BFP620F
NPN Silicon Germanium RF Transistor* • High gain low noise RF transistor • Small package 1.4 x 0.8 x 0.59 mm • Outstanding noise figure F = 0.7 dB at 1.8 GHz Outstanding noise figure F = 1.3 dB at 6 GHz • Maximum stable gain Gms = 21 dB at 1.8 GHz Gma = 10 dB at 6 GHz • Gold metallization for extra high reliability • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101
* Short term description
Top View
4 3
3 4 1
2
XYs
1 2
Direction of Unreeling
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type BFP620F
Maximum Ratings Parameter
Marking R2s 1=B
Pin Configuration 2=E 3=C 4=E
Symbol VCEO 2.3 2.1 VCES VCBO VEBO IC IB Ptot Tj TA T stg 7.5 7.5 1.2 80 3 185 150
Package TSFP-4
Value Unit V
-
Collector-emitter voltage TA > 0 °C TA ≤ 0 °C Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation2) TS ≤ 96°C Junction temperature Ambient temperature Storage temperature
1Pb-containing 2T
mA mW °C
-65 ... 150 -65 ... 150
package may be available upon special request is measured on the collector lead at the soldering point to the pcb S
2007-04-20 1
BFP620F
Thermal Resistance Parameter Junction - soldering point 1) Symbol RthJS Value ≤ 290 Unit K/W
Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 7.5 V, V BE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 50 mA, VCE = 1.5 V, pulse measured
1For
Symbol min. V(BR)CEO ICES ICBO IEBO hFE 2.3 110
Values typ. 2.8 180 max. 10 100 3 270
Unit
V µA nA µA -
calculation of RthJA please refer to Application Note Thermal Resistance
2007-04-20 2
BFP620F
Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT IC = 50 mA, VCE = 1.5 V, f = 1 GHz Collector-base capacitance VCB = 2 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 2 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt Power gain, maximum stable1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz Transducer gain IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω, f = 1.8 GHz f = 6 GHz Third order intercept point at output2) VCE = 2 V, I C = 50 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 50 mA, VCE = 2 V, ZS =ZL=50 Ω, f = 1.8 GHz
1/2 ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e | 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
1G
-
65 0.12
0.2
GHz pF
Ccb
Cce
-
0.2
-
Ceb
-
0.45
-
F G ms 0.7 1.3 21 -
dB
dB
G ma
-
10
-
dB
|S21e|2 IP 3 P-1dB 19.5 9.5 25 14 -
dB
dBm
2007-04-20 3
BFP620F
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transistor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1 0.22 1000 2 2 2 2.707 250.7 1.43 2.4 0.6 0.2 0.5 3 2 -0.0065 fA V V Ω fF ps A V ns -
-
BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = NK = FC = KF = TITF2
425 0.25 50 10 3.129 0.6 0.75 10 0 0.5 128.1 -1.42 0.8 7.291E-11 1.0E-5
A mA
Ω V deg fF -
NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM
1.025 21 1 18 1.522 2.364 0.3 1.5 124.9 1 0.52 1.078 298
fA pA mA Ω V fF V eV K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
To avoid high complexity of the package equivalent circuit, both emitter leads of TSFP-4 are combined in one electrical connection.RLxI are series resistors for the inductances LxI and Kxa-yb are the coupling coefficients between the inductances Lxa and Lyb .
LB0 = LE0 = LC0 = KB0-E0 = KB0-C0 = KE0-C0 = CBE = CBC = CCE = LBI = RLBI = LEI = RLEI = LCI = RLI = KBI-EI = KBI-CI = KEI-CI =
0.22 0.28 0.22 0.1 0.01 0.11 34 2 33 0.42 0.15 0.26 0.11 0.35 0.13 -0.05 -0.08 0.2
nH nH nH fF fF fF nH Ω nH Ω nH Ω -
Valid up to 6GHz
2007-04-20 4
BFP620F
Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p)
200
mW
10 3
160
K/W
120 100 80 60 40 20 0 0
RthJS
140
Ptot
10 2
0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0
15
30
45
60
75
90 105 120 °C
150
10 1 -7 10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
TS
tp
Permissible Pulse Load
Ptotmax/P totDC = ƒ(tp)
10 1
Collector-base capacitance Ccb= ƒ(VCB)
f = 1MHz
0.4
pF
Ptotmax / PtotDC
0.3
CCB
s
0
D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
0.25
0.2
0.15
0.1
0.05 10 0 -7 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
0 0
1
2
3
4
5
6
V
8
tp
VCB
2007-04-20 5
BFP620F
Third order Intercept Point IP3=ƒ(IC)
(Output, ZS=ZL=50Ω) VCE = parameter, f =1.8GHz
30
2.3V dBm 1.7V
Transition frequency fT = ƒ(IC)
f = 1GHz VCE = Parameter in V
70 GHz 60
1 to 2.3
55 20
1.4V
50
IP3
15
1.1V
fT
45 40 35 30 25
0.8
10
0.8V
5
20 15
0
10 5
0.3 0.5
-5 0
10
20
30
40
50
60
70 mA
90
0 0
10
20
30
40
50
60
70
80 mA
100
IC
IC
Power gain Gma, Gms = ƒ(IC)
VCE = 1.5V f = Parameter in GHz
30
dB 0.9
Power Gain Gma, Gms = ƒ(f),
|S21|² = f (f) VCE = 1.5V, I C = 50mA
50
dB
26 24 22 40 35
G
20 18 16 14 12 10 8 6 0 10 20 30 40 50 60 70 mA 90
2.4 3 4 5 6
G
1.8
30 25 20 15 10 5 0
Gms
|S21|² Gma
1
2
3
4
GHz
6
IC
f
2007-04-20 6
BFP620F
Power gain Gma, Gms = ƒ (VCE)
IC = 50mA f = Parameter in GHz
30
dB
3
Noise figure F = ƒ(I C)
VCE = 1.5V, ZS = ZSopt
0.9
24
1.8
2.5
20
2.4 3
2
G
16
4
F [dB]
12 8
5 6
1.5
1
4
0.5
0 -4 0.2
f = 6GHz f = 5GHz f = 4GHz f = 3GHz f = 2.4GHz f = 1.8GHz f = 0.9GHz
0.6
1
1.4
1.8
V
2.6
0 0 10 20 30
c
VCE
40
I [mA]
50
60
70
80
Noise figure F = ƒ(IC ) VCE = 1.5V, f = 1.8 GHz
Noise figure F = ƒ(f)
VCE = 1.5V, ZS = ZSopt
3
2.5
2.5 2
2 1.5
F [dB] F [dB]
I = 50mA
C
1.5
IC = 5.0mA
1 1
ZS = 50Ω Z =Z
S Sopt
0.5 0.5
0 0 10 20 30
c
0 40
I [mA]
50
60
70
80
1
2
3
4
f [GHz]
5
6
7
2007-04-20 7
BFP620F
Source impedance for min.
noise figure vs. frequency VCE = 1.5V, IC = 5.0mA/50.0mA
1 1.5 0.5 0.4 0.3 0.2
3GHz 2.4GHz 1.8GHz
2 3 4 5 10
0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 −1.5 −1
Ic = 5.0mA Ic = 50mA 0.1 0.2 0.3 0.4 0.5 4GHz 1 1.5 2 3 45
5GHz 6GHz
−10 −5 −4 −3
−2
2007-04-20 8
Package TSFP-4
BFP620F
Package Outline
1.4 ±0.05 0.2 ±0.05
1.2 ±0.05 0.2 ±0.05
4 3
1
2
0.2 ±0.05 0.5 ±0.05 0.5 ±0.05
0.15 ±0.05
Foot Print
0.35
0.45
0.5
0.5
Marking Layout (Example)
Manufacturer
0.9
Pin 1
BFP420F Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel
4
0.2
1.4 8
Pin 1
1.55
0.7
10˚ MAX. 0.8 ±0.05
0.55 ±0.04
2007-04-20 9
BFP620F
Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com ).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
2007-04-20 10