BFP740

BFP740

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    BFP740 - NPN Silicon Germanium RF Transistor - Infineon Technologies AG

  • 详情介绍
  • 数据手册
  • 价格&库存
BFP740 数据手册
BFP740 NPN Silicon Germanium RF Transistor • High gain ultra low noise RF transistor • Provides outstanding performance for a wide range of wireless applications up to 10 GHz and more • Ideal for CDMA and WLAN applications • Outstanding noise figure F = 0.5 dB at 1.8 GHz Outstanding noise figure F = 0.85 dB at 6 GHz • High maximum stable gain Gms = 27 dB at 1.8 GHz • Gold metallization for extra high reliability • 150 GHz fT-Silicon Germanium technology • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101 3 4 1 2 ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BFP740 1Pb-containing Marking R7s 1=B Pin Configuration 2=E 3=C 4=E - Package SOT343 package may be available upon special request 2009-12-04 1 BFP740 Maximum Ratings Parameter Collector-emitter voltage TA > 0°C TA ≤ 0°C Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation1) TS ≤ 89°C Junction temperature Ambient temperature Storage temperature Thermal Resistance Parameter Junction - soldering point 2) Symbol RthJS Value ≤ 380 Unit K/W Tj TA T stg 150 -65 ... 150 -65 ... 150 °C VCES VCBO VEBO IC IB Ptot Symbol VCEO 4 3.5 13 13 1.2 30 3 160 mW mA Value Unit V Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 13 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 25 mA, VCE = 3 V, pulse measured 1T Symbol min. V(BR)CEO ICES ICBO IEBO hFE 4 160 Values typ. 4.7 250 max. 30 100 3 400 Unit V µA nA µA - S is measured on the collector lead at the soldering point to the pcb 2For calculation of R thJA please refer to Application Note Thermal Resistance 2009-12-04 2 BFP740 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT IC = 25 mA, VCE = 3 V, f = 2 GHz Collector-base capacitance VCB = 3 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 3 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure IC = 8 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt IC = 8 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt Power gain, maximum stable1) IC = 25 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 25 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz Transducer gain IC = 25 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz f = 6 GHz Third order intercept point at output2) VCE = 3 V, I C = 25 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 25 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz 1/2 ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e | 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 1G - 42 0.08 0.14 GHz pF Ccb Cce - 0.24 - Ceb - 0.44 - F G ms 0.5 0.85 27 - dB dB G ma - 17 - dB |S21e|2 IP 3 P-1dB 24.5 13.5 25 11 - dB dBm 2009-12-04 3 BFP740 Simulation Data For SPICE-model as well as for S-parameters including noise parameters refer to our internet website: www.infineon.com/rf.models. Please consult our website and download the latest version before actually starting your design. The simulation data have been generated and verified up to 12 GHz using typical devices. The BFP740 nonlinear SPICE-model reflects the typical DC- and RF-device performance with high accuracy. 2009-12-04 4 BFP740 Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p) 180 mW 10 3 140 120 100 K/W RthJS Ptot 10 2 80 60 40 20 0 0 10 1 -7 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0 15 30 45 60 75 90 105 120 °C 150 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 TS tp Permissible Pulse Load Ptotmax/P totDC = ƒ(tp) 10 2 Collector-base capacitance Ccb = ƒ (V CB) f = 1 MHz 0.2 Ptotmax /PtotDC 0.18 0.16 0.14 Ccb [pF] 10 1 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.12 0.1 0.08 0.06 0.04 0.02 10 0 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 0 2 4 6 8 10 12 TP VCB [V] 2009-12-04 5 BFP740 Third order Intercept Point IP3 = ƒ (IC) (Output, ZS = ZL = 50 Ω ) VCE = parameter, f = 1.8 GHz 30 Transition frequency fT = ƒ(IC) f = 2 GHz VCE = parameter 50 27 4.00V 3.00V 45 2V to 4V 24 40 2.00V 21 35 18 30 IP3 [dBm] 15 fT [GHz] 1.00V 25 1.00V 20 12 9 15 0.75V 6 10 3 5 0.50V 0 0 5 10 15 20 25 30 35 0 0 5 10 15 20 25 30 35 I [mA] C I [mA] C Power gain Gma, Gms = ƒ (f) VCE = 3 V, I C = 25 mA Power gain Gma, Gms = ƒ (IC) VCE = 3 V f = parameter 55 34 50 32 0.90GHz 30 45 28 40 26 35 1.80GHz 2.40GHz 3.00GHz 24 G [dB] 30 G [dB] 22 Gms 25 4.00GHz 20 G 20 5.00GHz 18 ma 6.00GHz |S21| 2 16 15 14 10 12 5 0 1 2 3 4 5 6 10 0 5 10 15 20 25 30 35 f [GHz] IC [mA] 2009-12-04 6 BFP740 Power gain Gma, Gms = ƒ (VCE) IC = 25 mA f = parameter 36 Noise figure F = ƒ(I C) VCE = 3V, f = parameter ZS = ZSopt 2 32 1.8 0.90GHz 28 1.6 1.80GHz 2.40GHz 3.00GHz 4.00GHz f = 6GHz f = 5GHz f = 3GHz f = 1.8GHz f = 0.9GHz 1.4 24 1.2 F [dB] 5 20 G [dB] 5.00GHz 6.00GHz 16 1 0.8 12 0.6 8 0.4 4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0 5 10 c 15 I [mA] 20 25 30 V CE [V] Noise figure F = ƒ(IC ) VCE = 3V, f = 1.8 GHz Noise figure F = ƒ(f) VCE = 3 V, ZS = ZSopt 2 1.4 1.8 1.2 1.6 Z = 50Ω S 1.4 1 Z =Z S Sopt 1.2 0.8 F [dB] F [dB] 1 0.6 0.8 I = 25mA C 0.6 0.4 I = 8mA C 0.4 0.2 0.2 0 0 5 10 c 0 15 I [mA] 20 25 30 0 1 2 3 f [GHz] 4 5 6 7 2009-12-04 7 BFP740 Source impedance for min. noise figure vs. frequency VCE = 3 V, I C = 8 mA / 25 mA 1 1.5 0.5 0.4 0.3 0.2 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 −1.5 −1 −2 I = 25mA c 2 I = 8mA c 3 4 5 3GHz 0.2 0.4 4GHz 1 2.4GHz 1.8GHz 0.9GHz 2 4 5GHz 6GHz 10 6GHz −10 −5 −4 −3 2009-12-04 8 Package SOT343 BFP740 Package Outline 2 ±0.2 1.3 4 3 0.15 1 0.3 +0.1 -0.05 4x 0.1 M +0.1 0.6 -0.05 0.9 ±0.1 0.1 MAX. 0.1 A 1.25 ±0.1 2.1 ±0.1 2 0.1 MIN. 0.15 -0.05 0.2 M +0.1 A Foot Print 0.6 0.8 1.15 0.9 Marking Layout (Example) Manufacturer 1.6 2005, June Date code (YM) Pin 1 BGA420 Type code Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel 4 0.2 Pin 1 2.15 2.3 8 1.1 2009-12-04 9 BFP740 Edition 2009-11-16 Published by Infineon Technologies AG 81726 Munich, Germany  2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 2009-12-04 10
BFP740
物料型号: - 型号:BFP740

器件简介: - BFP740是一款NPN硅锗RF晶体管,具有高增益和超低噪声特性,适用于10GHz以上的无线应用。 - 适用于CDMA和WLAN应用,具有出色的噪声系数表现,例如在1.8GHz时噪声系数为0.5dB,在6GHz时为0.85dB。 - 提供高达27dB的最大稳定增益。 - 使用金金属化以提高可靠性。 - 采用150GHz f_T的硅锗技术。 - 无铅(符合RoHS标准)封装。 - 符合AEC Q101标准。

引脚分配: - 引脚配置:1=B,2=E,3=C,4=E,封装为SOT343。

参数特性: - 最大额定值: - 集电极-发射极电压(VCEO):4V(TA>0°C)和3.5V(TA 0°C)。 - 集电极-发射极电压(VCES):13V。 - 集基极电压(VCBO):13V。 - 发基极电压(VEBO):1.2V。 - 集电极电流(Ic):30mA。 - 基极电流(/B):3。 - 总功率耗散(Ptot):160mW(Ts≤89°C)。 - 结温(Tj):150°C。 - 环境温度(TA):-65...150°C。 - 存储温度(Tstq):-65...150°C。 - 热阻(RthJs):≤380 K/W(结-焊点)。

- 电气特性(TA=25°C): - 集电极-发射极击穿电压(V(BR)CEO):4.7V。 - 集电极饱和电流(ICES):30A。 - 集基极截止电流(ICBO):100nA。 - 发基极截止电流(IEBO):3A。 - 直流电流增益(hFE):160至400。

功能详解: - BFP740晶体管因其高增益和低噪声特性,非常适合用于无线通信领域的高性能应用,尤其是在CDMA和WLAN领域。

应用信息: - 该晶体管适用于需要高增益和低噪声的应用,如无线通信、CDMA和WLAN。

封装信息: - 封装类型为SOT343,且为无铅(RoHS合规)封装。若需要含铅封装,可特别定制。
BFP740 价格&库存

很抱歉,暂时无法提供与“BFP740”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BFP740H6327XTSA1
    •  国内价格
    • 1+0.86241
    • 10+0.82321

    库存:70

    BFP740ESDH6327XTSA1
    •  国内价格
    • 1+1.98891
    • 10+1.82721
    • 30+1.79487
    • 100+1.69785

    库存:62