SIEGET 45
NPN Silicon RF Transistor
BFP520
3
For highest gain low noise amplifier at 1.8 GHz and 2 mA / 2 V Outstanding Gms = 23 dB Noise Figure F = 0.95 dB For oscillators up to 15 GHz Transition frequency fT = 45 GHz Gold metallization for high reliability 45 GHz fT - Line
4
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type BFP520
Maximum Ratings Parameter
Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation Junction temperature Ambient temperature Storage temperature TS 105 °C 1)
Thermal Resistance Junction - soldering point2) RthJS
1T is measured on the collector lead at the soldering point to the pcb S 2For calculation of R thJA please refer to Application Note Thermal Resistance
SIEGET
45 - Line
Marking APs 1=B
Pin Configuration 2=E 3=C 4=E
Symbol VCEO VCBO VEBO IC IB Ptot Tj TA Tstg
Value 2.5 10 1 40 4 100 150 -65 ... 150 -65 ... 150
450
1
2 1
VPS05605
Package SOT343
Unit V
mA mW °C
K/W
Sep-26-2001
SIEGET 45
Electrical Characteristics at TA = 25°C, unless otherwise specified. Parameter DC characteristics Collector-emitter breakdown voltage IC = 1 mA, IB = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 1 V, IC = 0 DC current gain IC = 20 mA, VCE = 2 V
AC characteristics (verified by random sampling) Transition frequency IC = 30 mA, VCE = 2 V, f = 2 GHz Collector-base capacitance VCB = 2 V, f = 1 MHz Collector-emitter capacitance VCE = 2 V, f = 1 MHz Emitter-base capacitance VEB = 0.5 V, f = 1 MHz Noise figure IC = 2 mA, VCE = 2 V, ZS = ZSopt , f = 1.8 GHz Power gain, maximum stable 1) IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Insertion power gain IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZL = 50 Third order intercept point at output VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL=ZLopt , IC = 20 mA IC = 7 mA 1dB compression point VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL=ZLopt , IC = 20 mA IC = 7 mA
1G ms
BFP520
Symbol min. V(BR)CEO ICBO IEBO hFE 2.5 70
Values typ. 3 110 max. 3.5 200 35 200
fT Ccb Cce Ceb F
-
45 0.06 0.3 0.35 0.95
Gms
-
23
|S21|2
-
21
IP3 P-1dB 12 5 25 17 -
= |S21 / S12 |
2 Sep-26-2001
Unit
V nA µA -
-
GHz pF
dB
-
-
dB
dBm
SIEGET 45
BFP520
Common Emitter S-Parameters f
GHz MAG
S11
ANG MAG
S21
ANG MAG
S12
ANG MAG
VCE = 2 V, /C = 20 mA 0.01 0.1 0.5 1 2 3 4 5 6 0.7244 0.7251 0.6368 0.4768 0.2816 0.2251 0.2552 0.3207 0.3675
-0.7 -8.4 -40.7 -73.6 -123.8 -166.1 156.2 133.6 118.7
32.273 31.637 27.293 19.601 11.021 7.481 5.636 4.488 3.683
178.6 171.4 140.7 113.5 84.9 67.6 53.1 39.7 27.5
0.0007 0.0041 0.0194 0.0351 0.0057 0.0788 0.0994 0.1177 0.1343
69.4 92.8 75.9 66.5 56.3 49.2 41.5 32.9 24.7
Common Emitter Noise Parameters
GHz dB dB MAG ANG dB
VCE = 2 V, IC = 2 mA 0.9 1.8 2.4 3 4 5 6 0.72 0.95 1.07 1.31 1.35 1.71 1.95 21.5 20.1 16.1 14.5 11.6 9.5 8.1 0.64 0.49 0.45 0.41 0.26 0.14 0.12 14 30 41 54 82 128 151
21.5 19.1 18.1 16.5 12.5 9.1 8.1
0.43 0.38 0.36 0.33 0.25 0.18 0.16
VCE = 2 V, IC = 5 mA 0.9 1.8 2.4 3 4 5 6 0.89 1.08 1.12 1.32 1.35 1.61 1.81 22.1 20.5 18.1 16.2 13.5 11.5 10.5 0.49 0.38 0.34 0.29 0.16 0.08 0.07 12 22 33 45 71 120 150 16.1 14.1 14.1 13.5 11.1 10.1 8.1 0.32 0.28 0.28 0.27 0.22 0.21 0.16
2) ZS = ZL = 50
For more and detailed S- and Noise-parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies Application Notes CD-ROM or see Internet: http://www.infineon.com/silicondiscretes
3
1) Input matched for minimum noise figure, output for maximum gain
f
Fmin 1)
Ga 1)
Γopt
RN
rn
F50
S22
ANG
0.9052 0.9363 0.8523 0.6496 0.3818 0.2407 0.1544 0.0951 0.0545
1.2 -4.4 -26.7 -46.1 -64.6 -73.6 -95.3 -128.9 177.6
2)
|S21|2 2)
dB
1.75 1.55 1.61 1.71 1.61 1.85 1.95
16.11 15.14 14.07 13.13 11.49 9.87 8.28
1.51 1.38 1.41 1.51 1.45 1.65 1.81
21.94 19.34 17.54 16.01 13.82 11.93 10.23
Sep-26-2001
SIEGET 45
SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) : Transistor Chip Data
IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI =
BFP520
15 25 2 2 2 7.5 235 1.7 0.7 0.661 50 0.333 0.035
aA V V fF ps A V ns -
BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC =
235 0.4 1.5 0.01 11 0.6 0.958 10 50 0.236 0 -0.25 0.5
A A
NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM
V deg fF -
0.335 5 93 1 0.75 1.11 298
-
V fF V eV K
Package Equivalent Circuit:
LBI = LBO = LEI = LEO = LCI = LCO = CBE = CCB = CCE =
0.47 0.53 0.23 0.05 0.56 0.58 136 6.9 134
Valid up to 6GHz
The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection. For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes
4
Sep-26-2001
1 1 -
fA fA A
25 20 7.6
nH nH nH nH nH nH fF fF fF
SIEGET 45
For non-linear simulation:
BFP520
Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators. Simulation of the package is not necessary for frequencies < 100MHz. For higher frequencies please add the wiring of the package equivalent circuit around the non-linear transistor.
Advantages of the common emitter configuration:
Higher gain because of lower emitter inductance. Power is dissipated via the grounded emitter leads, because the chip is mounted on the copper emitter leadframe.
Please note, that the broadest lead is the emitter lead.
5
Sep-26-2001
SIEGET 45
BFP520
Total power dissipation Ptot = f (TS )
Transition frequency fT = f (IC) f = 2 GHz VCE = parameter in V
120 mW 100 90
52
GHz 2
44 40 36
1
P tot
80 70 28 60 50 40 30 20 10 0 0 20 40 60 80 100 120 °C 150 24 20 16 12 8 4 0 0 5 10 15 20 25 30 35 mA
0.5 0.75
fT
32
TS
Permissible Pulse Load RthJS = f (tp)
Permissible Pulse Load P totmax/P totDC = f (tp)
10 3
10 1
Ptotmax / PtotDC
RthJS
K/W
-
0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0
D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
10 2 -7 10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
10 0 -7 10
10
-6
10
-5
10
-4
tp
6
45
IC
10
-3
10
-2
s
10
0
tp
Sep-26-2001
SIEGET 45
BFP520
Power gain Gma, Gms , |S21 |2 = f ( f ) VCE = 2V, IC = 20 mA
Power gain Gma, Gms = f (I C) VCE = 2V f = parameter in GHz
32
dB 0.9
44
dB
36 32 28 24
1.8 2.4
Gms G
20
G
24 16 20
4 5 6
Gma
16 12 8
12
|S21|2
8
4 4 0 0.0 1.0 2.0 3.0 4.0
GHz
6.0
0 0
5
10
15
20
f
Power gain Gma, Gms = f (VCE) IC = 20 mA f = parameter in GHz
32
dB 0.9
Collector-base capacitance Ccb = f (VCB) f = 1MHz
0.30
pF
24
1.8 2.4
G
20
3 4 5
16
Ccb
0.20
0.15
12
6
0.10 8 0.05 4
0 0.0
0.5
1.0
1.5
2.0
V
3.0
0.00 0.0
0.5
1.0
1.5
VCE
7
3
25
30
35 mA
45
IC
2.0
V
3.0
VCB
Sep-26-2001
SIEGET 45
BFP520
Noise figure F = f (IC ) VCE = 2 V, ZS = ZSopt
3.0
Noise figure F = f (IC) VCE = 2 V, f = 1.8 GHz
3.0
dB
dB
2.0
2.0
F
1.5
F
1.5
1.0
0.5
f = 6 GHz f = 5 GHz f = 4 GHz f = 3 GHz f = 2.4 GHz f = 1.8 GHz f = 0.9 GHz
1.0
Zs = 50Ohm Zs = Zsopt
0.5
0.0 0
5
10
15
20
25
30
mA
40
0.0 0
5
10
15
20
IC
Noise figure F = f ( f ) VCE = 2 V, ZS = ZSopt
3.0
Source impedance for min.
noise figure vs. Frequency
VCE = 2 V, IC = 2 mA / 5 mA
+j50
dB
+j25
+j10 2.0
4GHz 5GHz 6GHz
F
1.5
0
10
25
50
1.0 -j10
0.5
IC = 5 mA IC = 2 mA
-j25 -j50
0.0 0.0
1.0
2.0
3.0
4.0
5.0 GHz
6.5
f
8
25
30
mA
40
IC
+j100
3GHz 1.8GHz 0.9GHz
100
0.45GHz
2mA 5mA
-j100
Sep-26-2001