BSP 762 T
Smart Power High-Side-Switch
Features • Overload protection • Current limitation • Short circuit protection • Thermal shutdown with restart • Fast demagnetization of inductive loads • Reverse battery protection with external resistor • CMOS compatible input • Loss of GND and loss of Vbb protection • ESD - Protection • Very low standby current Product Summary Overvoltage protection Operating voltage On-state resistance Nominal load current Vbb(AZ) Vbb(on) RON IL(nom) 41 100 2 V mΩ A 5...34 V
• Overvoltage protection (including load dump)
Application
• All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V and 24 V DC applications • Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions.
Page 1
2004-01-27
BSP 762 T
Block Diagram
+ V bb
Voltage source V Logic
Overvoltage protection
Current limit
Gate protection
Charge pump Level shifter Rectifier
IN
Limit for unclamped ind. loads
OUT
Temperature sensor Load
ESD
Logic
GND
miniPROFET
Signal GND
Load GND
Pin 1 2 3 4 5 6 7 8
Symbol GND IN OUT NC Vbb Vbb Vbb Vbb
Function Logic ground Input, activates the power switch in case of logic high signal Output to the load not connected Positive power supply voltage Positive power supply voltage Positive power supply voltage Positive power supply voltage
Pin configuration
Top view
GND IN OUT NC 1• 2 3 4 8 7 6 5 Vbb Vbb Vbb Vbb
Page 2
2004-01-27
BSP 762 T Maximum Ratings at Tj = 25°C, unless otherwise specified Parameter Supply voltage Supply voltage for full short circuit protection Tj = -40...+150°C Continuous input voltage Load current (Short - circuit current, see page 5) Current through input pin (DC) Operating temperature Storage temperature Power dissipation 1) Inductive load switch-off energy dissipation 1)2) single pulse, (see page 8) Tj =150 °C, Vbb = 13.5 V, IL = 1 A Load dump protection 2) VLoadDump3)= VA + VS RI=2Ω, td=400ms, VIN= low or high, VA=13,5V RL = 13.5 Ω Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 ESD STM5.1 - 1998 Input pin all other pins Thermal Characteristics Thermal resistance @ min. footprint Thermal resistance @ 6 cm2 cooling area 1) Rth(JA) Rth(JA) 95 70 83 K/W ±1 ±5 60 kV VLoaddump V VIN IL I IN Tj T stg Ptot EAS -10 ... +16 self limited ±5 -40 ...+150 -55 ... +150 1.5 870 W mJ A mA °C Symbol Vbb Vbb(SC) Value 40 Vbb Unit V
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2not subject to production test, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a 150Ω resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2004-01-27
BSP 762 T Electrical Characteristics Parameter and Conditions at Tj = -40...+150°C, V bb = 13,5V, unless otherwise specified Load Switching Capabilities and Characteristics On-state resistance T j = 25 °C, I L = 2 A, V bb = 9...40 V T j = 150 °C Nominal load current; Device on PCB 1) T C = 85 °C, T j ≤ 150 °C Turn-on time RL = 47 Ω Turn-off time RL = 47 Ω Slew rate on RL = 47 Ω Slew rate off RL = 47 Ω Operating Parameters Operating voltage Undervoltage shutdown of charge pump Tj = -40...+85 °C Tj = 150 °C Undervoltage restart of charge pump Standby current Tj = -40...+85 °C, VIN = 0 V Tj = 150°C2) , VIN = 0 V Leakage output current (included in Ibb(off)) VIN = 0 V Operating current VIN = 5 V
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2higher current due temperature sensor
Symbol min. RON IL(nom) ton toff dV/dton -dV/dtoff 2 -
Values typ. max.
Unit
mΩ 70 140 2.4 90 90 0.8 0.8 100 200 170 230 1.7 1.7 V/µs A µs
to 90% V OUT to 10% V OUT 10 to 30% V OUT, 70 to 40% V OUT,
Vbb(on) Vbb(under)
5 -
4 0.5
34 4 5.5 5.5
V
Vbb(u cp) Ibb(off)
-
µA 10 15 5 1.3 mA
IL(off) IGND
-
Page 4
2004-01-27
BSP 762 T Electrical Characteristics Parameter and Conditions at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified Protection Functions1) Initial peak short circuit current limit (pin 5 to 3) Tj = -40 °C, Vbb = 20 V, tm = 150 µs Tj = 25 °C Tj = 150 °C Repetitive short circuit current limit Tj = Tjt (see timing diagrams) Output clamp (inductive load switch off) at VOUT = Vbb - VON(CL), Ibb = 4 mA Overvoltage protection 2) Ibb = 4 mA Thermal overload trip temperature Thermal hysteresis Reverse Battery Reverse battery 3) Drain-source diode voltage (VOUT > Vbb) Tj = 150 °C -Vbb -VON 600 32 V mV T jt ∆Tjt 150 10 °C K Vbb(AZ) 41 I L(SCr) VON(CL) 41 7 47 V I L(SCp) 4 10 18 A Symbol min. Values typ. max. Unit
1Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation . 2 see also VON(CL) in circuit diagram on page 7 3Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3).
Page 5
2004-01-27
BSP 762 T Electrical Characteristics Parameter and Conditions at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified Input Input turn-on threshold voltage (see page 12) Input turn-off threshold voltage (see page 12) Input threshold hysteresis Off state input current (see page 12) VIN = 0.7 V On state input current (see page 12) VIN = 5 V Input resistance (see page 7) RI 1.5 3.5 5 kΩ I IN(on) 3 25 ∆V IN(T) I IN(off) 1 0.3 25 µA VIN(T-) 0.8 VIN(T+) 2.2 V Symbol min. Values typ. max. Unit
Page 6
2004-01-27
BSP 762 T Terms
Ibb
V Z V ON
Inductive and overvoltage output clamp
+ V bb
Vbb I IN IN V V bb PROFET OUT
OUT GND
IL
VON
IN R
GND IGND GND VOUT
VON clamped to 47V typ.
Input circuit (ESD protection)
R IN I
Overvoltage protection of logic part
+ V bb V
Z2
ESD- ZD I GND
I
I
IN
RI L o gic
V
Z1
The use of ESD zener diodes as voltage clamp at DC conditions is not recommended
GND
R GN D
S ignal GND
Reverse battery protection
- V bb
VZ1 =6.1V typ., VZ2 =Vbb(AZ) =47V typ., RI=3.5 kΩ typ., RGND=150Ω
Logic
IN
RI OUT
Power Inverse Diode
GND R GND
Signal GND Power GND
RL
RGND=150Ω, RI=3.5kΩ typ., Temperature protection is not active during inverse current
Page 7
2004-01-27
BSP 762 T GND disconnect Vbb disconnect with charged inductive load
Vbb IN PROFET OUT
Vbb high IN PROFET OUT
GND V bb V IN V GND
GND
V
bb
GND disconnect with GND pull up
Vbb IN PROFET OUT
Inductive Load switch-off energy dissipation
E bb E AS Vbb E Load
GND
V bb
V IN
V GND
=
IN
PROFET
OUT
GND
ZL
{
R L
L
EL
ER
Energy stored in load inductance: EL = ½ * L * IL2 While demagnetizing load inductance, the enérgy dissipated in PROFET is EAS = Ebb + EL - ER = VON(CL) * iL(t) dt, with an approximate solution for RL > 0Ω:
E AS =
IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL
Page 8
2004-01-27
BSP 762 T Typ. transient thermal impedance ZthJA=f(tp) @ 6cm 2 heatsink area Parameter: D=tp/T
10
2
Typ. transient thermal impedance Z thJA=f(tp) @ min. footprint Parameter: D=tp/T
10 2
K/W
D=0.5 D=0.2
K/W
D=0.5 D=0.2
10 1
D=0.1
10 1
D=0.1 D=0.05 D=0.02
D=0.02
Z thJA
ZthJA
D=0.05
10 0
D=0.01
10 0
D=0.01
10 -1
D=0
10 -1
D=0
10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10
s
10
4
10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10
tp
s
10
4
tp
Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; Vin = high
160
Typ. on-state resistance RON = f(V bb); IL = 0.5A ; V in = high
200
mΩ
120
mΩ
150°C
150
RON
100
RON
125
80
100
25°C -40°C
60
75
40
50
20
25
0 -40 -20
0
20
40
60
80 100 120
°C 160
0 0
5
10
15
20
25
30
Tj
Page 9
V Vbb
40
2004-01-27
BSP 762 T Typ. turn on time ton = f(Tj ); RL = 47Ω
160
Typ. turn off time toff = f(Tj); RL = 47Ω
160
32V 9V
µs
9V
µs
120
13.5V
120
t on
toff
32V
100
100
80
80
60
60
40
40
20
20
0 -40 -20
0
20
40
60
80 100 120
°C 160
0 -40 -20
0
20
40
60
80 100 120
°C 160
Tj
Tj
Typ. slew rate on dV/dton = f(T j) ; RL = 47 Ω
2
Typ. slew rate off dV/dtoff = f(Tj); R L = 47 Ω
2
V/µs
1.6
V/µs
1.6
dV dton
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
13.5V 9V 32V
-dV dtoff
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
13.5V 9V 32V
0
20
40
60
80 100 120
°C 160
0
20
40
60
80 100 120
°C 160
Tj
Page 10
Tj
2004-01-27
BSP 762 T Typ. standby current Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low
7
Typ. leakage current I L(off) = f(Tj) ; Vbb = 32V ; VIN = low
2
µA
µA
1.6
I bb(off)
I L(off)
°C 160
5
1.4 1.2 1
4
3
0.8 0.6 0.4
2
1 0.2 0 -40 -20 0 -40 -20
0
20
40
60
80 100 120
0
20
40
60
80 100 120
°C 160
Tj
Tj
Typ. initial peak short circuit current limit IL(SCp) = f(Tj) ; Vbb = 20V
14
Typ. initial short circuit shutdown time toff(SC) = f(Tj,start) ; Vbb = 20V
3.5
A
ms
IL(SCp)
10
toff(SC)
2.5
8
2
6
1.5
4
1
2
0.5
0 -40 -20
0
20
40
60
80 100 120
°C 160
0 -40 -20
0
20
40
60
80 100 120
°C 160
Tj
Page 11
Tj
2004-01-27
BSP 762 T Typ. input current IIN(on/off) = f(Tj); Vbb = 13,5V; VIN = low/high VINlow ≤ 0,7V; VINhigh = 5V
14 200
Typ. input current I IN = f(VIN); V bb = 13.5V
µA
µA
160
150°C
10
140
IIN
IIN
on
8
120 100
-40...25°C
6
off
80 60 40
4
2 20 0 -40 -20 0 0
0
20
40
60
80 100 120
°C 160
2
4
V VIN
8
Tj
Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V
2
Typ. input threshold voltage VIN(th) = f(V bb) ; Tj = 25°C
2
V
1.6
on
V
on
1.6
V IN(th)
VIN(th)
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
off
1.4 1.2 1 0.8 0.6 0.4 0.2
off
0
20
40
60
80 100 120
°C 160
0 5
10
15
20
25
V Vbb
35
Tj
Page 12
2004-01-27
BSP 762 T Maximum allowable load inductance for a single switch off L = f(IL); Tjstart =150°C, Vbb=13.5V, RL=0Ω
3000
Maximum allowable inductive switch-off energy, single pulse EAS = f(I L); T jstart = 150°C, Vbb = 13,5V
2500
mH
mJ
EAS
0.5 1 1.5
2000
1500
L
1500
1000 1000
500
500
0 0
A IL
2.5
0 0
0.5
1
1.5
A IL
2.5
Page 13
2004-01-27
BSP 762 T
Timing diagrams
Figure 1a: Vbb turn on: Figure 2b: Switching a lamp,
IN
IN
V bb
OUT
V
I
OUT
L
t
t
Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition
IN
Figure 2c: Switching an inductive load
IN
V OUT
90% t on d V /d to n 10% t d V /d to f f
V
OUT
o ff
IL
I
L
t
t
Page 14
2004-01-27
BSP 762 T
Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling
IN
Figure 5: Undervoltage restart of charge pump
Vo n
t I
L
I
L(SCp)
V b b( u c p )
I L(SCr)
V b ( u n d er ) b
tm t off(SC) t
Vbb
Heating up of the chip may require several milliseconds, depending on external conditions.
Figure 4: Overtemperature: Reset if Tj < Tjt
IN
V
OUT
T
J
t
Page 15
2004-01-27
BSP 762 T
Package and ordering code
all dimensions in mm
Package: P-DSO-8-6
Ordering code: Q67060-S7301-A2
Printed circuit board (FR4, 1.5mm thick, one layer 70µm, 6cm2 active heatsink area ) as a reference for max. power dissipation Ptot Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved. nominal load current IL(nom) and thermal resistance R thja
Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 16
2004-01-27