Access Time Output Enable Access Time Output Hold from Address Change Output Low-Z Time (1,4) Output High-Z Time (1,4) (4) (4) 7130X100 7140X100 Com'l, Ind & Military Min. Max. Unit Parameter Min. Max. 55 ____ ____ 100 ____ ____ ns ns ns ns ns ns ns ns ns 2689 tbl 09b 55 55 25 ____ 100 100 40 ____ ____ ____ ____ ____ 3 5 ____ 10 5 ____ ____ ____ 25 ____ 40 ____ Chip Enable to Power Up Time 0 ____ 0 ____ Chip Disable to Power Down Time 50 50 NOTES: 1. Transition is measured 0mV from Low or High-impedance voltage Output Test Load (Figure 2). 2. PLCC, TQFP and STQFP packages only. 3. 'X' in part numbers indicates power rating (SA or LA). 4. This parameter is guaranteed by device characterization, but is not production tested. . 8 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Timing Waveform of Read Cycle No. 1, Either Side(1) tRC ADDRESS tAA tOH DATAOUT BUSYOUT tBDDH (2,3) 2689 drw 08 tOH DATA VALID PREVIOUS DATA VALID NOTES: 1. R/W = VIH, CE = V IL, and is OE = VIL. Address is valid prior to the coincidental with CE transition LOW. 2. tBDD delay is required only in the case where the opposite port is completing a write operation to the same the address location. For simultaneous read operations, BUSY has no relationship to valid output data. 3. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA, and tBDD. Timing Waveform of Read Cycle No. 2, Either Side(3) tACE CE tAOE (4) tHZ (2) OE tLZ (1) DATAOUT tLZ ICC CURRENT ISS tPU 50% (1) tHZ (2) VALID DATA tPD(4) 50% 2689 drw 09 NOTES: 1. Timing depends on which signal is asserted last, OE or CE. 2. Timing depends on which signal is deaserted first, OE or CE. 3. R/W = V IH and OE = VIL, and the address is valid prior to or coincidental with CE transition LOW. 4. Start of valid data depends on which timing becomes effective last tAOE , tACE, tAA, and tBDD. 9 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges AC Electrical Characteristics Over the Operating Temperature Supply Voltage Range(5) 7130X20(2) 7140X20(2) Com'l Only Symbol WRITE CYCLE tWC tEW tAW tAS tWP tWR tDW tHZ tDH tWZ tOW Write Cycle Time (3) Chip Enable to End-of-Write Address Valid to End-of-Write Address Set-up Time Write Pulse Width(4) Write Recovery Time Data Valid to End-of-Write Output High-Z Time Data Hold Time Write Enable to Output in High-Z (1) (1) 7130X25 7140X25 Com'l, Ind & Military Min. Max. 7130X35 7140X35 Com'l & Military Min. Max. Unit Parameter Min. Max. 20 15 15 0 15 0 10 ____ ____ 25 20 20 0 15 0 12 ____ ____ 35 30 30 0 25 0 15 ____ ____ ns ns ns ns ns ns ns ns ns ns ns 2689 tbl 10a ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 10 ____ 10 ____ 15 ____ 0 ____ 0 ____ 0 ____ 10 ____ 10 ____ 15 ____ Output Active from End-of-Write (1) 0 0 0 7130X55 7140X55 Com'l, Ind & Military Symbol WRITE CYCLE tWC tEW tAW tAS tWP tWR tDW tHZ tDH tWZ tOW Write Cycle Time (3) Chip Enable to End-of-Write Address Valid to End-of-Write Address Set-up Time Write Pulse Width (4) 7130X100 7140X100 Com'l, Ind & Military Min. Max. Unit Parameter Min. Max. 55 40 40 0 30 0 20 ____ ____ 100 90 90 0 55 0 40 ____ ____ ns ns ns ns ns ns ns ns ns ns ns 2689 tbl 10b ____ ____ ____ ____ ____ ____ ____ ____ Write Recovery Time Data Valid to End-of-Write Output High-Z Time (1) Data Hold Time Write Enable to Output in High-Z Output Active from End-of-Write (1) ____ ____ ____ ____ 25 ____ 40 ____ 0 ____ 0 ____ 25 ____ 40 ____ (1) 0 0 NOTES: 1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2). This parameter is guaranteed by device characterization but is not production tested. 2. PLCC, TQFP and STQFP packages only. 3. For MASTER/SLAVE combination, tWC = tBAA + tWP, since R/W = VIL must occur after t BAA. 4. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off data to be placed on the bus for the required tDW. If OE is HIGH during a R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tWP. 5. 'X' in part numbers indicates power rating (SA or LA). 10 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Timing Waveform of Write Cycle No. 1, (R/W Controlled Timing)(1,5,8) tWC ADDRESS tHZ(7) OE tAW CE tAS(6) R/W tWZ(7) DATA OUT (4) tWP(2) tWR(3) tHZ(7) tOW (4) tDW DATA IN tDH 2689 drw 10 Timing Waveform of Write Cycle No. 2, (CE Controlled Timing)(1,5) tWC ADDRESS tAW CE tAS(6) R/W tDW DATA IN 2689 drw 11 tEW(2) tWR(3) tDH NOTES: 1. R/W or CE must be HIGH during all address transitions. 2. A write occurs during the overlap (tEW or tWP) of CE = VIL and R/W = VIL. 3. tWR is measured from the earlier of CE or R/W going HIGH to the end of the write cycle. 4. During this period, the l/O pins are in the output state and input signals must not be applied. 5. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the HIGH impedance state. 6. Timing depends on which enable signal (CE or R/ W) is asserted last. 7. This parameter is determined be device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2). 8. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off data to be placed on the bus for the required tDW. If OE is HIGH during a R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tWP. 11 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range(7) 7130X20(1) 7140X20(1) Com'l Only Symbol BUSY TIMING (For MASTER IDT 7130) tBAA tBDA tBAC tBDC tWH tWDD tDDD tAPS tBDD BUSY A ccess Time from Address BUSY Disable Time from Address BUSY A ccess Time from Chip Enable BUSY Disable Time from Chip Enable Write Hold After B USY(6) Write Pulse to Data Delay(2) Write Data Valid to Read Data Delay Arbitration Priority Set-up Time (3) BUSY Disable to Valid Data(4) (2) ____ 7130X25 7140X25 Com'l, Ind & Military Min. Max. 7130X35 7140X35 Com'l & Military Min. Max. Unit Parameter Min. Max. 20 20 20 20 ____ ____ 20 20 20 20 ____ ____ 20 20 20 20 ____ ns ns ns ns ns ns ns ns ns ____ ____ ____ ____ ____ ____ ____ ____ ____ 12 ____ 15 ____ 20 ____ 40 30 ____ 50 35 ____ 60 35 ____ ____ ____ ____ 5 ____ 5 ____ 5 ____ 25 35 35 BUSY I NPUT TIMING (For SLAVE IDT 7140) tWB tWH tWDD tDDD Write to BUSY Input(5) Write Hold After B USY(6) Write Pulse to Data Delay (2) 0 12 ____ ____ ____ 0 15 ____ ____ ____ 0 20 ____ ____ ____ ns ns ns ns 2689 tbl 11a ____ ____ ____ 40 30 50 35 60 35 Write Data Valid to Read Data Delay (2) 7130X55 7140X55 Com'l, Ind & Military Symbol BUSY TIMING (For MASTER IDT 7130) tBAA tBDA tBAC tBDC tWH tWDD tDDD tAPS tBDD BUSY Access Time from Address] BUSY Disable Time from Address BUSY Access Time from Chip Enable BUSY Disable Time from Chip Enable Write Hold After B USY(6) Write Pulse to Data Delay(2) Write Data Valid to Read Data Delay Arbitration Priority Set-up Time (3) BUSY Disable to Valid Data(4) (2) ____ 7130X100 7140X100 Com'l, Ind & Military Min. Max. Unit Parameter Min. Max. 30 30 30 30 ____ ____ 50 50 50 50 ____ ns ns ns ns ns ns ns ns ns ____ ____ ____ ____ ____ ____ 20 ____ 20 ____ 80 55 ____ 120 100 ____ ____ ____ 5 ____ 5 ____ 55 65 BUSY I NPUT TIMING (For SLAVE IDT 7140) tWB tWH tWDD tDDD Write to BUSY Input(5) Write Hold After B USY(6) Write Pulse to Data Delay (2) (2) 0 20 ____ ____ 0 20 ____ ____ ns ns ns ns 2689 tbl 11b ____ ____ 80 55 120 100 Write Data Valid to Read Data Delay ____ ____ NOTES: 1. PLCC, TQFP and STQFP packages only. 2. Port-to-port delay through RAM cells from the writing port to the reading port, refer to “Timing Waveform of Write with Port -to-Port Read and BUSY." 3. To ensure that the earlier of the two ports wins. 4. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual). 5. To ensure that a write cycle is inhibited on port 'B' during contention on port 'A'. 6. To ensure that a write cycle is completed on port 'B' after contention on port 'A'. 7. 'X' in part numbers indicates power rating (S or L). 12 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Timing Waveform of Write with Port-to-Port Read and BUSY(2,3,4) tWC ADDR"A" MATCH tWP R/W"A" tDW DATAIN"A" tAPS ADDR"B" tBAA BUSY"B" tWDD DATAOUT"B" tDDD 2689 drw 12 (1) tDH VALID MATCH tBDA tBDD VALID NOTES: 1. To ensure that the earlier of the two ports wins. tBDD is ignored for slave (IDT7140). 2. CEL = CER = VIL 3. OE = V IL for the reading port. 4. All timing is the same for the left and right ports. Port 'A' may be either the left or right port. Port "B" is opposite from port "A". Timing Waveform of Write with BUSY(3) tWP R/W"A" tWB BUSY"B" tWH(1) R/W"B" , (2) NOTES: 1. tWH must be met for both BUSY Input (IDT7140, slave) or Output (IDT7130 master). 2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH. 3. All timing is the same for the left and right ports. Port "A" may be either the left or right port. Port "B" is oppsite from port "A". 2689 drw 13 13 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Timing Waveform of BUSY Arbitration Controlled by CE Timing(1) ADDR 'A' AND 'B' CE'B' tAPS(2) CE'A' tBAC ADDRESSES MATCH tBDC BUSY'A' 2689 drw 14 Timing Waveform by BUSY Arbitration Controlled by Address Match Timing(1) tRC OR tWC ADDR'A' tAPS ADDR'B' tBAA BUSY'B' 2689 drw 15 (2) ADDRESSES MATCH ADDRESSES DO NOT MATCH tBDA NOTES: 1. All timing is the same for left and right ports. Port “A” may be either left or right port. Port “B” is the opposite from port “A”. 2. If t APS is not satisified, the BUSY will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted (7130 only). AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range(2) 7130X20(1) 7140X20(1) Com'l Only Symbol INTERRUPT TIMING tAS tWR tINS tINR Address Set-up Time Write Recovery Time Interrupt Set Time Interrupt Reset Time 0 0 ____ ____ ____ 7130X25 7140X25 Com'l, Ind & Military Min. Max. 7130X35 7140X35 Com'l & Military Min. Max. Unit Parameter Min. Max. 0 0 ____ ____ ____ 0 0 ____ ____ ____ ns ns ns ns 2689 tbl 12a 20 20 25 25 25 25 ____ ____ ____ NOTES: 1. PLCC, TQFP and STQFP package only. 2. 'X' in part numbers indicates power rating (SA or LA). 14 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges AC Electrical characteristics Over the Operating Temperature and Supply Voltage Range(1) 7130X55 7140X55 Com'l, Ind & Military Symbol INTERRUPT TIMING tAS tWR tINS tINR Address Set-up Time Write Recovery Time Interrupt Set Time Interrupt Reset Time 0 0 ____ ____ 7130X100 7140X100 Com'l, Ind & Military Min. Max. Unit Parameter Min. Max. 0 0 ____ ____ ns ns ns ns 2689 tbl 12b ____ ____ 45 45 60 60 ____ ____ NOTES: 1. 'X' in part numbers indicates power rating (SA or LA). Timing Waveform of Interrupt Mode(1) INT Set: tWC ADDR'A' INTERRUPT ADDRESS tAS(3) R/W'A' tINS (3) INT'B' 2689 drw 16 (2) tWR (4) INT Clear: tRC ADDR'B' tAS OE'B' tINR INT'A' 2689 drw 17 (3) INTERRUPT CLEAR ADDRESS (3) NOTES: . 1. All timing is the same for left and right ports. Port “A” may be either left or right port. Port “B” is the opposite from port “A”. 2. See Interrupt Truth Table II. 3. Timing depends on which enable signal (CE or R/ W) is asserted last. 4. Timing depends on which enable signal (CE or R/W) is de-asserted first. 15 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Truth Tables Truth Table I — Non-Contention Read/Write Control(4) Inputs(1) R/ W X X L H H CE H H L L L OE X X X L H D0-7 Z Z DATAIN DATAOUT Z Function Port Disabled and in Power-Down Mode, I SB2 o r ISB4 CER = C EL = VIH, Power-Down Mode, ISB1 o r ISB3 Data on Port Written into Memory(2) Data in Memory Output on Port(3) High Impedance Outputs 2689 tbl 13 NOTES: 1. A0L – A10L • A0R – A 10R. 2. If BUSY = L, data is not written. 3. If BUSY = L, data may not be valid, see tWDD and tDDD timing. 4. 'H' = VIH, 'L' = VIL, 'X' = DON’T CARE, 'Z' = HIGH IMPEDANCE Truth Table II — Interrupt Flag(1,4) Left Port R/ WL L X X X CEL L X X L OEL X X X L A9L-A0L 3FF X X 3FE INTL X X L(3) H (2) Right Port R/WR X X L X CER X L L X OER X L X X A9R-A0R X 3FF 3FE X INTR L(2) H(3) X X Function Set Right I NTR Flag Reset Right INTR Flag Set Left INTL Flag Reset Left INTL Flag 2689 tbl 14 NOTES: 1. Assumes BUSYL = BUSYR = VIH 2. If BUSY L = VIL, then No Change. 3. If BUSY R = VIL, then No Change. 4. 'H' = HIGH,' L' = LOW,' X' = DON’T CARE Truth Table III — Address BUSY Arbitration Inputs CEL X H X L CER X X H L A0L-A9L A0R-A9R NO MATCH MATCH MATCH MATCH Outputs BUSYL(1) H H H (2) BUSYR(1) H H H (2) Function Normal Normal Normal Write Inhibit(3) 2689 tbl 15 NOTES: 1. Pins BUSY L and BUSYR are both outputs for IDT7130 (master). Both are inputs for IDT7140 (slave). BUSYX outputs on the IDT7130 are open drain, not push-pull outputs. On slaves the BUSY X input internally inhibits writes. 2. 'L' if the inputs to the opposite port were stable prior to the address and enable inputs of this port. 'H' if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either BUSY L or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously. 3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin. 16 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Functional Description The IDT7130/IDT7140 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7130/IDT7140 has an automatic power down feature controlled by CE. The CE controls onchip power down circuitry that permits the respective port to go into a standby mode when not selected (CE = VIH). When a port is enabled, access to the entire memory array is permitted. RAMs are being expanded in depth, then the BUSY indication for the resulting array does not require the use of an external AND gate. Width Expansion with Busy Logic Master/Slave Arrays When expanding an RAM array in width while using busy logic, one master part is used to decide which side of the RAM array will receive a busy indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the busy signal as a write inhibit signal. Thus on the IDT7130/IDT7140 RAMs the BUSY pin is an output if the part is Master (IDT7130), and the BUSY pin is an input if the part is a Slave (IDT7140) as shown in Figure 3. DECODER Interrupts If the user chooses the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag (INTL) is asserted when the right port writes to memory location 3FE (HEX), where a write is defined as the CER = R/WR = VIL per Truth Table II. The left port clears the interrupt by access address location 3FE access when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right port interrupt flag (INTR) is asserted when the left port writes to memory location 3FF (HEX) and to clear the interrupt flag (INTR), the right port must access the memory location 3FF. The message (8 bits) at 3FE or 3FF is user-defined, since it is an addressable SRAM location. If the interrupt function is not used, address locations 3FE and 3FF are not used as mail boxes, but as part of the random access memory. Refer to Truth Table II for the interrupt operation. 5V 270Ω MASTER Dual Port RAM BUSYL CE BUSYR SLAVE Dual Port RAM BUSYL CE BUSYR 5V 270Ω MASTER Dual Port RAM BUSYL BUSYL CE BUSYR SLAVE Dual Port RAM BUSYL CE BUSYR BUSYR 2689 drw 18 Busy Logic Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is “Busy”. The BUSY pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a BUSY indication, the write signal is gated internally to prevent the write from proceeding. The use of BUSY logic is not required or desirable for all applications. In some cases it may be useful to logically OR the BUSY outputs together and use any BUSY indication as an interrupt source to flag the event of an illegal or illogical operation. In slave mode the BUSY pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the BUSY pins HIGH. If desired, unintended write operations can be prevented to a port by tying the BUSY pin for that port LOW. The BUSY outputs on the IDT7130 RAM (Master) are open drain type outputs and require open drain resistors to operate. If these Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7130 (Master) and IDT7140 (Slave)RAMs. If two or more master parts were used when expanding in width, a split decision could result with one master indicating busy on one side of the array and another master indicating busy on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word. The BUSY arbitration, on a Master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a BUSY flag to be output from the master before the actual write pulse can be initiated with either the R/W signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave. 17 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Ordering Information IDT XXXX A 999 A Device Type Power Speed Package A A Process/ Temperature Range BLANK I(1) B G (2) Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Military (-55°C to +125°C) Compliant to MIL-PRF-38535 QML Green 48-pin Plastic DIP (P48-1) 48-pin Sidebraze DIP (C48-2) 52-pin PLCC (J52-1) 48-pin LCC (L48-1) 48-pin Ceramic Flatpack (F48-1) 64-pin TQFP (PN64-1) 64-pin STQFP (PP64-1) Commercial PLCC, TQFP and STQFP Only Commercial, Industrial & Military Commercial & Military Commercial, Industrial & Military Commercial, Industrial & Military Low Power Standard Power 8K (1K x 8-Bit) MASTER Dual-Port RAM 8K (1K x 8-Bit) SLAVE Dual-Port RAM 2689 drw 19 P (3) C J L48 F PF TF 20 25 35 55 100 LA SA 7130 7140 , Speed in nanoseconds NOTES: 1. Contact your local sales office for industrial temp range for other speeds, packages and powers. 2. Green parts available. For specific speeds, pacakges and powers contact your local sales office. 3. For "P", plastic DIP, when ordering green package the suffix is "PDG". Datasheet Document History 03/15/99: Initiated datasheet document history Converted to new format Cosmetic and typographical corrections Added additional notes to pin configurations Changed drawing format Corrected package number in note 3 Fixed pin 1 in DIP pin configuration Replaced IDT logo Increased storage temperature parameters Clarified TA parameter DC Electrical parameters–changed wording from "open" to "disabled" Changed ±500mV to 0mV in notes Added Ceramic Flatpack to 48-pin package offerings Added date revision to pin configurations Removed industrial temp option footnote from all tables Pages 2 and 3 06/08/99: 08/02/99: 09/29/99: 11/10/99: 06/23/00: Page 2 Page 2 Page 1 & 18 Page 4 Page 5 Page 10 Page 1 Page 2 & 3 Page 4, 5, 8, 10, 12,14 & 15 01/08/02: Continued on page 19 18 IDT7130SA/LA and IDT7140SA/LA High-Speed 1K x 8 Dual-Port Static SRAM Military, Industrial and Commercial Temperature Ranges Datasheet Document History (cont'd) 01/08/02: Page 5, 8, 10, 12, & 14 Page 5, 8, 10, 12, & 14 Page 18 Page 1 & 19 Page 1 Page 18 Page 1 & 19 Page 18 Added industrial temp for 25ns to DC & AC Electrical Characteristics Removed industrial temp for 35ns to DC & AC Electrical Characteristics Added industrial temp for 25ns and removed industrial temp for 35ns in ordering information Updated industrial temp option footnote Replaced IDT TM logo with IDT ® logo Added green availability to features Added green indicator to ordering information Replaced old IDT TM with new IDT TM logo Added "PDG" footnote to the ordering information 01/11/06: 04/14/06: CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: 408-284-2794 DualPortHelp@idt.com The IDT logo is a registered trademark of Integrated Device Technology, Inc. 19
IDT7140LA 价格&库存

很抱歉,暂时无法提供与“IDT7140LA”相匹配的价格&库存,您可以联系我们找货

免费人工找货