BFP650
NPN Silicon Germanium RF Transistor Preliminary data • For high power amplifiers • Ideal for low phase noise oscilators • Maxim. available Gain Gma = 21 dB at 1.8 GHz Noise figure F = 0.9 dB at 1.8 GHz • Gold metallization for high reliability • 70 GHz fT- Silicon Germanium technology
ESD: Electrostatic discharge sensitive device, observe handling precaution!
3 4
2 1
VPS05605
Type BFP650
Maximum Ratings Parameter
Marking R5s 1=B
Pin Configuration 2=E 3=C 4=E
Symbol VCEO VCES VCBO VEBO IC IB Ptot Tj TA T stg Symbol RthJS
Package SOT343
Value Unit
-
Collector-emitter voltage Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation1)
TS ≤ 75°C
4 13 13 1.2 150 10 500 150 -65 ... 150 -65 ... 150
Value ≤ 140
V
mA mW °C
Junction temperature Ambient temperature Storage temperature
Thermal Resistance Parameter
Unit
Junction - soldering point2)
K/W
1T is measured on the collector lead at the soldering point to the pcb S 2For calculation of R thJA please refer to Application Note Thermal Resistance
1
Jan-08-2004
BFP650
Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter DC Characteristics Collector-emitter breakdown voltage IC = 3 mA, I B = 0 Collector-emitter cutoff current VCE = 13 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 80 mA, VCE = 3 V hFE 100 180 320 IEBO 10 µA ICBO 100 nA ICES 100 µA V(BR)CEO 4 4.5 V Symbol min. Values typ. max. Unit
2
Jan-08-2004
BFP650
Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT IC = 80 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance VCB = 3 V, f = 1 MHz Collector emitter capacitance VCE = 3 V, f = 1 MHz Emitter-base capacitance VEB = 0.5 V, f = 1 MHz Noise figure IC = 10 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt IC = 10 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt Power gain, maximum available1) IC = 80 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 1.8 GHz IC = 80 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz Transducer gain IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 6 GHz Third order intercept point at output2) VCE = 3 V, I C = 80 mA, f = 1.8 GHz, ZS = ZL = 50 Ω 1dB Compression point at output IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz
1G 1/2 ma = |S21e / S12e| (k-(k²-1) ) 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
Unit
-
37 0.26 0.45 1.1
-
GHz pF
Ccb Cce Ceb F
dB 0.8 1.9 -
G ma |S21e|2 IP 3 17 6 29.5 dBm 21 10.5 dB
P-1dB
-
18
-
3
Jan-08-2004
BFP650
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transitor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1 0.61 1000 2 2 1.8 0.895 682.5 1.9 1.25 0.6 0.2 0.27 3 2 -0.0065 fA V V Ω fF ps A V ns -
-
BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC = KF = TITF2
450 0.47 42 18 1.036 0.2 0.8 10 0 0.5 294.9 -1.42 0.8 2.441E-11 1.0E-5
A mA Ω V deg fF -
NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM
1.025 62 1 700 4.548 1.006 0.3 1.5 204.6 1 0.6 1.078 298
fA fA mA Ω V fF V eV K
All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST)
Package Equivalent Circuit:
CBCO RCBS
CBCC C B F P 6 5 0 _ C h ip
LCC
B
LBB
LBC CBEC
B E
S RCCS RCES LCB
C
LEC
CBEI LEB CBEO T= 2 5 °C CCEO
CCEI
Itf = 1 2 5 0 * ( 1 - 6 .5 e -3 * (T -2 5 ) + 1 .0 e -5 * (T -2 5 )^ 2 )
E
For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http//www.infineon.com/silicondiscretes
LBC = LCC = LEC = LBB = LCB = LEB = CBEC = CBCC = CES = CBS = CCS = CBCO = CCEO = CBEO = CCEI = CBEI = RBS = RCS = RES =
50 50 4 554.6 606.9 138.7 327.6 171.4 490 120 135 7.5 112.6 121.5 5.7 6.9 710 710 140
pH pH pH pH pH pH fF fF fF fF fF fF fF fF fF Ω Ω Ω Ω
Valid up to 6GHz
4
Jan-08-2004
BFP650
Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p)
550
mW
10 3
K/W
450 400 350 300 250 200 150 100 50 0 0 15 30 45 60 75 90 105 120 °C 150 10 0 -7 10 10
-6
RthJS
Ptot
10 2
10 1
D = 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0
10
-5
10
-4
10
-3
10
-2
°C
10
0
TS
tp
Permissible Pulse Load Ptotmax/P totDC = ƒ(tp)
10 2
Collector-base capacitance Ccb= ƒ(VCB) f = 1MHz
0.8
pF
Ptotmax/ PtotDC
-
0.6
10 1
D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
CCB
-3 -2
0.5
0.4
0.3
0.2
0.1 10 0 -7 10
10
-6
10
-5
10
-4
10
10
s
10
0
0 0
2
4
6
8
10
V
14
tp
VCB
5
Jan-08-2004
BFP650
Third order Intercept Point IP3=ƒ(IC)
(Output, ZS=ZL=50Ω)
Transition frequency fT= ƒ(IC) f = 1GHz VCE = parameter
40
VCE = parameter, f = 1.8 GHz
33
dBm 4V 3V
GHz
27 24
30
3V
IP3
18 15 12 9 6 3 0 0 15 30 45 60
1V
2V
fT
21
25
20
2V
15
10
1V 0.5V
5
75
90 105 120 mA
150
0 0
20
40
60
80
100 120 140 mA
180
IC
IC
Power gain Gma, Gms = ƒ(IC) VCE = 3V f = parameter
30 dB
0.9GHz
Power Gain Gma, Gms = ƒ(f),
|S21|² = f (f)
VCE = 3V, IC = 80mA
55
dB
26 24 22
45 40 35
1.8GHz 2.4GHz 3GHz
G
20 18 16 14 12
G
30 25 20
4GHz 5GHz
Gms
S21²
Gma
15 10 5 200 0 0 1 2 3 4
GHz
10 8 6 0 20 40 60
6GHz
80 100 120 140 160 mA
6
IC
f
6
Jan-08-2004
BFP650
Power gain Gma, Gms = ƒ (VCE) IC = 80mA f = parameter
30
0.9GHz dB
1.8GHz
20
G
2.4GHz 3GHz
15
4GHz 5GHz
10
6GHz
5
0 0
1
2
3
4
V
5.5
VCE
7
Jan-08-2004