BFP640
NPN Silicon Germanium RF Transistor • High gain low noise RF transistor • Provides outstanding performance for a wide range of wireless applications • Ideal for CDMA and WLAN applications • Outstanding noise figure F = 0.65 dB at 1.8 GHz Outstanding noise figure F = 1.2 dB at 6 GHz • High maximum stable gain Gms = 24 dB at 1.8 GHz • Gold metallization for extra high reliability • 70 GHz fT -Silicon Germanium technology • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101
3 4 1
2
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type BFP640
1Pb-containing
Marking R4s 1=B
Pin Configuration 2=E 3=C 4=E -
Package SOT343
package may be available upon special request
2007-05-29 1
BFP640
Maximum Ratings Parameter Collector-emitter voltage TA > 0 °C TA ≤ 0 °C Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation1) TS ≤ 90°C Junction temperature Ambient temperature Storage temperature Thermal Resistance Parameter Junction - soldering point 2) Symbol RthJS Value ≤ 300 Unit K/W Tj TA T stg 150 -65 ... 150 -65 ... 150 °C VCES VCBO VEBO IC IB Ptot Symbol VCEO 4 3.7 13 13 1.2 50 3 200 mW mA Value Unit V
Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 13 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 30 mA, VCE = 3 V, pulse measured
1T
Symbol min. V(BR)CEO ICES ICBO IEBO hFE 4 110
Values typ. 4.5 180 max. 30 100 3 270
Unit
V µA nA µA -
S is measured on the collector lead at the soldering point to the pcb 2For calculation of R thJA please refer to Application Note Thermal Resistance
2007-05-29 2
BFP640
Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT IC = 30 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance VCB = 3 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 3 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure IC = 5 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt IC = 5 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt Power gain, maximum stable1) IC = 30 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 30 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz Transducer gain IC = 30 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz f = 6 GHz Third order intercept point at output2) VCE = 3 V, I C = 30 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 30 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz
1/2 ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e | 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
1G
30 -
40 0.09
0.2
GHz pF
Ccb
Cce
-
0.23
-
Ceb
-
0.5
-
F G ms 0.65 1.2 24 -
dB
dB
G ma
-
12.5
-
dB
|S21e|2 IP 3 P-1dB 21 10.5 26.5 13 -
dB
dBm
2007-05-29 3
BFP640
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transistor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1 0.22 1000 2 2 1.8 2.707 227.6 1.8 0.4 0.6 0.2 0.27 3 2 -0.0065 fA V V Ω fF ps A V ns -
-
BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC = KF = TITF2
450 0.15 55 3.8 3.129 0.6 0.8 10 0 0.5 93.4 -1.42 0.8 7.291E-11 1.0E-5
A mA
Ω V deg fF -
NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM
1.025 21 1 400 1.522 3.061 0.3 1.5 67.43 1 0.6 1.078 298
fA fA mA Ω V fF V eV K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
CBS RBS
CBCC
LCC
C BFP640_Chip B S RCS E RES CES CCS LCB
B
LBB
LBC
CBEC
C
LEC
CBE I LEB CBEO CCEO
CCEI
T = 25°C Itf = 400* ( 1 - 6.5e-3 * (T-25) + 1.0e-5 * (T-25)^2 )
E
For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com
LBC = LCC = LEC = LBB = LCB = LEB = CBEC = CBCC = CES = CBS = CCS = CCEO = CBEO = CCEI = CBEI = RBS = RCS = RES =
120 120 20 696.2 682.4 230.6 98.4 55.9 180 79 75 131.2 102.5 112.6 180.4 1200 1200 300
pH pH pH pH pH pH fF fF fF fF fF fF fF fF fF Ω Ω Ω
Valid up to 6GHz
2007-05-29 4
BFP640
Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p)
220
mW
10 3
180 160 140 120 100 80 60 40 20 0 0 15 30 45 60 75 90 105 120 °C 150
K/W
RthJS
10 2
Ptot
0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0
10 1 -7 10 10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
TS
tp
Permissible Pulse Load Ptotmax/P totDC = ƒ(tp)
10 1
Collector-base capacitance Ccb= ƒ(VCB) f = 1MHz
0.25
Ptotmax /PtotDC
pF
-
D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
CCB
-3 -2
0.15
0.1
0.05
10 0 -7 10
10
-6
10
-5
10
-4
10
10
s
10
0
0 0
2
4
6
8
10
V
14
tp
VCB
2007-05-29 5
BFP640
Third order Intercept Point IP3=ƒ(IC)
(Output, ZS=ZL=50Ω)
Transition frequency fT= ƒ(IC) f = 1GHz VCE = parameter
45
GHz
VCE = parameter, f = 1.8 GHz
30
dBm
24 21
4V
35 30
3V
IP3
18
3V
fT
25 20 15
2V 2V
15 12 9 6 3 0 0 10
1V
5
0.5V
10
20
30
40
mA
60
0 0
10
20
30
40
mA
60
IC
IC
Power gain Gma, Gms = ƒ(IC) VCE = 3V f = parameter
30
dB 0.9GHz
Power Gain Gma, Gms = ƒ(f),
|S21|² = f (f)
VCE = 3V, IC = 30mA
55
dB
26 24
45 40
G
22 20 18 16
4GHz
G
35
1.8GHz
2.4GHz
30
3GHz
Gms
25 20 15 10 0
|S21|² Gma
14
5GHz
12 10 0
6GHz
10
20
30
40
mA
60
1
2
3
4
GHz
6
IC
f
2007-05-29 6
BFP640
Power gain Gma, Gms = ƒ (VCE) IC = 30mA f = parameter
30
0.9GHz dB 1.8GHz
2.4 2.2 2 1.8
Noise figure F = ƒ(I C) VCE = 3V, ZS = ZSopt
20
2.4GHz 3GHz
1.6 1.4
F [dB]
G
15
4GHz 5GHz 6GHz
1.2 1 0.8 0.6
f = 6GHz f = 5GHz f = 4GHz f = 3GHz
10
5
0.4 0.2
f = 2.4GHz f = 1.8GHz f = 0.9GHz
0 0
0.5
1
1.5
2
2.5
3
3.5
4
V
5
0 0 10 20
I [mA]
c
VCE
30
40
50
Noise figure F = ƒ(IC ) VCE = 3V, f = 1.8 GHz
Noise figure F = ƒ(f) VCE = 3V, ZS = Z Sopt
2
2
1.8
1.8
1.6
1.6
1.4
1.4
1.2
F [dB] F [dB]
Z = 50Ω
S
1.2
1
1
0.8
Z =Z
S Sopt
0.8
IC = 30mA
0.6
0.6
IC = 5.0mA
0.4
0.4
0.2
0.2
0 0 10 20
I [mA]
c
0 30 40 50 0 1 2 3
f [GHz]
4
5
6
7
2007-05-29 7
BFP640
Source impedance for min.
noise figure vs. frequency
VCE = 3 V, I C = 5 mA/ 30 mA
1 1.5 0.5 0.4 0.3 0.2
2.4GHz I = 5.0mA
c
2 3 4 5 10
0.9GHz 1 1.5 5GHz 6GHz 2 3 45
0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5
0.1
1.8GHz
3GHz 0.2 0.3 0.4 0.5 4GHz
−10 −5 −4
I = 30mA c
−3 −2 −1.5 −1
2007-05-29 8
Package SOT343
BFP640
Package Outline
2 ±0.2 1.3 4 3 0.15 1 0.3 +0.1 -0.05 4x 0.1
M +0.1 0.6 -0.05
0.9 ±0.1 0.1 MAX. 0.1 A
1.25 ±0.1 2.1 ±0.1
2
0.1 MIN.
0.15 -0.05 0.2
M
+0.1
A
Foot Print
0.6
0.8
1.15 0.9
Marking Layout (Example)
Manufacturer
1.6
2005, June Date code (YM)
Pin 1
BGA420 Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel
4 0.2
Pin 1
2.15
2.3
8
1.1
2007-05-29 9
BFP640
Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com ).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
2007-05-29 10