BFP740F
NPN Silicon Germanium RF Transistor • High gain ultra low noise RF transistor • Provides outstanding performance for a wide range of wireless applications up to 10 GHz and more • Ideal for CDMA and WLAN applications • Outstanding noise figure F = 0.5 dB at 1.8 GHz Outstanding noise figure F = 0.75 dB at 6 GHz • High maximum stable gain Gms = 27.5 dB at 1.8 GHz • Gold metallization for extra high reliability • 150 GHz fT-Silicon Germanium technology • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101
Top View
4 3
3 4 1
2
XYs
1 2
Direction of Unreeling
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type BFP740F
1Pb-containing
Marking R7s 1=B
Pin Configuration 2=E 3=C 4=E -
Package TSFP-4
package may be available upon special request
2007-04-20 1
BFP740F
Maximum Ratings Parameter Collector-emitter voltage TA > 0°C TA ≤ 0°C Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation1) TS ≤ 90°C Junction temperature Ambient temperature Storage temperature Thermal Resistance Parameter Junction - soldering point 2) Symbol RthJS Value ≤ 370 Unit K/W Tj TA T stg 150 -65 ... 150 -65 ... 150 °C VCES VCBO VEBO IC IB Ptot Symbol VCEO 4 3.5 13 13 1.2 30 3 160 mW mA Value Unit V
Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 13 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 25 mA, VCE = 3 V, pulse measured
1T
Symbol min. V(BR)CEO ICES ICBO IEBO hFE 4 160
Values typ. 4.7 250 max. 30 100 3 400
Unit
V µA nA µA -
S is measured on the collector lead at the soldering point to the pcb 2For calculation of R thJA please refer to Application Note Thermal Resistance
2007-04-20 2
BFP740F
Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT IC = 25 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance VCB = 3 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 3 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure IC = 8 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt IC = 8 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt Power gain, maximum stable1) IC = 25 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 25 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz Transducer gain IC = 25 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz f = 6 GHz Third order intercept point at output2) VCE = 3 V, I C = 25 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 25 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz
1/2 ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e | 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
1G
-
42 0.08
0.14
GHz pF
Ccb
Cce
-
0.2
-
Ceb
-
0.44
-
F G ms 0.5 0.75 27.5 -
dB
dB
G ma
-
19
-
dB
|S21e|2 IP 3 P-1dB 25 15 25 11 -
dB
dBm
2007-04-20 3
BFP740F
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transistor Chip Data:
IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = 384.4 400 1.586 1.28 1.5 1.69 220 2.1 290 550 13 180 910 1 aA V V Ω fF ps mA mV ps m m BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC = KF = 1.1 512.1 62 5 3.23 90 590 3 100 152 79.7 -2.2 950 0 k mA mA Ω mΩ mV mdeg m fF m LBC = LCC = LEC = LBB = LCB = LEB = CBEC = CBCC = CES = CBS = CCS = CCEO = CBEO = CCEI = CBEI = REC = RBS = RCS = RES = 0.1 0.2 20 0.411 0.696 21 0.1 1 0.34 39 75 0.177 92 0.217 52 2 3.5 1.65 90 nH nH pH nH nH pH pF fF pF fF fF pF fF pF fF Ω kΩ kΩ Ω
NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM
1.018 4.296 1 3.85 10 6.88 70 1.32 99.5 10 570 1.11 298
fA fA A Ω m V fF m mV eV K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
CBS RBS
CBCC C BFP740F_Chip B S
LCC
B
LBB
LBC
CBEC
RCS CCS E RES CES
LCB
C
LEC
REC
CBEI LEB CBEO CCEO
CCEI
E
For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com
Valid up to 6GHz
2007-04-20 4
BFP740F
Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p)
180
mW
10 3
140 120 100
K/W
RthJS
Ptot
10 2 80 60 40 20 0 0 10 1 -7 10
D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0
15
30
45
60
75
90 105 120 °C
150
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
TS
tp
Permissible Pulse Load Ptotmax/P totDC = ƒ(tp)
10 2
Collector-base capacitance Ccb = ƒ (V CB) f = 1 MHz
0.2
Ptotmax /PtotDC
0.18
0.16
0.14
Ccb [pF]
10
1
D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
0.12
0.1
0.08
0.06
0.04
0.02
10
0
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0 0 2 4 6 8 10 12
tp
VCB [V]
2007-04-20 5
BFP740F
Third order Intercept Point IP3 = ƒ (IC)
(Output, ZS = ZL = 50 Ω )
Transition frequency fT = ƒ(IC) VCE = parameter in V, f = 2 GHz
VCE = parameter, f = 900 MHz
30 50
27
4.00V 3.00V 2.00V
45
2V to 4V
24
40
1.00V
21 35
18
1.00V
30
IP3 [dBm]
15
fT [GHz]
25
0.75V
20
12
9
15
6
10
0.50V
3 5
0 0 5 10 15 20 25 30 35
0 0 5 10 15 20 25 30 35
I [mA]
C
I [mA]
C
Power gain Gma, Gms = ƒ (f) VCE = 3 V, I C = 25 mA
Power gain Gma, Gms = ƒ (IC) VCE = 3 V f = parameter in GHz
55
34
50
32
0.90GHz
30 45 28 40 26 35
1.80GHz 2.40GHz 3.00GHz
24
4.00GHz
G [dB]
30
G [dB]
22
G
25
ms
5.00GHz
20
Gma
18 20
6.00GHz
|S |2
21
16
15 14 10
12
5 0 1 2 3 4 5 6
10 0 5 10 15 20 25 30 35
f [GHz] [GHz]
IC [mA]
2007-04-20 6
BFP740F
Power gain Gma, Gms = ƒ (VCE) IC = 25 mA f = parameter in GHz
36
Noise figure F = ƒ(I C) VCE = 3 V, f = parameter in GHz ZS = ZSopt
2
32
1.8
0.90GHz
28
1.6
1.80GHz 2.40GHz 3.00GHz 4.00GHz 5.00GHz f = 6GHz f = 5GHz f = 3GHz f = 2.4GHz f = 1.8GHz f = 0.9GHz
1.4
24
1.2
F [dB]
5
20
G [dB]
6.00GHz
1
16
0.8
12
0.6
8
0.4
4
0.2
0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0 0 5 10
c
15
I [mA]
20
25
30
V
CE
[V]
Noise figure F = ƒ(IC ) VCE = 3 V, f = 1.8 GHz
Noise figure F = ƒ(f) VCE = 3 V, ZS = ZSopt
2
1.4
1.8 1.2 1.6 1
1.4
1.2
F [dB] F [dB]
ZS = 50Ω
0.8
1
Z =Z
S
Sopt
0.6 0.8
0.6
0.4
IC = 25mA IC = 8mA
0.4 0.2 0.2
0 0 5 10
c
0 15
I [mA]
20
25
30
0
1
2
3
f [GHz]
4
5
6
7
2007-04-20 7
BFP740F
Source impedance for min.
noise figure vs. frequency
VCE = 3 V, I C = 8 mA / 25 mA
1 1.5 0.5 0.4 0.3 0.2 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 −1.5 −1 −2
Ic = 25mA 0.2 6GHz 0.4 Ic = 8mA 4GHz 5GHz 1 3GHz 2.4GHz 1.8GHz 2 4 0.9GHz
2 3 4 5 10
−10 −5 −4 −3
2007-04-20 8
Package TSFP-4
BFP740F
Package Outline
1.4 ±0.05 0.2 ±0.05
1.2 ±0.05 0.2 ±0.05
4 3
1
2
0.2 ±0.05 0.5 ±0.05 0.5 ±0.05
0.15 ±0.05
Foot Print
0.35
0.45
0.5
0.5
Marking Layout (Example)
Manufacturer
0.9
Pin 1
BFP420F Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel
4
0.2
1.4 8
Pin 1
1.55
0.7
10˚ MAX. 0.8 ±0.05
0.55 ±0.04
2007-04-20 9
BFP740F
Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com ).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
2007-04-20 10