BFP540
NPN Silicon RF Transistor • For highest gain low noise amplifier at 1.8 GHz • Outstanding Gms = 21.5 dB Noise Figure F = 0.9 dB • Gold metallization for high reliability • SIEGET 45 - Line • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101
3 4 1
2
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type BFP540
Maximum Ratings Parameter
Marking ATs 1=B
Pin Configuration 2=E 3=C 4=E
Symbol VCEO 4.5 4 VCES VCBO VEBO IC IB Ptot Tj TA T stg 14 14 1 80 8 250 150
Package SOT343
Value Unit V
-
Collector-emitter voltage TA > 0°C TA ≤ 0°C Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation2) TS ≤ 77°C Junction temperature Ambient temperature Storage temperature
1Pb-containing 2T
mA mW °C
-65 ... 150 -65 ... 150
package may be available upon special request is measured on the collector lead at the soldering point to the pcb S
2009-12-04 1
BFP540
Thermal Resistance Parameter Junction - soldering point 1) Symbol RthJS Value ≤ 290 Unit K/W
Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 14 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 20 mA, VCE = 3.5 V, pulse measured
1For
Symbol min. V(BR)CEO ICES ICBO IEBO hFE 4.5 50
Values typ. 5 110 max. 10 100 10 185
Unit
V µA nA µA -
calculation of RthJA please refer to Application Note Thermal Resistance
2009-12-04 2
BFP540
Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT IC = 50 mA, VCE = 4 V, f = 1 GHz Collector-base capacitance VCB = 2 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 2 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure IC = 5 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZSopt IC = 5 mA, VCE = 2 V, f = 3 GHz, ZS = ZSopt Power gain, maximum stable1) IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt, f = 3 GHz Transducer gain IC = 20 mA, VCE = 2 V, ZS = ZL = 50 Ω, f = 1.8 GHz f = 3 GHz Third order intercept point at output2) VCE = 2 V, I C = 20 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 20 mA, VCE = 2 V, ZS =ZL=50 Ω, f = 1.8 GHz
1/2 ma = |S 21e / S12e | (k-(k²-1) ), Gms = |S21e / S 12e| 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.1 MHz to 6 GHz
1G
21 -
30 0.14
0.24
GHz pF
Ccb
Cce
-
0.33
-
Ceb
-
0.65
-
F G ms 0.9 1.3 21.5 1.4 -
dB
dB
G ma
-
16
-
dB
|S21e|2 16 IP 3 P-1dB 18.5 14.5 24.5 11 -
dB
dBm
2009-12-04 3
BFP540
Simulation Data For SPICE-model as well as for S-parameters including noise parameters refer to our internet website: www.infineon.com/rf.models. Please consult our website and download the latest version before actually starting your design. The simulation data have been generated and verified up to 8 GHz using typical devices. The BFP540 nonlinear SPICE-model reflects the typical DC- and RF-device performance with high accuracy.
2009-12-04 4
BFP540
Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p)
300
10 3
mW K/W
Ptot
200
RthJS
10 2
150
100
50
0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0
10 1 -7 10
0 0
20
40
60
80
100
120 °C
150
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
TS
tp
Permissible Pulse Load Ptotmax/P totDC = ƒ(tp)
10 1
Collector-base capacitance Ccb= ƒ(VCB) f = 1MHz
0.2
Ptotmax / PtotDC
pF
D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
Ccb
0.1 0.05
-2
10 0 -7 10
10
-6
10
-5
10
-4
10
-3
10
s
10
0
0 0
0.5
1
1.5
2
2.5
3
V
4
tp
VCB
2009-12-04 5
BFP540
Third order Intercept Point IP3=ƒ(IC) (Output, ZS=ZL=50Ω) VCE = parameter, f = 1.8GHz
30 dBm 26 24 22
2V 4V 3V
Transition frequency fT= ƒ(IC) f = 1GHz VCE = Parameter in V
35
GHz
25
IP3
fT
20 18 16 14 12 10 8 6 4 2 0 10 20 30 40 50 60
1V
1.5V
20
4 3
15
2 1.5 1
10
5
0.5
70
80 mA
100
0 0
10
20
30
40
50
60
70 mA
90
IC
IC
Power gain Gma, Gms = ƒ(IC) VCE = 2V f = Parameter in GHz
30
Power Gain Gma, Gms = ƒ(f), |S21|² = f (f) VCE = 2V, IC = 20mA
50
dB
dB 1
40 35
20
G
2
IC
30
Gms 3
15 25 20
10
4 5 6
Gma
15 10
5
|S21|²
0 0
10
20
30
40
50
60
70 mA
90
5 0
1
2
3
4
GHz
6
IC
G
2009-12-04 6
BFP540
Power gain Gma, Gms = ƒ (VCE) IC = 20mA f = Parameter in GHz
30 4
dB dB 1
Noise figure F = ƒ(I C) VCE = 2V, ZS = ZSopt
3
20
2
G
15
3
F
2.5
2
10
4 5 6
1.5
1
5 0.5
f = 6GHz f = 5GHz f = 4GHz f = 3GHz f = 2.4GHz f = 1.8GHz f = 0.9GHz
10 20 30 40 50 60
mA
0 0
0.5
1
1.5
2
2.5
3
V
4
0 0
80
VCE
IC
Noise figure F = ƒ(IC ) VCE = 2V, f = 1.8GHz
4
dB
Noise figure F = ƒ(f) VCE = 2V, ZS = ZSopt
3
dB
3 2
F
2
F
1.5 1
2.5
1.5
1
IC = 20mA IC = 5mA
ZS = 50Ohm ZS = Zsopt
0.5
0.5
0 0
10
20
30
40
50
60
mA
80
0 0
1
2
3
4
GHz
6
IC
f
2009-12-04 7
BFP540
Source impedance for min. noise figure vs. frequency VCE = 2V, IC = 5mA / 20mA
+j50 +j25 +j100
+j10
2.4GHz 1.8GHz
0.9GHz
0
3GHz
10
25
4GHz
50
100
-j10
5GHz 6GHz
5mA 20mA
-j100 -j50
-j25
2009-12-04 8
Package SOT343
BFP540
Package Outline
2 ±0.2 1.3 4 3 0.15 1 0.3 +0.1 -0.05 4x 0.1
M +0.1 0.6 -0.05
0.9 ±0.1 0.1 MAX. 0.1 A
1.25 ±0.1 2.1 ±0.1
2
0.1 MIN.
0.15 -0.05 0.2
M
+0.1
A
Foot Print
0.6
0.8
1.15 0.9
Marking Layout (Example)
Manufacturer
1.6
2005, June Date code (YM)
Pin 1
BGA420 Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel
4 0.2
Pin 1
2.15
2.3
8
1.1
2009-12-04 9
BFP540
Edition 2009-11-16 Published by Infineon Technologies AG 81726 Munich, Germany
2009 Infineon Technologies AG All Rights Reserved.
Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.
Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office ().
Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
2009-12-04 10