256K X 36, 512K X 18 3.3V Synchronous SRAMs 2.5V I/O, Burst Counter Pipelined Outputs, Single Cycle Deselect
x x
IDT71V67602 IDT71V67802
Features
256K x 36, 512K x 18 memory configurations Supports high system speed: – 166MHz 3.5ns clock access time – 150MHz 3.8ns clock access time – 133MHz 4.2ns clock access time LBO input selects interleaved or linear burst mode Self-timed write cycle with global write control (GW), byte write enable (BWE), and byte writes (BWx) 3.3V core power supply Power down controlled by ZZ input 2.5V I/O supply (VDDQ) Packaged in a JEDEC Standard 100-pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array.
Description
The IDT71V67602/7802 are high-speed SRAMs organized as 256K x 36/512K x 18. The IDT71V676/78 SRAMs contain write, data, address and control registers. Internal logic allows the SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle. The burst mode feature offers the highest level of performance to the system designer, as the IDT71V67602/7802 can provide four cycles of data for a single address presented to the SRAM. An internal burst address counter accepts the first cycle address from the processor, initiating the access sequence. The first cycle of output data will be pipelined for one cycle before it is available on the next rising clock edge. If burst mode operation is selected (ADV=LOW), the subsequent three cycles of output data will be available to the user on the next three rising clock edges. The order of these three addresses are defined by the internal burst counter and the LBO input pin. The IDT71V67602/7802 SRAMs utilize IDT’s latest high-performance CMOS process and are packaged in a JEDEC standard 14mm x 20mm 100-pin thin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA).
x x
x x x x
Pin Description Summary
A0-A18 Address Inputs Chip Enable Chip Selects Output Enable Global Write Enable Byte Write Enable Individual Byte Write Selects Clock Burst Address Advance Address Status (Cache Controller) Address Status (Processor) Linear / Interleaved Burst Order Sleep Mode Data Input / Output Core Power, I/O Power Ground Input Input Input Input Input Input Input Input Input Input Input Input Input I/O Supply Supply Synchronous Synchronous Synchronous Asynchronous Synchronous Synchronous Synchronous N/A Synchronous Synchronous Synchronous DC Asynchronous Synchronous N/A N/A
5311 tbl 01
CE
CS0, CS1
OE GW BWE BW1, BW2, BW3, BW4(1)
CLK
ADV ADSC ADSP LBO
ZZ I/O0-I/O31, I/OP1-I/OP4 VDD, VDDQ VSS
NOTE: 1. BW3 and BW4 are not applicable for the IDT71V67802.
DECEMBER 2003
1
©2002 Integrated Device Technology, Inc. DSC-5311/07
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Pin Definitions(1)
Symbol A 0-A18 Pin Function Address Inputs Address Status (Cache Controller) Address Status (Processor) Burst Address Advance Byte Write Enable I/O I I I I Active N/A LOW LOW LOW Description Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK and ADSC Low or ADSP Low and CE Low. Synchronous Address Status from Cache Controller. ADSC is an active LOW input that is used to load the address registers with new addresses. Synchronous Address Status from Processor. ADSP is an active LOW input that is used to load the address registers with new addresses. ADSP is gated by CE. Synchronous Address Advance. ADV is an active LOW input that is used to advance the internal burst counter, controlling burst access after the initial address is loaded. When the input is HIGH the burst counter is not incremented; that is, there is no address advance. Synchronous byte write enable gates the byte write inputs BW1-BW4. If BWE is LOW at the rising edge of CLK then BWx inputs are passed to the next stage in the circuit. If BWE is HIGH then the byte write inputs are blocked and only GW c an initiate a write cycle. Synchronous byte write enables. BW1 c ontrols I/O0-7, I/OP1, BW2 c ontrols I/O8-15, I/OP2, etc. Any active byte write causes all outputs to be disabled. Synchronous chip enable. CE is used with CS 0 and CS1 to enable the IDT71V67602/7802. CE also gates ADSP. This is the clock input. All timing references for the device are made with respect to this input. Synchrono us active HIGH chip select. CS 0 is used with CE and CS1 to enable the chip. Synchronous active LOW chip select. CS1 is used with CE and CS0 to enable the chip. Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. GW s upersedes individual byte write enables. Synchro nous data input/output (I/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK. Asynchronous burst order selection input. When LBO is HIGH, the interleaved burst sequence is selected. When LBO is LOW the Linear burst sequence is selected. LBO is a static input and must not change state while the device is operating. Asynchronous output enable. When OE is LOW the data output drivers are enabled on the I/O pins if the chip is also selected. When OE is HIGH the I/O pins are in a highimpedance state. 3.3V core power supply. 2.5V I/O Supply. Ground. NC pins are not electrically connected to the device. Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71V67602/7802 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.
5311 tbl 02
ADSC ADSP ADV
BWE
I
LOW
BW1-BW4 CE
CLK CS0
Individual Byte Write Enables Chip Enable Clock Chip Select 0 Chip Select 1 Global Write Enable Data Input/Output Linear Burst Order
I I I I I I I/O I
LOW LOW N/A HIGH LOW LOW N/A LOW
CS1 GW
I/O0-I/O31 I/OP1-I/OP4
LBO
OE
Output Enable
I
LOW
V DD VDDQ V SS NC ZZ
Power Supply Power Supply Ground No Connect Sleep Mode
N/A N/A N/A N/A I
N/A N/A N/A N/A HIGH
NOTE: 1. All synchronous inputs must meet specified setup and hold times with respect to CLK.
6.42 2
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Functional Block Diagram
LBO ADV
CEN Burst Sequence INTERNAL ADDRESS
CLK ADSC AD SP
CLK EN Binary Counter C LR
2
Burst Logic
18/19 A0* A1*
Q0 Q1
256K x 36/ 512K x 18BIT MEMORY ARRAY
2 18/19
A0–A17/18 GW BW E BW 1
A0,A1
ADDRESS REGISTER Byte 1 Write Register
A2–A18
36/18
36/18
Byte 1 Write Driver
9
Byte 2 Write Register Byte 2 Write Driver
BW 2
Byte 3 Write Register
9
Byte 3 Write Driver
BW 3
Byte 4 Write Register
9
Byte 4 Write Driver
BW 4
9
OUTPUT REGISTER
CE CS0 CS 1
D
Q Enable Register
DATA INPUT REGISTER
CLK EN
ZZ
Powerdown D Q Enable Delay Register
OE OUTPUT BUFFER
OE I/O0–I/O31 I/OP1–I/OP4
36/18
,
5311 drw 01
6.42 3
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Absolute Maximum Ratings(1)
Symbol V TERM
(2)
Rating Terminal Voltage with Respect to GND Terminal Voltage with Respect to GND Terminal Voltage with Respect to GND Terminal Voltage with Respect to GND Commercial Industrial
Commercial -0.5 to +4.6 -0.5 to V DD -0.5 to V DD + 0.5 -0.5 to V DDQ + 0.5 -0 to +70 -40 to +85 -55 to +125 -55 to +125 2.0 50
Unit V V V V
o
Recommended Operating Temperature and Supply Voltage
Grade Commercial Industrial Temperature(1) 0°C to +70°C -40°C to +85°C VSS 0V 0V VDD 3.3V±5% 3.3V±5% V DDQ 2.5V±5% 2.5V±5%
5311 tbl 04
V TERM(3,6) V TERM(4,6) V TERM(5,6)
NOTE: 1. TA is the "instant on" case temperature.
Recommended DC Operating Conditions
Symbol V DD VDDQ V SS VIH Parameter Core Supply Voltage I/O Supply Voltage Ground Input High Voltage - Inputs Input High Voltage - I/O Input Low Voltage Min. 3.135 2.375 0 1.7 1.7 -0.3
(1)
TA(7)
C C C C
Typ. 3.3 2.5 0
____
Max. 3.465 2.625 0 VDD+0.3 V DDQ+0.3 0.7
Unit V V V V V V
5311 tbl 06
o
TBIAS TSTG PT IOUT
Temperature Under Bias Storage Temperature Power Dissipation DC Output Current
o
o
W mA
5311 tbl 03
VIH V IL
____
____
NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VDD terminals only. 3. VDDQ terminals only. 4. Input terminals only. 5. I/O terminals only. 6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed V DDQ during power supply ramp up. 7. TA is the "instant on" case temperature.
NOTE: 1. VIL (min) = -1.0V for pulse width less than tCYC/2, once per cycle.
100-pin TQFP Capacitance
(TA = +25°C, f = 1.0MHz)
Symbol CIN CI/O Parameter
(1)
165 fBGA Capacitance
(TA = +25°C, f = 1.0MHz)
Max. 5 7 Unit pF pF
5311 tbl 07
Conditions VIN = 3dV VOUT = 3dV
Symbol CIN CI/O
Parameter(1) Input Capacitance I/O Capacitance
Conditions VIN = 3dV VOUT = 3dV
Max. 7 7
Unit pF pF
5311 tbl 07b
Input Capacitance I/O Capacitance
119 BGA Capacitance
(TA = +25°C, f = 1.0MHz)
Symbol CIN CI/O Parameter(1) Input Capacitance I/O Capacitance Conditions VIN = 3dV VOUT = 3dV Max. 7 7 Unit pF pF
5311 tbl 07a
NOTE: 1. This parameter is guaranteed by device characterization, but not production tested.
6.42 4
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Pin Configuration 256K x 36, 100-Pin TQFP
A6 A7 CE CS0 BW4 BW3 BW2 BW1 CS1 VDD VSS CLK GW BWE OE ADSC ADSP ADV A8 A9
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
I/OP3 I/O16 I/O17 VDDQ VSS I/O18 I/O19 I/O20 I/O21 VSS VDDQ I/O22 I/O23 VDD / NC(1) VDD NC VSS I/O24 I/O25 VDDQ VSS I/O26 I/O27 I/O28 I/O29 VSS VDDQ I/O30 I/O31 I/OP4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
I/OP2 I/O15 I/O14 VDDQ VSS I/O13 I/O12 I/O11 I/O10 VSS VDDQ I/O9 I/O8 VSS NC VDD ZZ(2) I/O7 I/O6 VDDQ VSS I/O5 I/O4 I/O3 I/O2 VSS VDDQ I/O1 I/O0 I/OP1
5311 drw 02
,
LBO A5 A4 A3 A2 A1 A0
NOTES: 1. Pin 14 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected. 2. Pin 64 can be left unconnected and the device will always remain in active mode.
NC NC VSS VDD NC A17 A10 A11 A12 A13 A14 A15 A16
Top View
6.42 5
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Pin Configuration 512K x 18, 100-Pin TQFP
A6 A7 CE CS0 NC NC BW2 BW1 CS1 VDD VSS CLK GW BWE OE ADSC ADSP ADV A8 A9
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
NC NC NC VDDQ VSS NC NC I/O8 I/O9 VSS VDDQ I/O10 I/O11 VDD / NC(1) VDD NC VSS I/O12 I/O13 VDDQ VSS I/O14 I/O15 I/OP2 NC VSS VDDQ NC NC NC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
A10 NC NC VDDQ VSS NC I/OP1 I/O7 I/O6 VSS VDDQ I/O5 I/O4 VSS NC VDD ZZ(2) I/O3 I/O2 VDDQ VSS I/O1 I/O0 NC NC VSS VDDQ NC NC NC
5311 drw 03
,
NOTES: 1. Pin 14 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected. 2. Pin 64 can be left unconnected and the device will always remain in active mode.
LBO A5 A4 A3 A2 A1 A0 NC NC VSS VDD NC A18 A11 A12 A13 A14 A15 A16 A17
Top View
6.42 6
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Pin Configuration 256K x 36, 119 BGA
1 A B C D E F G H J K L M N P R T U VDDQ NC NC I/O16 I/O17 VDDQ I/O20 I/O22 VDDQ I/O24 I/O25 VDDQ I/O29 I/O31 NC NC VDDQ 2 A6 CS0(4) A7 I/OP3 I/O18 I/O19 I/O21 I/O23 VDD I/O26 I/O27 I/O28 I/O30 I/OP4 A5 NC DNU(3) 3 A4 A3 A2 VSS VSS VSS BW3 VSS NC VSS BW4 VSS VSS VSS LBO A10 DNU(3) 4 ADSP ADSC VDD NC CE OE ADV GW VDD CLK NC BWE A1 A0 VDD A11 DNU(3) 5 A8 A9 A12 VSS VSS VSS BW 2 VSS NC VSS BW1 VSS VSS VSS VDD / NC(1) A14 DNU(3) 6 A16 A17 A15 I/OP2 I/O13 I/O12 I/O11 I/O9 VDD I/O6 I/O4 I/O3 I/O2 I/OP1 A13 NC DNU(3) 7 VDDQ NC NC I/O15 I/O14 VDDQ I/O10 I/O8 VDDQ I/O7 I/O5 VDDQ I/O1 I/O0 NC ZZ (2) VDDQ
5311 drw 04
,
Top View Pin Configuration 512K x 18, 119 BGA
1 A B C D E F G H J K L M N P R T U VDDQ NC NC I/O8 NC VDDQ NC I/O11 VDDQ NC I/O13 VDDQ I/O15 NC NC NC VDDQ 2 A6 CS0(4) A7 NC I/O9 NC I/O10 NC VDD I/O12 NC I/O14 NC I/OP2 A5 A10 DNU(3) 3 A4 A3 A2 VSS VSS VSS BW2 VSS NC VSS VSS VSS VSS VSS LBO A15 DNU(3) 4 ADSP ADSC VDD NC CE OE ADV GW VDD CLK NC BWE A1 A0 VDD NC DNU(3) 5 A8 A9 A13 VSS VSS VSS VSS VSS NC VSS BW1 VSS VSS VSS VDD / NC A14 DNU(3)
(1)
6 A16 A18 A17 I/OP1 NC I/O6 NC I/O4 VDD NC I/O2 NC I/O1 NC A12 A11 DNU(3)
7 VDDQ NC NC NC I/O7 VDDQ I/O5 NC VDDQ I/O3 NC VDDQ NC I/O0 NC ZZ (2) VDDQ
5311 drw 05
,
Top View
NOTES: 1. R5 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected. 2. T7 can be left unconnected and the device will always remain in active mode. 3. Pin U6 will be internally pulled to VDD if not actively driven. To disable the TAP controller without interfering with normal operation, TRST should be tied low and TCK, TDI, and TMS should be pulled through a resistor to 3.3V. TDO should be left unconnected. 4. On future 18M device CS0 will be removed, B2 will be be used for address expansion.
6.42 7
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Pin Configuration 256K x 36, 165 fBGA
1 A B C D E F G H J K L M N P R NC(3) NC I/OP3 I/O17 I/O19 I/O21 I/O23 VDD(1) I/O25 I/O27 I/O29 I/O31 I/OP4 NC 2 A7 A6 NC I/O16 I/O18 I/O20 I/O22 NC I/O24 I/O26 I/O28 I/O30 NC NC NC
(3)
3
4
5
6
7
8
9
10 A8 A9 NC I/O15 I/O13 I/O11 I/O9 NC I/O7 I/O5 I/O3 I/O1 NC A14 A15
11 NC NC(3) I/OP2 I/O14 I/O12 I/O10 I/O8 ZZ(2) I/O6 I/O4 I/O2 I/O0 I/OP1 A17 A16
5311 tbl 17a
CE
CS0 V DDQ V DDQ V DDQ V DDQ V DDQ NC V DDQ V DDQ V DDQ V DDQ V DDQ A5 A4
BW3 BW4
VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A2 A3
BW2 BW1
V SS V SS V SS V SS V SS V SS V SS V SS V SS V SS NC DNU DNU
(4)
CS1
CLK VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC
(3)
BWE GW
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC DNU DNU
(4)
ADSC OE
V SS V DD V DD V DD V DD V DD V DD V DD V DD V DD V SS A10 A11
ADV ADSP
VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A 13 A 12
A1 A0
LBO
(3)
(4)
(4)
Pin Configuration 512K x 18, 165 fBGA
1 A B C D E F G H J K L M N P R NC
(3)
2 A7 A6 NC I/O8 I/O9 I/O10 I/O11 NC NC NC NC NC NC NC(3) NC(3)
3
4
5 NC
6
7
8
9
10 A8 A9 NC NC NC NC NC NC I/O3 I/O2 I/O1 I/O0 NC A15 A16
11 A10 NC(3) I/OP1 I/O7 I/O6 I/O5 I/O4 ZZ(2) NC NC NC NC NC A18 A17
5311 tbl 17b
CE
CS 0 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A5 A4
BW2
NC VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A2 A3
CS1
CLK V SS V SS V SS V SS V SS V SS V SS V SS V SS V SS NC
(3)
BWE GW
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC DNU(4) DNU(4)
ADSC OE
VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A11 A12
ADV ADSP
VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A14 A13
NC NC NC NC NC NC VDD
(1)
BW1
V SS V SS V SS V SS V SS V SS V SS V SS V SS V SS NC DNU(4) DNU(4)
I/O12 I/O13 I/O14 I/O15 I/OP2 NC
A1 A0
LBO
NOTES: 1. H1 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected. 2. H11 can be left unconnected and the device will always remain in active mode. 3. Pin N6, B11, A1, R2 and P2 are reserved for 18M, 36M, 72M, and 144M and 288M respectively.
6.42 8
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 5%)
Symbol |ILI| |ILZZ| |ILO| VOL VOH Parameter Input Leakage Current ZZ and LBO Input Leakage Current Output Leakage Current Output Low Voltage Output High Voltage
(1)
Test Conditions VDD = Max., VIN = 0V to VDD VDD = Max., VIN = 0V to VDD VOUT = 0V to V DDQ, Device Deselected IOL = +6mA, VDD = Min. IOH = -6mA, VDD = Min.
Min.
___
Max. 5 30 5 0.4
___
Unit µA µA µA V V
___
___ ___
2.0
5311 tbl 08 NOTE: 1. The LBO pin will be internally pulled to VDD if it is not actively driven in the application and the ZZ pin will be internally pulled to VSS if not actively driven.
DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (1)
166MHz Symbol IDD Operating Power Supply Current ISB1 ISB2 IZZ Full Sleep Mode Supply Current CMOS Standby Power Supply Current Clock Running Power Supply Current Parameter Test Conditions Com'l Only Device Selected, Outputs Open, V DD = Max., V DDQ = Max., VIN > VIH or < VIL, f = fMAX(2) Device Deselected, Outputs Open, V DD = Max., V DDQ = Max., VIN > VHD or < VLD, f = 0(2,3) Device Deselected, Outputs Open, V DD = Max., V DDQ = Max., VIN > VHD or < VLD, f = fMAX(2,3) ZZ > VHD, VDD = Max. 340 50 160 50 Com'l 305 50 155 50 Ind 325 70 175 70 Com'l 260 50 150 50 Ind 280 70 170 70 mA mA mA mA
5311 tbl 09
150MHz
133MHz
Unit
NOTES: 1. All values are maximum guaranteed values. 2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tCYC while ADSC = LOW; f=0 means no input lines are changing. 3. For I/Os VHD = VDDQ - 0.2V, VLD = 0.2V. For other inputs VHD = VDD - 0.2V, VLD = 0.2V.
AC Test Conditions
(VDDQ = 2.5V)
Input Pulse Levels Input Rise/Fall Times Input Timing Reference Levels Output Timing Reference Levels AC Test Load 0 to 2.5V 2ns VDDQ/2 VDDQ/2 See Figure 1
5311 tbl 10
AC Test Load
I/O Z0 = 50Ω
VDDQ/2 50Ω ,
5311 drw 06
Figure 1. AC Test Load
6 5 4 ∆tCD 3 (Typical, ns) 2 1 20 30 50 80 100 Capacitance (pF) 200
5311 drw 07
,
Figure 2. Lumped Capacitive Load, Typical Derating
6.42 9
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Synchronous Truth Table(1,3)
Operation Deselected Cycle, Power Down Deselected Cycle, Power Down Deselected Cycle, Power Down Deselected Cycle, Power Down Deselected Cycle, Power Down Read Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Begin Burst Write Cycle, Begin Burst Write Cycle, Begin Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Write Cycle, Continue Burst Write Cycle, Continue Burst Write Cycle, Continue Burst Write Cycle, Continue Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Write Cycle, Suspend Burst Write Cycle, Suspend Burst Write Cycle, Suspend Burst Write Cycle, Suspend Burst
NOTES: 1. L = V IL, H = VIH, X = Don’t Care. 2. OE is an asynchronous input. 3. ZZ = low for this table.
Address Used None None None None None External External External External External External External Next Next Next Next Next Next Next Next Next Next Next Next Current Current Current Current Current Current Current Current Current Current Current Current
CE
H L L L L L L L L L L L X X X X H H H H X X H H X X X X H H H H X X H H
CS 0 X X L X L H H H H H H H X X X X X X X X X X X X X X X X X X X X X X X X
CS1
X H X H X L L L L L L L X X X X X X X X X X X X X X X X X X X X X X X X
ADSP
X L L X X L L H H H H H H H H H X X X X H H X X H H H H X X X X H H X X
ADSC
L X X L L X X L L L L L H H H H H H H H H H H H H H H H H H H H H H H H
ADV
X X X X X X X X X X X X L L L L L L L L L L L L H H H H H H H H H H H H
GW
X X X X X X X H H H H L H H H H H H H H H L H L H H H H H H H H H L H L
BWE
X X X X X X X H L L L X H H X X H H X X L X L X H H X X H H X X L X L X
BW x
X X X X X X X X H H L X X X H H X X H H L X L X X X H H X X H H L X L X
OE
(2) X X X X X L H L L H X X L H L H L H L H X X X X L H L H L H L H X X X X
CLK -
I/O HI-Z HI-Z HI-Z HI-Z HI-Z DOUT HI-Z DOUT DOUT HI-Z DIN DIN DOUT HI-Z DOUT HI-Z DOUT HI-Z DOUT HI-Z DIN DIN DIN DIN DOUT HI-Z DOUT HI-Z DOUT HI-Z DOUT HI-Z DIN DIN DIN DIN
5311 tbl 11
6.42 10
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Synchronous Write Function Truth Table(1, 2)
Operation Read Read Write all Bytes Write all Bytes Write Byte 1 Write Byte 2 Write Byte 3 Write Byte 4
(3) (3) (3) (3)
GW
H H L H H H H H
BWE
H L X L L L L L
BW1
X H X L L H H H
BW2
X H X L H L H H
BW 3
X H X L H H L H
BW4
X H X L H H H L
5311 tbl 12
NOTES: 1. L = VIL, H = VIH, X = Don’t Care. 2. BW3 and BW4 are not applicable for the IDT71V67802. 3. Multiple bytes may be selected during the same cycle.
Asynchronous Truth Table(1)
Operation(2) Read Read Write Deselected Sleep Mode
OE
L H X X X
ZZ L L L L H
I/O Status Data Out High-Z High-Z – Data In High-Z High-Z
Power Active Active Active Standby Sleep
5311 tbl 13
NOTES: 1. L = VIL, H = VIH, X = Don’t Care. 2. Synchronous function pins must be biased appropriately to satisfy operation requirements.
Interleaved Burst Sequence Table (LBO=VDD)
Sequence 1 A1 First Address Second Address Third Address Fourth Address
(1)
Sequence 2 A1 0 0 1 1 A0 1 0 1 0
Sequence 3 A1 1 1 0 0 A0 0 1 0 1
Sequence 4 A1 1 1 0 0 A0 1 0 1 0
5311 tbl 14
A0 0 1 0 1
0 0 1 1
NOTE: 1. Upon completion of the Burst sequence the counter wraps around to its initial state.
Linear Burst Sequence Table (LBO=VSS)
Sequence 1 A1 First Address Second Address Third Address Fourth Address(1) 0 0 1 1 A0 0 1 0 1 Sequence 2 A1 0 1 1 0 A0 1 0 1 0 Sequence 3 A1 1 1 0 0 A0 0 1 0 1 Sequence 4 A1 1 0 0 1 A0 1 0 1 0
5311 tbl 15
NOTE: 1. Upon completion of the Burst sequence the counter wraps around to its initial state.
6.42 11
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
AC Electrical Characteristics
(VDD = 3.3V ±5%, Commercial and Industrial Temperature Ranges)
166MHz Symbol Parameter Min. Max. Min. 150MHz Max. Min. 133MHz Max. Unit
tCYC tCH(1) tCL(1)
Clock Cycle Time Clock High Pulse Width Clock Low Pulse Width
6 2.4 2.4
____
6.7 2.6 2.6
____
7.5 3 3
____
ns ns ns
____
____
____
____
____
____
Output Parameters
tCD tCDC tCLZ(2) tCHZ(2) tOE tOLZ(2) tOHZ(2) Clock High to Valid Data Clock High to Data Change Clock High to Output Active Clock High to Data High-Z Output Enable Access Time Output Enable Low to Output Active Output Enable High to Output High-Z
____
3.5
____
____
3.8
____
____
4.2
____
ns ns ns ns ns ns ns
1.5 0 1.5
____
1.5 0 1.5
____
1.5 0 1.5
____
____
____
____
3.5 3.5
____
3.8 3.8
____
4.2 4.2
____
0
____
0
____
0
____
3.5
3.8
4.2
Set Up Times
tSA tSS tSD tSW tSAV tSC Address Setup Time Address Status Setup Time Data In Setup Time Write Setup Time Address Advance Setup Time Chip Enable/Select Setup Time 1.5 1.5 1.5 1.5 1.5 1.5
____
1.5 1.5 1.5 1.5 1.5 1.5
____
1.5 1.5 1.5 1.5 1.5 1.5
____
ns ns ns ns ns ns
____ ____ ____
____ ____ ____
____ ____ ____
____ ____
____ ____
____ ____
Hold Times
tHA tHS tHD tHW tHAV tHC Address Hold Time Address Status Hold Time Data In Hold Time Write Hold Time Address Advance Hold Time Chip Enable/Select Hold Time 0.5 0.5 0.5 0.5 0.5 0.5
____ ____
0.5 0.5 0.5 0.5 0.5 0.5
____ ____
0.5 0.5 0.5 0.5 0.5 0.5
____ ____
ns ns ns ns ns ns
____ ____
____ ____
____ ____
____ ____
____ ____
____ ____
Sleep Mode and Configuration Parameters
tZZPW tZZR(3) tCFG(4) ZZ Pulse Width ZZ Recovery Time Configuration Set-up Time 100 100 24
____
100 100 27
____
100 100 30
____
ns ns ns
5311 tbl 16
____
____
____
____
____
____
NOTES: 1. Measured as HIGH above VIH and LOW below VIL. 2. Transition is measured ±200mV from steady-state. 3. Device must be deselected when powered-up from sleep mode. 4. tCFG is the minimum time required to configure the device based on the LBO input. LBO is a static input and must not change during normal operation.
6.42 12
tCYC
CLK tCH tCL
tSS tHS
ADSP
(1)
ADSC tHA Ax tSW tHW Ay
tSA
ADDRESS
GW,BWE, BWx tHC tSAV tHAV
tSC
CE, CS1
(Note 3)
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Timing Waveform of Pipelined Read Cycle(1,2)
6.42 13
tOE tCD tOHZ tCDC
O1(Ay) O2(Ay) O3(Ay)
ADV
ADV HIGH suspends burst
OE tOLZ tCLZ
O1(Ax)
(Burst wraps around to its initial state)
tCHZ
O4(Ay) O1(Ay) O2(Ay)
DATAOUT
Output Disabled Pipelined Read
Burst Pipelined Read
5311 drw 08
Commercial and Industrial Temperature Ranges
NOTES: 1. O1 (Ax) represents the first output from the external address Ax. O1 (Ay) represents the first output from the external address Ay; O2 (Ay) represents the next output data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. 2. ZZ input is LOW and LBO is Don't Care for this cycle. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.
,
tCYC
CLK tCH tCL
(2)
tSS tHS
ADSP
tSA tHA Ax Ay tSW tHW Az
ADDRESS
GW
ADV
OE tSD tHD tOE tCD tCLZ O1(Ax) tOHZ I1(Ay) tOLZ
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Timing Waveform of Combined Pipelined Read and Write Cycles(1,2,3)
6.42 14
DATAIN
tCDC O1(Az) tCD O2(Az) O3(Az)
DATAOUT
Single Read
Pipelined Write
Pipelined Burst Read
5311 drw 09
Commercial and Industrial Temperature Ranges
NOTES: 1. Device is selected through entire cycle; CE and CS1 are LOW, CS0 is HIGH. 2. ZZ input is LOW and LBO is Don't Care for this cycle. 3. O1 (Ax) represents the first output from the external address Ax. I1 (Ay) represents the first input from the external address Ay; O1 (Az) represents the first output from the external address Az; O2 (Az) represents the next output data in the burst sequence of the base address Az, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.
,
tCYC
CLK tCH tCL
tSS tHS
ADSP
ADSC
tSA tHA Ax
G W is ignored when ADSP initiates a cycle and is sampled on the next clock rising edge
ADDRESS Ay Az tHW tSW
GW
tSC
tHC
CE, CS1 tSAV tHAV
(Note 3)
ADV
(ADV HIGH suspends burst)
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Timing Waveform of Write Cycle No. 1 GW Controlled(1,2,3)
6.42 15
I1(Ax) I2(Ay) tOHZ I1(Ay) I2(Ay) Burst Write Single Write
OE tSD I3(Ay) I4(Ay) I1(Az)
tHD
DATAIN
I2(Az)
I3(Az)
DATAOUT
O3(Aw)
O4(Aw)
Burst Read
Burst Write
5311 drw 10
,
Commercial and Industrial Temperature Ranges
NOTES: 1. ZZ input is LOW, BWE is HIGH and LBO is Don't Care for this cycle. 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. In the case of input I2 (Ay) this data is valid for two cycles because ADV is high and has suspended the burst. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.
tCYC
CLK tCH tCL
tSS tHS
ADSP
ADSC
tSA tHA Ax
BW E is ignored when AD SP initiates a cycle and is sampled on next clock rising edge
ADDRESS tHW tSW
Ay Az
BWE
BW x is ignored when AD SP initiates a cycle and is sampled on next clock rising edge
tHW tSW
BWx
tSC
tHC
CE, CS1 tSAV
(Note 3)
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Timing Waveform of Write Cycle No. 2 Byte Controlled(1,2,3)
6.42 16
(AD V suspends burst)
ADV
OE tSD I1(Ax) I2(Ay) tOHZ I1(Ay) I2(Ay) I3(Ay) I4(Ay) I1(Az)
tHD
DATAIN
I2(Az)
I3(Az)
DATAOUT Single Write
O3(Aw)
O4(Aw) Burst Write Extended Burst Write
5311 drw 11
Burst Read
Commercial and Industrial Temperature Ranges
NOTES: 1. ZZ input is LOW, GW is HIGH and LBO is Don't Care for this cycle. 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. In the case of input I2 (Ay) this data is valid for two cycles because ADV is high and has suspended the burst. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.
,
tCYC
CLK tCH tCL
tSS
tHS
ADSP
ADSC tHA Ax Az
tSA
ADDRESS
GW tHC
tSC
CE,CS 1
(Note 4)
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Timing Waveform of Sleep (ZZ) and Power-Down Modes(1,2,3)
6.42 17
tOE tOLZ
O1(Ax)
tZZPW
ADV
OE
DATAOUT
tZZR
ZZ Single Read
Snooze Mode
5311 drw 12
,
Commercial and Industrial Temperature Ranges
NOTES: 1. Device must power up in deselected Mode 2. LBO is Don't Care for this cycle. 3. It is not necessary to retain the state of the input registers throughout the Power-down cycle. 4. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Non-Burst Read Cycle Timing Waveform
CLK
ADSP
ADSC
ADDRESS
Av
Aw
Ax
Ay
Az
GW, BWE, BWx
CE, CS1
CS0
OE
DATAOUT
(Av)
(Aw)
(Ax)
(Ay)
5311 drw 14
,
NOTES: 1. ZZ input is LOW, ADV is HIGH and LBO is Don't Care for this cycle. 2. (Ax) represents the data for address Ax, etc. 3. For read cycles, ADSP and ADSC function identically and are therefore interchangable.
Non-Burst Write Cycle Timing Waveform
CLK
ADSP
ADSC
ADDRESS
Av
Aw
Ax
Ay
Az
GW
CE, CS1
CS0
DATAIN
(Av)
(Aw)
(Ax)
(Ay)
(Az)
NOTES: 1. ZZ input is LOW, ADV and OE are HIGH, and LBO is Don't Care for this cycle. 2. (Ax) represents the data for address Ax, etc. 3. Although only GW writes are shown, the functionality of BWE and BW x together is the same as GW. 4. For write cycles, ADSP and ADSC have different limitations.
,
5311 drw 15
6.42 18
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
100-Pin Thin Plastic Quad Flatpack (TQFP) Package Diagram Outline
6.42 19
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
119 Ball Grid Array (BGA) Package Diagram Outline
6.42 20
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
165 Fine Pitch Ball Grid Array (fBGA) Package Diagram Outline
6.42 21
IDT71V67602, IDT71V67802, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with 2.5V I/O, Pipelined Outputs, Single Cycle Deselect
Commercial and Industrial Temperature Ranges
Ordering Information
IDT XXX Device Type S Power X Speed XX XX Package Process/Temp Range
Blank I PF BG BQ 166* 150 133 71V67602 71V67802
Commercial (0°C to +70°C) Industrial (-40°C to +85°C) 100-pin Plastic Thin Quad Flatpack (TQFP) 119 Ball Grid Array (BGA) 165 fine pitch Ball Grid Array
Frequency in Megahertz
256K x 36 Pipelined Burst Synchronous SRAM 512K x 18 Pipelined Burst Synchronous SRAM
,
* Industrial temperature not available on 166MHz devices
5311 drw 13
6.42 22