0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BFP520

BFP520

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    BFP520 - NPN Silicon RF Transistor - Infineon Technologies AG

  • 数据手册
  • 价格&库存
BFP520 数据手册
SIEGET 45 NPN Silicon RF Transistor BFP520 3 For highest gain low noise amplifier at 1.8 GHz and 2 mA / 2 V Outstanding Gms = 23 dB Noise Figure F = 0.95 dB For oscillators up to 15 GHz Transition frequency fT = 45 GHz Gold metallization for high reliability 45 GHz fT - Line  4 ESD: Electrostatic discharge sensitive device, observe handling precaution! Type BFP520 Maximum Ratings Parameter Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation Junction temperature Ambient temperature Storage temperature TS 105 °C 1) Thermal Resistance Junction - soldering point2) RthJS 1T is measured on the collector lead at the soldering point to the pcb S 2For calculation of R thJA please refer to Application Note Thermal Resistance  SIEGET 45 - Line Marking APs 1=B Pin Configuration 2=E 3=C 4=E Symbol VCEO VCBO VEBO IC IB Ptot Tj TA Tstg Value 2.5 10 1 40 4 100 150 -65 ... 150 -65 ... 150  450 1  2 1 VPS05605      Package SOT343 Unit V mA mW °C K/W Sep-26-2001 SIEGET 45 Electrical Characteristics at TA = 25°C, unless otherwise specified. Parameter DC characteristics Collector-emitter breakdown voltage IC = 1 mA, IB = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 1 V, IC = 0 DC current gain IC = 20 mA, VCE = 2 V AC characteristics (verified by random sampling) Transition frequency IC = 30 mA, VCE = 2 V, f = 2 GHz Collector-base capacitance VCB = 2 V, f = 1 MHz Collector-emitter capacitance VCE = 2 V, f = 1 MHz Emitter-base capacitance VEB = 0.5 V, f = 1 MHz Noise figure IC = 2 mA, VCE = 2 V, ZS = ZSopt , f = 1.8 GHz Power gain, maximum stable 1) IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Insertion power gain IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZL = 50 Third order intercept point at output VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL=ZLopt , IC = 20 mA IC = 7 mA 1dB compression point VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL=ZLopt , IC = 20 mA IC = 7 mA 1G ms BFP520 Symbol min. V(BR)CEO ICBO IEBO hFE 2.5 70 Values typ. 3 110 max. 3.5 200 35 200 fT Ccb Cce Ceb F - 45 0.06 0.3 0.35 0.95 Gms - 23 |S21|2 - 21 IP3 P-1dB 12 5 25 17 - = |S21 / S12 | 2 Sep-26-2001  Unit V nA µA - - GHz pF dB - - dB  dBm SIEGET 45 BFP520 Common Emitter S-Parameters f GHz MAG S11 ANG MAG S21 ANG MAG S12 ANG MAG VCE = 2 V, /C = 20 mA 0.01 0.1 0.5 1 2 3 4 5 6 0.7244 0.7251 0.6368 0.4768 0.2816 0.2251 0.2552 0.3207 0.3675 -0.7 -8.4 -40.7 -73.6 -123.8 -166.1 156.2 133.6 118.7 32.273 31.637 27.293 19.601 11.021 7.481 5.636 4.488 3.683 178.6 171.4 140.7 113.5 84.9 67.6 53.1 39.7 27.5 0.0007 0.0041 0.0194 0.0351 0.0057 0.0788 0.0994 0.1177 0.1343 69.4 92.8 75.9 66.5 56.3 49.2 41.5 32.9 24.7 Common Emitter Noise Parameters GHz dB dB MAG ANG dB VCE = 2 V, IC = 2 mA 0.9 1.8 2.4 3 4 5 6 0.72 0.95 1.07 1.31 1.35 1.71 1.95 21.5 20.1 16.1 14.5 11.6 9.5 8.1 0.64 0.49 0.45 0.41 0.26 0.14 0.12 14 30 41 54 82 128 151 21.5 19.1 18.1 16.5 12.5 9.1 8.1 0.43 0.38 0.36 0.33 0.25 0.18 0.16 VCE = 2 V, IC = 5 mA 0.9 1.8 2.4 3 4 5 6 0.89 1.08 1.12 1.32 1.35 1.61 1.81 22.1 20.5 18.1 16.2 13.5 11.5 10.5 0.49 0.38 0.34 0.29 0.16 0.08 0.07 12 22 33 45 71 120 150 16.1 14.1 14.1 13.5 11.1 10.1 8.1 0.32 0.28 0.28 0.27 0.22 0.21 0.16 2) ZS = ZL = 50 For more and detailed S- and Noise-parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies Application Notes CD-ROM or see Internet: http://www.infineon.com/silicondiscretes 3  1) Input matched for minimum noise figure, output for maximum gain  f Fmin 1) Ga 1) Γopt RN rn F50  S22 ANG 0.9052 0.9363 0.8523 0.6496 0.3818 0.2407 0.1544 0.0951 0.0545 1.2 -4.4 -26.7 -46.1 -64.6 -73.6 -95.3 -128.9 177.6 2) |S21|2 2) dB  1.75 1.55 1.61 1.71 1.61 1.85 1.95 16.11 15.14 14.07 13.13 11.49 9.87 8.28 1.51 1.38 1.41 1.51 1.45 1.65 1.81 21.94 19.34 17.54 16.01 13.82 11.93 10.23 Sep-26-2001 SIEGET 45 SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) : Transistor Chip Data IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = BFP520 15 25 2 2 2 7.5 235 1.7 0.7 0.661 50 0.333 0.035 aA V V fF ps A V ns - BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC = 235 0.4 1.5 0.01 11 0.6 0.958 10 50 0.236 0 -0.25 0.5 A A NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM V deg fF - 0.335 5 93 1 0.75 1.11 298 - V fF V eV K Package Equivalent Circuit: LBI = LBO = LEI = LEO = LCI = LCO = CBE = CCB = CCE = 0.47 0.53 0.23 0.05 0.56 0.58 136 6.9 134 Valid up to 6GHz The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection. For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes 4 Sep-26-2001   1 1 - fA fA A 25 20 7.6   nH nH nH nH nH nH fF fF fF SIEGET 45 For non-linear simulation: BFP520 Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators. Simulation of the package is not necessary for frequencies < 100MHz. For higher frequencies please add the wiring of the package equivalent circuit around the non-linear transistor. Advantages of the common emitter configuration: Higher gain because of lower emitter inductance. Power is dissipated via the grounded emitter leads, because the chip is mounted on the copper emitter leadframe. Please note, that the broadest lead is the emitter lead. 5      Sep-26-2001 SIEGET 45 BFP520 Total power dissipation Ptot = f (TS ) Transition frequency fT = f (IC) f = 2 GHz VCE = parameter in V 120 mW 100 90 52 GHz 2 44 40 36 1 P tot 80 70 28 60 50 40 30 20 10 0 0 20 40 60 80 100 120 °C 150 24 20 16 12 8 4 0 0 5 10 15 20 25 30 35 mA 0.5 0.75 fT 32 TS Permissible Pulse Load RthJS = f (tp) Permissible Pulse Load P totmax/P totDC = f (tp) 10 3 10 1 Ptotmax / PtotDC RthJS K/W - 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 10 0 -7 10 10 -6 10 -5 10 -4 tp 6  45 IC 10 -3 10 -2 s 10 0 tp Sep-26-2001 SIEGET 45 BFP520 Power gain Gma, Gms , |S21 |2 = f ( f ) VCE = 2V, IC = 20 mA Power gain Gma, Gms = f (I C) VCE = 2V f = parameter in GHz 32 dB 0.9 44 dB 36 32 28 24 1.8 2.4 Gms G 20 G 24 16 20 4 5 6 Gma 16 12 8 12 |S21|2 8 4 4 0 0.0 1.0 2.0 3.0 4.0 GHz 6.0 0 0 5 10 15 20 f Power gain Gma, Gms = f (VCE) IC = 20 mA f = parameter in GHz 32 dB 0.9 Collector-base capacitance Ccb = f (VCB) f = 1MHz 0.30 pF 24 1.8 2.4 G 20 3 4 5 16 Ccb 0.20 0.15 12 6 0.10 8 0.05 4 0 0.0 0.5 1.0 1.5 2.0 V 3.0 0.00 0.0 0.5 1.0 1.5 VCE 7  3 25 30 35 mA 45 IC 2.0 V 3.0 VCB Sep-26-2001 SIEGET 45 BFP520 Noise figure F = f (IC ) VCE = 2 V, ZS = ZSopt 3.0 Noise figure F = f (IC) VCE = 2 V, f = 1.8 GHz 3.0 dB dB 2.0 2.0 F 1.5 F 1.5 1.0 0.5 f = 6 GHz f = 5 GHz f = 4 GHz f = 3 GHz f = 2.4 GHz f = 1.8 GHz f = 0.9 GHz 1.0 Zs = 50Ohm Zs = Zsopt 0.5 0.0 0 5 10 15 20 25 30 mA 40 0.0 0 5 10 15 20 IC Noise figure F = f ( f ) VCE = 2 V, ZS = ZSopt 3.0 Source impedance for min. noise figure vs. Frequency VCE = 2 V, IC = 2 mA / 5 mA +j50 dB +j25 +j10 2.0 4GHz 5GHz 6GHz F 1.5 0 10 25 50 1.0 -j10 0.5 IC = 5 mA IC = 2 mA -j25 -j50 0.0 0.0 1.0 2.0 3.0 4.0 5.0 GHz 6.5 f 8  25 30 mA 40 IC +j100 3GHz 1.8GHz 0.9GHz 100 0.45GHz 2mA 5mA -j100 Sep-26-2001
BFP520 价格&库存

很抱歉,暂时无法提供与“BFP520”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BFP520H6327XTSA1
  •  国内价格
  • 1+0.6218

库存:30