BFP640F
NPN Silicon Germanium RF Transistor* • High gain low noise RF transistor • Provides outstanding performance for a wide range of wireless applications • Ideal for CDMA and WLAN applications • Outstanding noise figure F = 0.65 dB at 1.8 GHz Outstanding noise figure F = 1.2 dB at 6 GHz • High maximum stable gain Gms = 23 dB at 1.8 GHz • Gold metallization for extra high reliability • 70 GHz fT -Silicon Germanium technology • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101
* Short term description
Top View
4 3
3 4 1
2
XYs
1 2
Direction of Unreeling
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type BFP640F
1Pb-containing
Marking R4s 1=B
Pin Configuration 2=E 3=C 4=E -
Package TSFP-4
package may be available upon special request
2007-05-31 1
BFP640F
Maximum Ratings Parameter Collector-emitter voltage TA > 0°C TA ≤ 0°C Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation1) TS ≤ 92°C Junction temperature Ambient temperature Storage temperature Thermal Resistance Parameter Junction - soldering point 2) Symbol RthJS Value ≤ 290 Unit K/W Tj TA T stg 150 -65 ... 150 -65 ... 150 °C VCES VCBO VEBO IC IB Ptot Symbol VCEO 4 3.7 13 13 1.2 50 3 200 mW mA Value Unit V
Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 13 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 30 mA, VCE = 3 V, puls measured
1T
Symbol min. V(BR)CEO ICES ICBO IEBO hFE 4 110
Values typ. 4.5 180 max. 30 100 3 270
Unit
V µA nA µA -
S is measured on the collector lead at the soldering point to the pcb 2For calculation of R thJA please refer to Application Note Thermal Resistance
2007-05-31 2
BFP640F
Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT IC = 30 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance VCB = 3 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 3 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure IC = 5 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt IC = 5 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt Power gain, maximum stable1) IC = 30 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 30 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz Transducer gain IC = 30 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz f = 6 GHz Third order intercept point at output2) VCE = 3 V, I C = 30 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 30 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz
1/2 ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e | 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
1G
30 -
40 0.09
0.2
GHz pF
Ccb
Cce
-
0.18
-
Ceb
-
0.5
-
F G ms 0.65 1.2 23 -
dB
dB
G ma
-
12
-
dB
|S21e|2 IP 3 P-1dB 20.5 10 27.5 13.5 -
dB
dBm
2007-05-31 3
BFP640F
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transistor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1 0.22 1000 2 2 1.8 2.707 227.6 1.8 0.4 0.6 0.2 0.27 3 2 -0.0065 fA V V Ω fF ps A V ns -
-
BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC = KF = TITF2
450 0.15 55 3.8 3.129 0.6 0.8 10 0 0.5 93.4 -1.42 0.8 7.291E-11 1.0E-5
A mA
Ω V deg fF -
NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM
1.025 21 1 400 1.522 3.061 0.3 1.5 67.43 1 0.6 1.078 298
fA fA mA Ω V fF V eV K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
0.22 LBO = 0.28 LEO = 0.22 LCO = LBI = 0.42 LEI = 0.26 LCI = 0.35 34 CBE = 2 CBC = 33 CCE = KBO-EO =0.1 KBO-CO =0.01 KEO-CO =0.11 KCI-EI = 0.2 KBI-CI = KBI-EI = RLBI = RLEI = RLCI = -0.08 -0.05 0.15 0.11 0.13
For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com
nH nH nH nH nH nH fF fF fF Ω Ω Ω
Valid up to 6GHz
2007-05-31 4
BFP640F
Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p)
200
mW
10 3
160
K/W
120 100 80 60 40 20 0 0 90 105 120 °C
RthJS
140
Ptot
10 2
0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0
15
30
45
60
75
150
10 1 -7 10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
TS
tp
Permissible Pulse Load Ptotmax/P totDC = ƒ(tp)
10 1
Collector-base capacitance Ccb= ƒ(VCB) f = 1MHz
0.25
Ptotmax / PtotDC
pF
D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
CCB
s
0
0.15
0.1
0.05
10 0 -7 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
0 0
2
4
6
8
10
V
14
tp
VCB
2007-05-31 5
BFP640F
Third order Intercept Point IP3=ƒ(IC)
(Output, ZS=ZL=50Ω)
Transition frequency fT= ƒ(IC) f = 1GHz VCE = parameter
45
GHz
VCE = parameter, f = 1.8 GHz
30
dBm 4V
3V
24 21
35
3V
IP3
30
18 15
fT
2V
25 20 12 9
1V 2V
15 10
1V
6 3 0 0
mA
5
0.5V
10
20
30
40
60
0 0
10
20
30
40
mA
60
IC
IC
Power gain Gma, Gms = ƒ(IC) VCE = 3V f = parameter
30
dB 0.9
Power Gain Gma, Gms = ƒ(f),
|S21|² = f (f)
VCE = 3V, IC = 30mA
55
dB
26 24 22 20 18 16
4 1.8
45 40 35 30 25 20 15 10
mA |S21|²
G
2.4 3
G
Gms
14 12 10 8 0 10 20 30 40
5 6
Gma
60
5 0
1
2
3
4
GHz
6
IC
f
2007-05-31 6
BFP640F
Power gain Gma, Gms = ƒ (VCE) IC = 30mA f = parameter
30 dB
0.9
2.5
Noise figure F = ƒ(I C) VCE = 3V, ZS = ZSopt
24 22 20
1.8 2.4 3
f = 6GHz
2
f = 5GHz f = 4GHz f = 2.4GHz f = 1.8GHz f = 0.9GHz
G
18 16 14 12 10 8 6 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5
V
1.5
4 5 6
F [dB]
1
0.5
4.5
0 0 10 20
I [mA]
c
VCE
30
40
50
Noise figure F = ƒ(IC ) VCE = 3V, f = 1.8 GHz
Noise figure F = ƒ(f) VCE = 3V, ZS = Z Sopt
2.5
2
1.8
2
1.6
1.4
1.5
F [dB]
Z = 50Ω
S
1.2
F [dB]
Z =Z S Sopt
1
1
0.8
0.6
I = 30mA
C
0.5
0.4
IC = 5.0mA
0.2
0 0 10 20
I [mA]
c
0 30 40 50 0 1 2 3
f [GHz]
4
5
6
7
2007-05-31 7
BFP640F
Source impedance for min.
noise figure vs. frequency
VCE = 3 V, I C = 5 mA/ 30 mA
1 1.5 0.5 0.4 0.3 0.2 0.1 0 −0.1
6GHz 0.1 3GHz 4GHz 0.2 0.3 0.4 0.5 5GHz 6GHz 1 2.4GHz 1.8GHz 0.9GHz 1.5 2 3 45 Ic = 5.0mA
2 3 4 5 10
−10 −5 −4 −0.4 −0.5 −1.5 −1
I = 30mA c
−0.2 −0.3 −3 −2
2007-05-31 8
Package TSFP-4
BFP640F
Package Outline
1.4 ±0.05 0.2 ±0.05
1.2 ±0.05 0.2 ±0.05
4 3
1
2
0.2 ±0.05 0.5 ±0.05 0.5 ±0.05
0.15 ±0.05
Foot Print
0.35
0.45
0.5
0.5
Marking Layout (Example)
Manufacturer
0.9
Pin 1
BFP420F Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel
4
0.2
1.4 8
Pin 1
1.55
0.7
10˚ MAX. 0.8 ±0.05
0.55 ±0.04
2007-05-31 9
BFP640F
Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com ).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
2007-05-31 10