BCW61..., BCX71...
PNP Silicon AF Transistors • For AF input stages and driver applications • High current gain • Low collector-emitter saturation voltage • Low noise between 30 Hz and 15 kHz • Complementary types: BCW60, BCX70 (NPN) • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101
3 1
2
Type BCW61A BCW61B BCW61C BCW61D BCX71G BCX71H BCX71J BCX71K
1Pb-containing
Marking BAs BBs BCs BDs BGs BHs BJs BKs 1=B 1=B 1=B 1=B 1=B 1=B 1=B 1=B
Pin Configuration 2=E 2=E 2=E 2=E 2=E 2=E 2=E 2=E 3=C 3=C 3=C 3=C 3=C 3=C 3=C 3=C
Package SOT23 SOT23 SOT23 SOT23 SOT23 SOT23 SOT23 SOT23
package may be available upon special request
1
2007-10-18
BCW61..., BCX71...
Maximum Ratings Parameter Collector-emitter voltage BCW61... BCX71... Collector-base voltage BCW61... BCX71... Emitter-base voltage Collector current Peak collector current Peak base current Total power dissipationTS ≤ 71 °C Junction temperature Storage temperature Thermal Resistance Parameter Junction - soldering point 1)
1For
Symbol VCEO
Value 32 45
Unit V
VCBO 32 45 VEBO IC ICM IBM Ptot Tj Tstg Symbol RthJS 5 100 200 200 330 150 -65 ... 150 Value ≤ 240 mW °C Unit K/W mA
calculation of RthJA please refer to Application Note Thermal Resistance
2
2007-10-18
BCW61..., BCX71...
Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. DC Characteristics Collector-emitter breakdown voltage V(BR)CEO V
IC = 10 mA, IB = 0 , BCW61... IC = 10 mA, IB = 0 , BCX71...
32 45
V(BR)CBO
-
µA
Collector-base breakdown voltage
IC = 10 µA, IE = 0 , BCW61... IC = 10 µA, IE = 0 , BCX71...
32 45
V(BR)EBO I CBO
Emitter-base breakdown voltage
IE = 1 µA, IC = 0
5
Collector-base cutoff current
VCB = 32 V, IE = 0 VCB = 45 V, IE = 0 VCB = 32 V, IE = 0 , TA = 150 °C, BCW61... VCB = 45 V, IE = 0 , TA = 150 °C, BCX71...
I EBO h FE
-
0.02 0.02 20 20 20 nA -
Emitter-base cutoff current
VEB = 4 V, IC = 0
-
DC current gain1)
IC = 10 µA, VCE = 5 V, hFE-grp. A/G IC = 10 µA, VCE = 5 V, hFE-grp. B/H IC = 10 µA, VCE = 5 V, hFE-grp. C/J IC = 10 µA, VCE = 5 V, hFE-grp. D/K IC = 2 mA, VCE = 5 V, hFE-grp. A/G IC = 2 mA, VCE = 5 V, hFE-grp. B/H IC = 2 mA, VCE = 5 V, hFE-grp. C/J IC = 2 mA, VCE = 5 V, hFE-grp. D/K IC = 50 mA, VCE = 1 V, hFE-grp. A/G IC = 50 mA, VCE = 1 V, hFE-grp. B/H IC = 50 mA, VCE = 1 V, hFE-grp. C/J IC = 50 mA, VCE = 1 V, hFE-grp. D/K
20 30 40 100 120 180 250 380 60 80 100 110
140 200 300 460 170 250 350 500 -
220 310 460 630 -
3
2007-10-18
BCW61..., BCX71...
DC Electrical Characteristics Parameter Characteristics Collector-emitter saturation voltage1)
IC = 10 mA, IB = 0.25 mA IC = 50 mA, IB = 1.25 mA VCEsat
Symbol min.
Values typ. max.
Unit
V 0.12 0.2 0.7 0.83 0.52 0.65 0.78 0.25 0.55 0.85 1.05 0.75 -
Base emitter saturation voltage 1)
IC = 10 mA, IB = 0.25 mA IC = 50 mA, IB = 1.25 mA
VBEsat
VBE(ON)
Base-emitter voltage1)
IC = 10 µA, VCE = 5 V IC = 2 mA, VCE = 5 V IC = 50 mA, VCE = 1 V
1Pulse
0.55 -
test: t < 300µs; D < 2%
4
2007-10-18
BCW61..., BCX71...
AC Characteristics Transition frequency
IC = 20 mA, VCE = 5 V, f = 100 MHz fT Ccb Ceb h 11e
-
250 1.5 8
-
MHz pF
Collector-base capacitance
VCB = 10 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Short-circuit input impedance
IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. A/B IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. B/H IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. C/J IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. D/K
kΩ 2.7 3.6 4.5 7.5 1.5 2 2 3 200 260 330 520 18 24 30 50 2 10-4 µS dB
Open-circuit reverse voltage transf. ratio
IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. A/B IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. B/H IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. C/J IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. D/K
h 12e
Short-circuit forward current transf. ratio
IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. A/B IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. B/H IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. C/J IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. D/K
h 21e
Open-circuit output admittance
IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. A/B IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. B/H IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. C/J IC = 2 mA, VCE = 5 V, f = 1 kHz, h FE-grp. D/K
h 22e
Noise figure
IC = 200 µA, VCE = 5 V, f = 1 kHz,
F
-
∆ f = 200 Hz, RS = 2 kΩ, hFE-grp. A/K
5
2007-10-18
BCW61..., BCX71...
DC current gain hFE = ƒ(IC) VCE = 5 V
10 3 h FE 5
BCW 61/BCX 71 EHP00351
Collector-emitter saturation voltage
IC = ƒ(VCEsat), hFE = 40
10 2
BCW 61/BCX 71 EHP00349
100 ˚C 25 ˚C
ΙC
mA 100 ˚C 25 ˚C -50 ˚C
10 2 5
-50 ˚C
10 1 5
10 1 5
10 0 5
10 0 10 -2
10 -1
10 0
10 1
mA 10 2
10 -1
0
0.1
0.2
0.3
0.4
V
0.5
ΙC
V CEsat
Base-emitter saturation voltage
IC = ƒ(V BEsat), hFE = 40
10 2
BCW 61/BCX 71 EHP00348
Collector current I C = ƒ(V BE)
VCE = 5 V
10 2
BCW 61/BCX 71 EHP00350
ΙC
mA 100 ˚C 25 ˚C -50 ˚C
Ι C mA
10 1 5
10 1 5
10 0 5
10 0 5
10 -1 5 100 ˚C 25 ˚C -50 ˚C
10 -1
0
0.2
0.4
0.6
0.8
V V BE sat
1.2
10 -2
0
0.5
V V BE
1.0
6
2007-10-18
BCW61..., BCX71...
Collector cutoff current ICBO = ƒ(TA) VCB = V CEmax
10 4 nA
BCW 61/BCX 71 EHP00352
Transition frequency fT = ƒ(IC) VCE = parameter in V, f = 2 GHz
10 3 fT MHz 5
BCW 61/BCX 71 EHP00347
Ι CBO
10 3
10 2
max
10 2
10 1
5
typ
10 0
10 -1
0
50
100 TA
C
150
10 1 10 0
5 10 1
5 10 2
mA
10 3
ΙC
Collector-base capacitance Ccb = ƒ(VCB) Emitter-base capacitance Ceb = ƒ(VEB)
12
pF
Total power dissipation Ptot = ƒ(TS)
360
mW
300 270
10
CCB(CEB )
9
7 6 5 4 3 2 1 0 0 4 8 12 16
V CCB CEB
Ptot
8
240 210 180 150 120 90 60 30 0 0 15 30 45 60 75 90 105 120
22
VCB(VEB)
°C 150 TS
7
2007-10-18
BCW61..., BCX71...
Permissible Pulse Load
Ptotmax/P totDC = ƒ(tp)
10 3 Ptot max 5 Ptot DC
BCW 61/BCX 71 EHP00345
h parameter he = ƒ(IC) normalized VCE = 5V
10 2 he
T
BCW 61/BCX 71 EHP00353
D=
tp T
tp
10 2 5
10 5
1
D= 0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
10 5
1
h 11e
V CE = 5 V
h 12e 10 5 h 21e h 22e
0
10
0
10 -6
10 -5
10 -4
10 -3
10 -2
s tp
10 0
10
-1
10 -1
5
10 0
mA
10 1
ΙC
h parameter he = ƒ(VCE ) normalized IC = 2mA
BCW 61/BCX 71 EHP00354
Noise figure F = ƒ(VCE) IC = 0.2mA, R S = 2kΩ , f = 1kHz
BCW 61/BCX 71 EHP00355
2.0 he 1.5
20 F dB 15
Ι C = 2 mA
h 11
1.0
h 12
10
0.5
h 22
5
0
0
10
20
V VCE
30
0 10 -1
10 0
10 1
V VCE
10 2
8
2007-10-18
BCW61..., BCX71...
Noise figure F = ƒ(f)
VCE = 5V, ZS = ZSopt
BCW 61/BCX 71 EHP00356
Noise figure F = ƒ(I C) VCE = 5V, f = 120Hz
BCW 61/BCX 71 EHP00357
20 F dB 15
20 F dB 15
RS = 1 MΩ
100 k Ω
10 k Ω
10
10 500 Ω
5
5 1 kΩ
0 10 -2
10 -1
10 0
10 1
kHz 10 2 f
0 10 -3
10 -2
10 -1
10 0
mA 10 1
ΙC
Noise figure F = ƒ(IC ) VCE = 5V, f = 1kHz
20 F dB 15
BCW 61/BCX 71 EHP00358
Noise figure F = ƒ(I C) VCE = 5V, f = 10kHz
20 F dB 15 RS = 1 MΩ 100 k Ω
BCW 61/BCX 71 EHP00359
RS = 1 MΩ 100 k Ω 10 kΩ
10 1k Ω
10 500 Ω
10 k Ω
5 500 Ω
5 1 kΩ
0 10 -3
10 -2
10 -1
10 0
mA 10 1
0 10 -3
10 -2
10 -1
10 0
mA 10 1
ΙC
ΙC
9
2007-10-18
Package SOT23
BCW61..., BCX71...
Package Outline
0.15 MIN.
1 ±0.1 0.1 MAX.
1.3 ±0.1
2.9 ±0.1
3
B
2.4 ±0.15
10˚ MAX.
0.4 +0.1 -0.05
1)
1
2
10˚ MAX.
C 0.95 1.9
0.08...0.1
A
5
0...8˚
0.25 M B C
0.2
M
A
1) Lead width can be 0.6 max. in dambar area
Foot Print
0.8
0.9
0.8
1.2
Marking Layout (Example)
Manufacturer
EH s
Pin 1
0.9
1.3
2005, June Date code (YM)
BCW66 Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel
4 0.9
2.13 2.65
0.2
8
Pin 1
3.15
1.15
10
2007-10-18
BCW61..., BCX71...
Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.
Attention please! The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com ). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
11
2007-10-18