0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
1ED020I12FTA

1ED020I12FTA

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    1ED020I12FTA - Single IGBT Driver IC - Infineon Technologies AG

  • 数据手册
  • 价格&库存
1ED020I12FTA 数据手册
Preliminary Datasheet, Version 1.2, May 2010 EICEDRIVER® 1ED020I12FTA Single IGBT Driver IC Power Management & Drives Never stop thinking. 1ED020I12FTA Revision History: Previous Version: Page May 2010 2010-05-21 0 Version 1.2 Subjects (major changes since last revision) Edition 2010-05-21 Published by Infineon Technologies AG, Campeon 1-12, 85579 Neubiberg, Germany © Infineon Technologies AG 2010. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. EICEDRIVER® 1ED020I12FTA Single IGBT Driver IC Product Highlights • • • • • • Coreless transformer isolated driver Galvanic Insulation Integrated protection features Suitable for operation at high ambient temperature Automotive Qualified (pending) Two level turn off Features • • • • • Single channel isolated IGBT Driver For 600V/1200V IGBTs 2A rail-to-rail output Vcesat-detection Active Miller Clamp Typical Application • • • • Input Side Drive inverters for HEV and EV Auxilliary inverters for HEV and EV Inverters for electrical drives in CAV High Power DC/DC inverters Output Side VCC1 VCC2,H DESAT IN+, IN-, /RST EiceDRIVERTM 1ED020I12FTA /FLT, RDY OUT CLAMP TLSET GND1 VEE2,H GND2,H CPU VCC2,L VCC1 DESAT IN+, IN-, /RST EiceDRIVERTM 1ED020I12FTA /FLT, RDY OUT CLAMP TLSET GND1 VEE2,L GND2,L Figure 1: Type Typical Application Gate drive current +/- 2A 1 Package PG-DSO-20-55 Version 1.2, 2010-05-21 1ED020I12FTA Preliminary Datasheet EICEDRIVER® 1ED020I12FTA Preliminary Datasheet 2 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA 1 2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.3 2.4 2.5 2.6 2.7 2.7.1 2.7.2 2.7.3 2.8 3 3.1 3.2 4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 4.4.9 5 5.1 5.2 5.3 6 7 8 8.1 8.2 Block Diagram and Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . READY status output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-Level Turn-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimal On Time / Off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Miller Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 6 6 6 6 6 7 7 7 7 8 8 8 8 8 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . According to DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01. Basic Insulation . . . . . . . . . . . . . . . . . . . . . . . According to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 13 13 14 14 14 16 16 16 17 18 18 18 19 19 19 19 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Prelim Datasheet 3 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Prelim Datasheet 4 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Block Diagram and Application 1 Block Diagram and Application VCC1 18 UVLO & UVLO K4 2V 6 VCC2 IN+ 13 1 VCC1 delay delay 8 TX RX & VCC2 20MHz VEE2 CLAMP IN- 14 VCC1 OSC & 7 OUT RDY 15 & 1 VCC1 FLTNL RDY2 /RDY DECODER RX TX ENCODER VCC2 500µA VEE2 250Ω FLT2 7V 5 TLSET /FLT 16 & 1 VCC1 FLT & & ≥1 K3 9V VCC2 250µA Q S R 3 250Ω 1kΩ DESAT ≥1 /RST 17 delay 1 RST VEE2 4 9 10 GND2 11 GND1 12 GND1 1 19 GND1 20 GND1 1ED020I12FTA 1 2 Figure 1: Block Diagram 1ED020I12FTA +5V 10k 10k 10R 100n VCC1 VCC2 DESAT +15V 1µ 1k SGND IN+ RDY FLT RS GND1 CLAMP IN+ INRDY /FLT /RST VEE2 OUT TLSET 10R 10V 10p 100p GND2 1µ -8V 1ED020I12FTA Figure 2: Application Example 5 Version 1.2, 2010-05-21 Preliminary Datasheet EICEDRIVER® 1ED020I12FTA Functional Description 2 2.1 Functional Description Introduction The 1ED020I12FTA is an advanced IGBT gate driver for motor drives typical greater 10kW. Control and protection functions are included to make possible the design of high reliability systems. The device consists of two galvanic separated parts. The input chip can be directly connected to a standard 5V DSP or microcontroller with CMOS in/output and the output chip is connected to the high voltage side. An effective active Miller clamp function avoids the need of negative gate driving in some applications and allows the use of a simple bootstrap supply for the high side driver. A rail-to-rail driver output enables the user to provide easy clamping of the IGBTs gate voltage during short circuit of the IGBT. So an increase of short circuit current due to the feedback via the Miller capacitance can be avoided. Further, a rail-to-rail output reduces power dissipation. The device also includes an IGBT desaturation protection with a FAULT status output. A two-level turn-off feature with adjustable delay protects against excessive overvoltage at turn-off in case of overcurrent or short circuit condition. The same delay is applied at turn-on to prevent pulse width distortion. A READY status output reports if the device is supplied and operates correctly. 2.2 2.2.1 Internal Protection Features Undervoltage Lockout (UVLO) To ensure correct switching of IGBTs the device is equipped with an undervoltage lockout for both chips. If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored as long as VVCC1 reaches the power-up voltage VUVLOH1 . If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals from the input chip are ignored as long as VVCC2 reaches the power-up voltage VUVLOH2 . 2.2.2 • • • READY status output The READY output at pin /RDY shows the status of three internal protection features. UVLO of the input chip UVLO of the output chip after a short delay Internal signal transmission It is not necessary to reset the READY signal since its state only depends on the status of the former mentioned protection signals. 2.2.3 Watchdog Timer The 1ED020I12FA incorporates two levels of protection to ensure signal integrity by two independent watchdog timers. First level ensures the short term signal integrity by resending the (turn on/off) signals with a watchdog period of typical 500ns. The second level monitors the internal signal transmission during normal operation. If the transmission fails for a given time, the IGBT is switched off and the READY output reports an internal error. 2.2.4 Active Shut-Down The Active Shut-Down feature ensures a safe IGBT off-state if the output chip is not connected to the power supply. Preliminary Datasheet 6 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Functional Description 2.3 Non-Inverting and Inverting Inputs There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high. A minimum input pulse width is defined to filter occasional glitches. 2.4 Driver Output The output driver section uses only MOSFETs to provide a rail-to-rail output. This feature permits that tight control of gate voltage during on-state and short circuit can be maintained as long as the drivers supply is stable. Due to the low internal voltage drop, switching behaviour of the IGBT is predominantly governed by the gate resistor. Furthermore, it reduces the power to be dissipated by the driver. 2.5 Two-Level Turn-Off The Two-Level Turn-OFF introduces a second turn off voltage level at the driver output in between ON- and OFFlevel. This additional level ensures lower VCE overshoots at turn off by reducing gate emitter voltage of the IGBT at short circuits or over current events. The VGE level is adjusting the current of the IGBT at the end two level turn off interval, therequired timing is depending on stray inductance and over current at beginning of two level turn off interval. Reference voltage level and hold up time could be adjusted at TLSET pin. The reference voltage is set by the required Zener diode connected between pin TLSET and GND2. The hold up time is set by the capacitor connected to the same pin TLSET and GND2. The hold time can be adjusted during switch on using the whole capacitance connected at pin TLSET including capacitor, parasitic wiring capacitance and junction capacitance of Zener diode. When a switch on signal is given the IC starts to discharge CTLSET. Discharging CTLSET is stopped after 500nsec. Then Ctlset is charged with an internal charge current Itlset. When the voltage of the capacitor Ctlset exceeds 7V a second current source starts charging Ctlset up to VZDIODE. At the end of this discharge-charge cycle the gate driver is switched on. The time between IN initiated switch-on signal (minus an internal propagation delay of approximately 200ns) and switch-on of the gate drive is sampled and stored digitally. It represents the two level turn off set time TTLSET during switch-off. Due to digitalization the tpdon time can vary in time steps of 50nsec. If switch off is initiated from IN+, IN- or /RST signal, the gate driver is switched off immediately after internal propagation delay of approximately 200ns and VOUT begins to decrease. For switch off initiated by DESAT, the gate driver switch off is delayed by desaturation sense to OUT delay. The output voltage VOUT is sensed and compared with the Zener voltage VZDIODE. When VOUT falls below the reference voltage VZDIODE of the Zener diode the switch off process is interrupted and Vout is adjusted to VZDIODE. OUT is switched to VEE2 after the hold up time has passed. The Two-Level Turn-OFF function can not be disabled. 2.6 Minimal On Time / Off Time The 1ED020I12FTA driver requires minimal on and off time for propper operation in the application. Minimal on time must be greater than the adjustable two level plateau time TTLSET, shorter on times will be surpressed by generating of the plateau time. Due to the short on time, the voltage at TLSET pin does not reach the comparator threshold, therefore the driver do not turn on. A similar principle takes place for off time. Minimal off time must be greater than TTLSET, shorter off times will be surpressed, which means OUT stays on. A two level turn off plateau can not be shortened by the driver. If the driver has entered the turn off sequence it can not switch off due to the fact, that the driver has already entered the shut off mode. But if the driver input signal is turned on again, it will leave the lower level after TTLSET time by switching OUT to high. Preliminary Datasheet 7 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Functional Description 2.7 2.7.1 External Protection Features Desaturation Protection A desaturation protection ensures the protection of the IGBT at short circuit. When the DESAT voltage goes up and reaches 9V, the output is driven low. Further, the FAULT output is activated. A programmable blanking time is used to allow enough time for IGBT saturation. Blanking time is provided by a highly precise internal current source and an external capacitor. 2.7.2 Active Miller Clamping A Miller clamp allows sinking the Miller current during a high dV/dt situation. Therefore, the use of a negative supply voltage can be avoided in many applications. During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below 2V (related to VEE2). The clamp is designed for a Miller current up to 2A. 2.7.3 Short Circuit Clamping During short circuit the IGBTs gate voltage tends to rise because of the feedback via the Miller capacitance. An additional protection circuit connected to OUT and CLAMP limits this voltage to a value slightly higher than the supply voltage. A current of maximum 500 mA for 10us may be fed back to the supply through one of this paths. If higher currents are expected or a tighter clamping is desired external Schottky diodes may be added. 2.8 RESET The reset input has two functions. Firstly, /RST is in charge of setting back the FAULT output. If /RST is low longer than a given time , /FLT will be reseted at the rising edge of /RST; otherwise, it will remain unchanged. Moreover, it works as enable/shutdown of the input logic. Preliminary Datasheet 8 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Pin Configuration and Functionality 3 3.1 Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Pin Configuration and Functionality Pin Configuration Symbol VEE2 VEE2 DESAT GND2 TLSET VCC2 OUT CLAMP VEE2 VEE2 GND1 GND1 IN+ INRDY FLT RST VCC1 GND1 GND1 Function Negative power supply output side Negative power supply output side Desaturation protection Signal ground output side Two level set Positive power supply output side Driver output Miller clamping Negative power supply output side Negative power supply output side Signal ground input side Signal ground input side Non inverted driver input Inverted driver input Ready output Fault output, low active Reset input, low active Positive power supply input side Signal ground input side Signal ground input side 1 2 3 4 5 6 7 8 9 VEE2 VEE2 DESAT GND2 TLSET VCC2 OUT CLAMP VEE2 GND1 20 GND1 19 VCC1 18 /RST 17 /FLT 16 RDY 15 IN- 14 IN+ 13 GND1 12 GND1 11 10 VEE2 Figure 3: Pin Configuration PG-DSO-20-55 (top view) Preliminary Datasheet 9 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Pin Configuration and Functionality 3.2 GND1 Pin Functionality Ground connection of the input side. IN+ Non-inverting driver input IN+ control signal for the driver output if IN- is set to low. (The IGBT is on if IN+ = high and IN- = low) A minimum pulse width is defined to make the IC robust against glitches at IN+. An internal Pull-Down-Resistor ensures IGBT Off-State. IN- Inverting driver input IN- control signal for driver output if IN+ is set to high. (IGBT is on if IN- = low and IN+ = high) A minimum pulse width is defined to make the IC robust against glitches at IN-. An internal Pull-Up-Resistor ensures IGBT Off-State. /RST (Reset) input Function 1: Enable/shutdown of the input chip. (The IGBT is off if /RST = low). A minimum pulse width is defined to make the IC robust against glitches at IN-. Function 2: Resets the DESAT-FAULT-state of the chip if /RST is low for a time TRST. An internal Pull-Up-Resistor is used to ensure FLT status output. /FLT (Fault output) Open-drain output to report a desaturation error of the IGBT (FLT is low if desaturation occurs) RDY (Ready status) Open-drain output to report the correct operation of the device. (RDY = high if both chips are above the UVLO level and the internal chip transmission is faultless) VCC1 5V power supply of the input chip VEE2 Negative power supply pins of the output chip. If no negative supply voltage is available, all VEE2 pins have to be connected to GND2. DESAT (Desaturation) Monitoring of the IGBT saturation voltage (VCE) to detect desaturation caused by short circuits. If OUT is high, VCE is above a defined value and a certain blanking time has expired, the desaturation protection is activated and the IGBT is switched off. The blanking time is adjustable by an external capacitor. CLAMP (Clamping) Ties the gate voltage to ground after the IGBT has been switched off at a defined voltage to avoid a parasitic switch-on of the IGBT.During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below 2V (related to VEE2). GND2 Reference ground of the output chip. Preliminary Datasheet 10 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Pin Configuration and Functionality OUT (Driver output) Output pin to drive an IGBT. The voltage is switched between VEE2 and VCC2. In normal operating mode Vout is controlled by IN+, IN- and /RST. During error mode (UVLO, internal error or DESAT) Vout is set to VEE2 independent of the input control signals. VCC2 Positive power supply pin of the output side. TLSET (Two-Level turn-off) Setting up the timing (with ext. capacitor) and voltage reference (with ext. Zener diode) for the two-level turn-off, see figure 5. Preliminary Datasheet 11 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4 4.1 Electrical Parameters Absolute Maximum Ratings Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. Unless otherwise noted all parameters refer to GND1. Parameter Positive power supply output side Negative power supply output side Maximum power supply voltage output side (VVCC2-VVEE2) Gate driver output Gate driver high output maximum current Gate driver low output maximum current Maximum short circuit clamping time Positive power supply input side Logic input voltages (IN+,IN-,RST) Opendrain Logic output voltage (FLT) Opendrain Logic output voltage (RDY) Opendrain Logic output current (FAULT) Opendrain Logic output current (RDY) Pin DESAT voltage Pin TLSET voltage Pin CLAMP voltage Junction temperature Storage temperature Power dissipation, Input chip Power dissipation, Output chip Thermal resistance (Input chip active) Thermal resistance (Output chip active) ESD Capability 1) With respect to GND2. 2) may be exceeded during short circuit clamping 3) Output IC power dissipation is derated linearly at 8.5 mW/°C above 68°C. Input IC power dissipation does not require derating. See section 8.1 for reference layouts for these thermal data. Thermal performance may change significantly with layout and heat dissipation of components in close proximity. 4) According to EIA/JESD22-A114-B (discharging a 100pF capacitor through a 1.5kΩ series resistor). Symbol VVCC2 VVEE2 Vmax2 VOUT IOUT IOUT tCLP VVCC1 VLogicIN VFLT VRDY IFLT IRDY VDESAT VTLSET VCLAMP TJ TS PD, IN PD, OUT RTHJA,IN RTHJA,OUT VESD Limit Values min. -0.3 -12 max. 20 0.3 28 Vmax2+0.3 2.4 2.4 Unit Remarks V V V V A A us V V V V mA mA 1) 1) 1) 1)  VVEE2-0.3 t = 2µs t = 2µs ICLAMP/OUT = 500mA  -0.3 -0.3 -0.3 -0.3 10 6.5 6.5 6.5 6.5 10 10 VVCC2 +0.3 VVCC2 +0.3 VVCC2+0.3 2)   -0.3 -0.3 VVEE2-0.3 -40 -55 VVEE2 = -8V VVEE2 = -8V 150 150 100 700 139 117 1.5 °C °C mW mW K/W K/W kV 3)      @TA = 25° @TA = 25° @TA = 25°C @TA = 25°C 2)3) 2) 2) Human Body Model4) Preliminary Datasheet 12 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.2 Operating Parameters Note: Within the operating range the IC operates as described in the functional description. Unless otherwise noted all parameters refer to GND1. Parameter Positive power supply output side Negative power supply output side Maximum power supply voltage output side (VVCC2-VVEE2) Positive power supply input side Logic input voltages (IN+,IN-,RST) Pin CLAMP voltage Pin DESAT voltage Pin TLSETvoltage Ambient temperature Common mode transient immunity 1) With respect to GND2. 2) May be exceeded during short circuit clamping 3) The parameter is not subject to production test - verified by design/characterization 3) Symbol VVCC2 VVEE2 Vmax2 VVCC1 VLogicIN VCLAMP VDESAT VTLSET TA |∆VISO/dt| Limit Values min. 13 -12 max. 20 0 28 5.5 5.5 VVCC22) VVCC2 VVCC2 125 50 Unit V V V V V V V V °C Remarks 1) 1)  4.5 -0.3 VVEE2-0.3 -0.3 -0.3 -40 — 1) 1) kV/µs @ 500V 4.3 Parameter Recommended Operating Parameters Symbol VVCC2 VVEE2 VVCC1 Values 15 -8 5 Unit V V V Remarks 1) 1) Note: Unless otherwise noted all parameters refer to GND1. Positive power supply output side Negative power supply output side Positive power supply input side 1) With respect to GND2. Preliminary Datasheet 13 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.4 Electrical Characteristics Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 11 to 20, GND2 for pins 1 to 10). 4.4.1 Parameter Voltage Supply. Symbol VUVLOH1 VUVLOL1 3.5 0.15 VHYS1 VUVLOH2 VUVLOL2 VHYS2 IQ1 0.7 Limit Values min. typ. 4.1 3.8 max. 4.3 V Unit Test Conditions UVLO Threshold Input Chip UVLO Hysteresis Input Chip (VUVLOH1 - VUVLOL1) UVLO Threshold Output Chip UVLO Hysteresis Output Chip (VUVLOH1 - VUVLOL1) Quiescent Current Input Chip   12.0 11.0 0.9   12.6 V V V V V mA VVCC1 =5V IN+ = High, IN- = Low =>OUT = High, RDY = High, /FLT = High VVCC2 =15V VVEE2 =-8V IN+ = High, IN- = Low =>OUT = High, RDY = High, /FLT = High  10.4   9  7 Quiescent Current Output Chip IQ2  4.5 6 mA 4.4.2 Parameter Logic Input and Output Symbol VIN+L,VINVIN+H,VIN- 3.5 Limit Values min. typ. max. 1.5 V Unit Test Conditions IN+,IN-, RST Low Input Voltage IN+,IN-, RST High Input Voltage IN-, RST Input Current IN+ Input Current RDY,FLT Pull Up Current Input Pulse Suppression IN+, INInput Pulse Suppression RST for ENABLE/SHUTDOWN Pulse Width RST for Reseting FLT FLT Low Voltage RDY Low Voltage L,VRSTL HVRSTH     400 400 400 V uA uA uA VIN-=GND1 VRST =GND1 VIN+=VCC1 VRDY=GND1 VFLT=GND1 IIN-,IRST IIN+, IPRDY, IPFLT TMININ+, TMININTMINRST TRST VFLTL VRDYL 30 30 800    100 100 100 40 40     300 300 ns ns ns mV mV ISINK(FLT) = 5mA ISINK(RDY) = 5mA Version 1.2, 2010-05-21   14   Preliminary Datasheet EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.4.3 Parameter Gate Driver Symbol min. VOUTH1 VOUTH2 VOUTH3 VOUTH4 VVCC2-1.2 VVCC2-2.5 VVCC2-9 -1.5 Limit Values typ. VVCC2-0.8 VVCC2-2.0 VVCC2-5 VVCC2-10 -2.0 VVEE2+0.04 VVEE2+0.3 VVEE2+2.1 VVEE2+7 2.0 max. Unit Test Conditions High Level Output Voltage High Level Output Peak Current Low Level Output Voltage IOUTH VOUTL1 VOUTL2 VOUTL3 VOUTL4      VVEE2+0.09 VVEE2+0.85 VVEE2+5.0 — — V V V V A V V V V A IOUTH = -20mA IOUTH = -200mA IOUTH = -1A IOUTH = -2A IN+ = High, IN- = Low; OUT = High IOUTL = 20mA IOUTL = 200mA IOUTL = 1A IOUTL = 2A IN+ = Low, IN- = Low; OUT = Low, VVCC2 =15V, VVEE2 =-8V     1.5 Low Level Output Peak Current IOUTL 4.4.4 Parameter Active Miller Clamp Symbol min. VCLAMPL1 VCLAMPL2 VCLAMPL3 Limit Values typ. VVEE2+0.3 VVEE2+1.9 2 1.6 max. IOUTL = 20mA IOUTL = 200mA IOUTL = 1A 1) Unit Test Conditions Low Level Clamp Voltage VVEE2+0.03 VVEE2 +0.08 V VVEE2 +0.8 VVEE2 +4.8 V V A V Low Level Clamp Current Clamp Threshold Voltage ICLAMPL VCLAMP  2.1  2.4 Related to VEE2 1) The parameter is not subject to production test - verified by design/characterization 4.4.5 Parameter Short Circuit Clamping Symbol VCLPout Limit Values min. typ. 0.8 max. 1.3 V IN+=High, IN-=Low, OUT=High IOUT = 500mA (pulse test,tCLPmax=10us) IN+=High, IN-=Low, OUT=High ICLAMP = 500mA (pulse test,tCLPmax=10us) IN+=High, IN-=Low, OUT=High ICLAMP = 20mA Unit Test Conditions Clamping voltage (OUT) (VOUT-VVCC2)  Clamping voltage (CLAMP) (VVCLAMP-VVCC2) VCLPclamp  1.3  V Clamping voltage (CLAMP) VCLPclamp  0.7 1.1 V Preliminary Datasheet 15 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.4.6 Parameter Dynamic Characteristics Symbol TPDON TPDISTO Limit Values min. typ. 1.8 30 1.8 30 1.9 40 1.9 40 1.8 20 1.8 20 30 max. 2.1 60 tbd 2.81) 60 2.3 70 tbd 3.01) 70 2.3 50 tbd 3.01) 50 60 us ns us ns us ns us ns us ns us ns ns CTLSET=0, TA=25°C CTLSET=0, TA=25°C CTLSET=0, TA=25°C CTLSET=0, TA=25°C CTLSET=0, TA=125°C CTLSET=0, TA=125°C CTLSET=0, TA=125°C CTLSET=0, TA=125°C CTLSET=0, @TA=-40°C CTLSET=0, @TA=-40°C CTLSET=0, @TA=-40°C CTLSET=0, @TA=-40°C VVCC2 =15V,VVEE2 =-8V CLOAD= 1nF, VL 10% ,VH 90% VVCC2 =15V,VVEE2 =-8V CLOAD= 34nF VL 10% ,VH 90% VVCC2 =15V,VVEE2 =-8V CLOAD= 1nF VL 10% ,VH 90% VVCC2 =15V,VVEE2 =-8V CLOAD= 34nF VL 10% ,VH 90% 1.6 0 1.6 tbd -5451) 1.5 0 1.5 tbd -7001) 1.5 0 1.5 tbd -7001) 10 Unit Test Conditions IN+ Input to output propagation delay ON/OFF and IN- OFF IN+ Input to output propagation delay distortion (TPDOFF-TPDON) IN- Input to output propagation delay ON TPDONIN- Input to output propagation delay distortion (TPDOFF-TPDON) IN+ Input to output propagation delay ON/OFF and IN- OFF IN+ Input to output propagation delay distortion (TPDOFF-TPDON) TPDISTOTPDONt TPDISTOt IN- Input to output propagation delay ON TPDON-t IN- Input to output propagation delay distortion (TPDOFF-TPDON) IN+ Input to output propagation delay ON/OFF and IN- OFF IN+ Input to output propagation delay distortion (TPDOFF-TPDON) TPDISTO-t TPDONt TPDISTOt IN- Input to output propagation delay ON TPDON-t IN- Input to output propagation delay distortion (TPDOFF-TPDON) Rise Time TPDISTO-t TRISE 150 400 800 ns Fall Time TFALL 10 20 40 ns 100 250 500 ns 1) The maximum value of input to output propagation delay ON at IN- occures only in case of electromagnetic interferences, typically the input to output delay is 2.1µs at TA =25°C, one worst case watchdog clock cycle shorter (see chapter 2.2.3). The turn OFF-signal is prioritized/dominant and will not show up this behavior. Preliminary Datasheet 16 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.4.7 Parameter Desaturation protection Symbol IDESATC IDESATD VDESAT VDESAT TDESATOUT TDESATFLT VDESATL Limit Values min. typ. 500 15 9 9 270 max. 550 uA VVCC2 =15V,VVEE2 =-8V VDESAT=2V 450 11 8.5 8.5 Unit Test Conditions Blanking Capacitor Charge Current Blanking Capacitor Discharge Current Desaturation Reference Level Desaturation Reference Level Desaturation Sense to OUT TLTO Desaturation Sense to FLT Low Delay Desaturation Low Voltage  9.5 9.5 320 2.25 mA VVCC2 =15V,VVEE2 =-8V VDESAT=6V V V ns us VVCC2 =15V,VVEE2 =-8V VVCC2 =15V,VVEE2 =0V VOUT =90% CLOAD= 1nF VFLT =10%; IFLT =5mA   40 70 110 mV IN+=Low, IN-=Low, OUT=Low 4.4.8 Parameter Active Shut Down Symbol VACTSD 1) Limit Values min. typ. max. 2.0 Unit Test Conditions Active Shut Down Voltage 1) With reference to VEE2   V IOUT=-200mA, VCC2 open 4.4.9 Parameter Two-level Turn-off Symbol Limit Values min. typ. max. VCC2-0.5 V 7.3 550 V uA VTLSET=10V 7.5 6.6 420 Unit Test Conditions External reference voltage range (Zener- VZDIODE Diode) Reference Voltage for setting two-level delay time Current for setting two-level delay time and external reference voltage (ZenerDiode) External Capacitance Range VTLSET ITLSET  7 500 CTLSET 0  220 pF Preliminary Datasheet 17 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Insulation Characteristics 5 5.1 Description Insulation Characteristics Complies with DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01. Basic Insulation Symbol Characteristic I-IV I-III I-II 40/125/21 2 CLR CPG CTI VIORM VIOTM VIOSM 8 8 175 1420 6000 6000 VPEAK VPEAK V mm mm Unit Installation classification per EN 60664-1, Table 1 for rated mains voltage ≤ 150 VRMS for rated mains voltage ≤ 300 VRMS for rated mains voltage ≤ 600 VRMS Climatic Classification Pollution Degree (EN 60664-1) Minimum External Clearance Minimum External Creepage Minimum Comparative Tracking Index Maximum Repetitive Insulation Voltage Highest Allowable Overvoltage 1) Maximum Surge Insulation Voltage 5.2 Description According to UL 1577 Symbol VISO VISO Characteristic 3750 4500 Unit Vrms Vrms Insulation Withstand Voltage / 1min Insulation Test Voltage / 1sec 5.3 Reliability For Qualification Report please contact your local Infineon Technologies office. Preliminary Datasheet 18 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Timing Diagrams 6 Timing Diagrams All diagrams related to the Two-level switch-off feature IN+ V ZDIODE TLSET TPD TADJ 1 TTLSET TPD TTLFALL TPDONADJ VTLSET , typ. 7V V ZDIODE OUT TTLSET Figure 4: Typical Switching Behavior IN+ TPDON OUT TDESATOUT VDESAT typ. 9V TTLSET TDESATOUT TTLSET DESAT /FLT TDESATFLT TDESATFLT /RST >TRSTmin Figure 5: DESAT Switch-OFF Behavior Preliminary Datasheet 19 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Timing Diagrams IN+ TLSET TPD TPD TTLSET TTLSET OUT Figure 6: Short Switch ON Pulses TPDON TTLSET TPDON TPDOFF IN+ TLSET TPD TTLSET TTLSET TPD TTLSET TPDON OUT Figure 7: TPDOFF TPDON TPDOFF TPDOFF Short Switch OFF Pulses IN+ TLSET TPD TTLSET TTLSET TTLSET TTLSET TPD OUT TPDON TPDOFF TPDOFF TPDOFF TPDON forced turn off after three consecutive on -cycles Figure 8: Short Switch OFF Pulses, Ringing Surpression Preliminary Datasheet 20 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Timing Diagrams VUVLOH2 VCC2 IN+ OUT I DESAT RDY Figure 9: VCC2 Ramp Up TPDON TPDOFF VCC2 VUVLOH2 VUVLOL2 TPDD TPDD TPDD IN+ TLSET Vz TTLSET OUT RDY /FLT TPDON Figure 10: VCC2 Ramp Down and VCC2 Drop Preliminary Datasheet 21 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Timing Diagrams 5 4 TTLSET [usec] 3 2 1 0 0 50 100 150 200 C TLSET [pF] Figure 11: Typical TTLSET Time over CTLSET Capacitance Preliminary Datasheet 22 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Package Outlines 7 Package Outlines PG-DSO-20-55 (Plastic Dual Small Outline Package) Figure 12: PG-DSO-20-55 Preliminary Datasheet 23 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Application Notes 8 8.1 Application Notes Reference Layout for Thermal Data The PCB layout shown in figure 12 represents the reference layout used for the thermal characterisation. Pins 11, 12, 19 and 20 (GND1) and pins 1, 2, 9 and 10 (VEE2) require ground plane connections for achiving maximum power dissipation. The 1ED020I12FTA is conceived to dissipate most of the heat generated through this pins. PCB + Top-Layer PCB + Bottom-Layer Figure 13: Reference layout for thermal data (Copper thickness 102mm) 8.2 Printed Circuit Board Guidelines Following factors should be taken into account for an optimum PCB layout. - Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits. - The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained to increase the effective isolation and reduce parasitic coupling. - In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept as short as possible. Preliminary Datasheet 24 Version 1.2, 2010-05-21 www.infineon.com/gatedriver Published by Infineon Technologies AG
1ED020I12FTA 价格&库存

很抱歉,暂时无法提供与“1ED020I12FTA”相匹配的价格&库存,您可以联系我们找货

免费人工找货