0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTN7933B

BTN7933B

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    BTN7933B - High Current PN Half Bridge NovalithIC - Infineon Technologies AG

  • 详情介绍
  • 数据手册
  • 价格&库存
BTN7933B 数据手册
Data Sheet, Rev. 1.0, Sept. 2009 BTN7933B High Current PN Half Bridge NovalithIC™ Automotive Power High Current PN Half Bridge BTN7933B Table of Contents 1 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 4.3 5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 6 6.1 6.2 6.3 7 8 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 8 8 Block Description and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Supply Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Power Stages - Static Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Switching Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power Stages - Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Overvoltage mode (Smart Clamping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Undervoltage Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical Characteristics - Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Control and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Dead Time Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Adjustable Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Status Flag Diagnosis With Current Sense Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Electrical Characteristics - Control and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Half-bridge Configuration Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 22 23 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Data Sheet 2 Rev. 1.0, 2009-09-09 High Current PN Half Bridge NovalithIC™ BTN7933B 1 Features • Overview Path resistance of max. 55 mΩ @ 150 °C (typ. 28 mΩ @ 25 °C) High Side: max. 17 mΩ @ 150 °C (typ. 10 mΩ @ 25 °C) Low Side: max. 38 mΩ @ 150 °C (typ. 18 mΩ @ 25 °C) Enhanced switching speed for reduced switching losses (rise/fall times down to typ. 500ns) Extended operating voltage range down to 4.5 V (high side switch) Low quiescent current of typ. 7 μA @ 25 °C PWM capability of up to 25 kHz combined with active freewheeling Switched mode current limitation for reduced power dissipation in overcurrent Current limitation level of 20 A min. / 32 A typ. (low side) Status flag diagnosis with current sense capability Overtemperature shut down with latch behaviour Smart clamping in overvoltage Undervoltage shut down Driver circuit with logic level inputs Adjustable slew rates for optimized EMI Operation up to 28V Green Product (RoHS compliant) AEC Qualified • • • • • • • • • • • • • • • PG-TO263-7-1 Description The BTN7933B is an integrated high current half bridge for motor drive applications. It is part of the NovalithIC™ family containing one p-channel highside MOSFET and one n-channel lowside MOSFET with an integrated driver IC in one package. Due to the p-channel highside switch the need for a charge pump is eliminated thus minimizing EMI. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation, smart clamping in overvoltage, and protection against overtemperature, undervoltage, overcurrent and short circuit. The BTN7933B provides a cost optimized solution for protected high current PWM motor drives with very low board space consumption. Type BTN7933B Data Sheet Package PG-TO263-7-1 3 Marking BTN7933B Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Diagram 2 Block Diagram The BTN7933B is part of the NovalithIC™ family containing three separate chips in one package: One p-channel highside MOSFET and one n-channel lowside MOSFET together with a driver IC, forming an integrated high current half-bridge. All three chips are mounted on one common lead frame, using the chip on chip and chip by chip technology. The power switches utilize vertical MOS technologies to ensure optimum on state resistance. Due to the p-channel highside switch the need for a charge pump is eliminated thus minimizing EMI. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation, smart clamping in overvoltage and protection against overtemperature, undervoltage, overcurrent and short circuit. The BTN7933B can be combined with other BTN7933B to form H-bridge and 3-phase drive configurations. 2.1 Block Diagram VS Undervolt. detection Overvolt. detection Current Sense Overcurr. Detection HS Overtemp. detection IS Digital Logic IN Gate Driver HS LS off HS off OUT Gate Driver LS INH SR Slewrate Adjustment Overcurr. Detection LS GND Figure 1 Block Diagram 2.2 Terms Following figure shows the terms used in this data sheet. VS I IN IN VS I VS , -I D( HS) VDS (HS ) V IN V INH VSR IINH INH I OUT , I L O UT ISR SR VSD (LS ) V OUT I IS IS G ND V IS IGND , I D( LS) Figure 2 Data Sheet Terms 4 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Pin Configuration 3 3.1 Pin Configuration Pin Assignment 8 1234 5 67 Figure 3 Pin Assignment BTN7933B (top view) 3.2 Pin 1 2 3 4,8 5 Pin Definitions and Functions Symbol GND IN INH OUT SR I/O I I O I Function Ground Input Defines whether high- or lowside switch is activated Inhibit When set to low device goes in sleep mode Power output of the bridge Slew Rate The slew rate of the power switches can be adjusted by connecting a resistor between SR and GND Current Sense and Diagnostics Supply 6 7 IS VS O - Bold type: pin needs power wiring Data Sheet 5 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B General Product Characteristics 4 4.1 General Product Characteristics Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Voltages 4.1.1 4.1.2 Supply Voltage Supply Voltage for Load Dump Protection (VS(LD)= VA + VS with VA = 13.5V) Parameter Symbol Min. Limit Values Max. 28 40 V V – 2) Unit Conditions VS VS(LD) -0.3 – Ri = 2 Ω RL = 1.0 Ω td = 400ms suppressed pulse -0.3 -0.3 -0.3 -20 -20 -18 5.3 1.0 45 28 20 18 50 V V V V A A A – – – – 4.1.3 4.1.4 4.1.5 4.1.6 Currents 4.1.7 Logic Input Voltage Voltage at SR Pin Voltage between VS and IS Pin Voltage at IS Pin HS/LS Continuous Drain Current3) VIN VINH VSR VS -VIS VIS ID(HS) ID(LS) TC < 85°C switch active TC < 125°C switch active TC < 85°C tpulse = 10ms single pulse 4.1.8 HS/LS Pulsed Drain Current3) ID(HS) ID(LS) -50 -46 46 A TC < 125°C tpulse = 10ms single pulse 4.1.9 HS/LS PWM Current 3) ID(HS) ID(LS) -26 -23 -28 -25 26 23 28 25 A A A A TC < 85°C f = 1kHz, DC = 50% TC < 125°C f = 1kHz, DC = 50% TC < 85°C f = 20kHz, DC = 50% TC < 125°C f = 20kHz, DC = 50% – – Temperatures 4.1.10 4.1.11 Junction Temperature Storage Temperature Tj Tstg -40 -55 150 150 °C °C Data Sheet 6 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B General Product Characteristics Absolute Maximum Ratings (cont’d)1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Min. ESD Susceptibility 4.1.12 ESD Resistivity HBM IN, INH, SR, IS OUT, GND, VS Limit Values Max. kV -2 -4 2 4 HBM4) Unit Conditions VESD 1) Not subject to production test, specified by design 2) VS(LD) is setup without the DUT connected to the generator per ISO7637-1; Ri is the internal resistance of the load dump test pulse generator; td is the pulse duration time for load dump pulse (pulse 5) according ISO 7637-1, -2. 3) Maximum reachable current may be smaller depending on current limitation level 4) ESD susceptibility, HBM according to EIA/JESD22-A114-B (1.5 kΩ, 100 pF) Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Maximum Single Pulse Current 60 50 40 |I max | [A] 30 20 10 0 1,0E-03 1,0E-02 1,0E-01 t pulse[s] 1,0E+00 1,0E+01 Figure 4 BTN7933B Maximum Single Pulse Current (TC < 85°C) This diagram shows the maximum single pulse current that can be driven for a given pulse time tpulse. The maximum reachable current may be smaller depending on the current limitation level. Pulse time may be limited due to thermal protection of the device. Data Sheet 7 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B General Product Characteristics 4.2 Pos. 4.2.1 4.2.2 4.2.3 Functional Range Parameter Supply Voltage Range for Normal Operation Extended Supply Voltage Range for Operation Junction Temperature Symbol Min. Limit Values Max. 18 V V °C – Parameter Deviations possible – 8 Unit Conditions VS(nor) VS(ext) Tj VUV(OFF)max 28 -40 150 Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table. 4.3 Pos. 4.3.1 Thermal Resistance Parameter Thermal Resistance Junction-Case, Low Side Switch1) Rthjc(LS) = ΔTj(LS)/ Pv(LS) Thermal Resistance Junction-Case, High Side Switch1) Rthjc(HS) = ΔTj(HS)/ Pv(HS) Thermal Resistance Junction-Case, both Switches1) Rthjc = max[ΔTj(HS), ΔTj(LS)] / (Pv(HS) + Pv(LS)) Thermal Resistance Junction-Ambient1) Symbol Min. Limit Values Typ. 3.6 Max. 4.8 K/W – Unit Conditions RthJC(LS) – 4.3.2 RthJC(HS) – 1.1 1.6 K/W – 4.3.3 RthJC – 1.8 2.4 K/W – 4.3.4 RthJA – 21 – K/W 2) 1) Not subject to production test, specified by design 2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Data Sheet 8 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics 5 5.1 Block Description and Characteristics Supply Characteristics VS = 8 V to 18 V, Tj = -40 °C to +150 °C, IL = 0 A, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. General 5.1.1 Supply Current Parameter Symbol Min. Limit Values Typ. 2 Max. 3 mA Unit Conditions IVS(on) – VINH = 5 V VIN = 0 V or 5 V RSR = 0 Ω DC-mode normal operation (no fault condition) 5.1.2 Quiescent Current IVS(off) – 7 12 µA – – 65 µA VINH = 0 V VIN = 0 V or 5 V Tj < 8 5 ° C VINH = 0 V VIN = 0 V or 5 V 25 I V S (o f f ) [µA] 20 15 10 5 0 -40 0 40 80 120 160 T [°C] Figure 5 Typical Quiescent Current vs. Junction Temperature Data Sheet 9 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics 5.2 Power Stages The power stages of the BTN7933B consist of a p-channel vertical DMOS transistor for the high side switch and a n-channel vertical DMOS transistor for the low side switch. All protection and diagnostic functions are located in a separate top chip. Both switches can be operated up to 25 kHz, allowing active freewheeling and thus minimizing power dissipation in the forward operation of the integrated diodes. The on state resistance RON is dependent on the supply voltage VS as well as on the junction temperature Tj. The typical on state resistance characteristics are shown in Figure 6. High Side Switch 40 Low Side Switch 70 RON(HS) [ mΩ] 35 30 25 RON(LS ) [m Ω] 60 50 40 20 15 10 5 4 8 12 16 20 24 28 VS [V] Tj = 150°C Tj = 25°C Tj = - 40°C 30 Tj = 150°C 20 Tj = 25°C Tj = - 40°C 10 4 8 12 16 20 24 28 VS [V] Figure 6 Typical ON State Resistance vs. Supply Voltage Data Sheet 10 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics 5.2.1 Power Stages - Static Characteristics VS = 8 V to 18 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Min. High Side Switch - Static Characteristics 5.2.1 ON State High Side Resistance Limit Values Typ. Max. mΩ – – 5.2.2 Leakage Current High Side 10 14 – – – 17 1 50 µA µA V – – – 0.9 0.8 0.6 – – 0.8 mΩ – – 5.2.5 Leakage Current Low Side 18 28 – – – 38 1 10 µA µA V – – – 0.9 0.8 0.7 – – 0.9 Unit Conditions RON(HS) IL(LKHS) – – 5.2.3 Reverse Diode Forward-Voltage VDS(HS) High Side2) IOUT = 8 A; VS = 13.5 V Tj = 25 °C; 1) Tj = 150 °C VINH = 0 V; VOUT = 0 V Tj < 85 °C; 1) VINH = 0 V; VOUT = 0 V Tj = 150 °C IOUT = -8 A Tj = -40 °C; 1) Tj = 25 °C; 1) Tj = 150 °C IOUT = -8 A; VS = 13.5 V Tj = 25 °C; 1) Tj = 150 °C VINH = 0 V; VOUT = VS Tj < 85 °C; 1) VINH = 0 V; VOUT = VS Tj = 150 °C IOUT = 8 A Tj = -40 °C; 1) Tj = 25 °C; 1) Tj = 150 °C Low Side Switch - Static Characteristics 5.2.4 ON State Low Side Resistance RON(LS) IL(LKLS) – – 5.2.6 Reverse Diode Forward-Voltage VSD(LS) Low Side2) 1) Not subject to production test, specified by design 2) Due to active freewheeling, diode is conducting only for a few µs, depending on RSR Data Sheet 11 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics 5.2.2 Switching Times IN t dr(HS ) VOUT 90% 90% t r(HS ) t df (HS ) tf (HS ) t ΔVOUT ΔVOUT 10% 10% t Figure 7 Definition of switching times high side (Rload to GND) IN tdf (LS ) VOUT 90% 90% t f (LS ) tdr(LS ) tr(LS ) t ΔV OUT ΔVOUT 10% 10% t Figure 8 Definition of switching times low side (Rload to VS) Due to the timing differences for the rising and the falling edge there will be a slight difference between the length of the input pulse and the length of the output pulse. It can be calculated using the following formulas: • • ΔtHS = (tdr(HS) + 0.5 tr(HS)) - (tdf(HS) + 0.5 tf(HS)) ΔtLS = (tdf(LS) + 0.5 tf(LS)) - (tdr(LS) + 0.5 tr(LS)). Data Sheet 12 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics 5.2.3 Power Stages - Dynamic Characteristics VS = 13.5 V, Tj = -40 °C to +150 °C, Rload = 4 Ω, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Min. High Side Switch Dynamic Characteristics 5.2.7 Rise-Time of HS Limit Values Typ. Max. µs 0.15 – 0.8 5.2.8 Slew Rate HS on1) 0.55 1 2.5 19.6 10.8 4.3 2 2.8 7.8 0.55 1 2.8 19.6 10.8 3.9 0.95 – 6 V/µs 11.4 – 1.8 1.2 – 2 5.2.10 Fall-Time of HS 72 – 13.5 µs 2.8 – 17 µs 0.15 – 0.8 5.2.11 Slew Rate HS off1) -ΔVOUT/ tf(HS) 11.4 – 1.5 5.2.12 Switch off Delay Time HS 0.95 – 7 V/µs 72 – 13.5 µs Unit Conditions tr(HS) RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ ΔVOUT/ tr( HS) 5.2.9 Switch on Delay Time HS tdr(HS) tf(HS) tdf(HS) 1 1.6 2.4 – 2.3 – 1.5 6 14 1) Not subject to production test, calculated value; |ΔVOUT|/ tr(HS) or |-ΔVOUT|/ tf(HS) Data Sheet 13 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics VS = 13.5 V, Tj = -40 °C to +150 °C, Rload = 4 Ω, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Min. Low Side Switch Dynamic Characteristics 5.2.13 Rise-Time of LS Limit Values Typ. Max. µs 0.15 – 0.8 5.2.14 Slew Rate LS off1) ΔVOUT/ 0.5 1 2.5 21.6 10.8 4.3 0.8 1.2 3.6 0.5 1 2.5 21.6 10.8 4.3 0.85 – 6 V/µs 12.7 – 1.8 0.3 – 0.8 5.2.16 Fall-Time of LS 72 – 13.5 µs 1.3 – 7 µs 0.15 – 0.8 5.2.17 Slew Rate LS on1) -ΔVOUT/ tf(LS) 12.7 – 1.5 5.2.18 Switch on Delay Time LS 0.85 – 7 V/µs 72 – 13.5 µs Unit Conditions tr(LS) RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ RSR = 0 Ω RSR = 5.1 kΩ RSR = 51 kΩ tr(LS) 5.2.15 Switch off Delay Time LS tdr(LS) tf(LS) tdf(LS) 1.8 2.7 3.6 – 3.8 – 3 11 20 1) Not subject to production test, calculated value; |ΔVOUT|/ tr(LS) or |-ΔVOUT|/ tf(LS) Data Sheet 14 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics 5.3 Protection Functions The device provides integrated protection functions. These are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not to be used for continuous or repetitive operation, with the exception of the current limitation (Chapter 5.3.4). In case of overtemperature the BTN7933B will apply the slew rate determined by the connected slew rate resistor. In all other fault conditions the highest slew rate possible will be applied independent of the connected slew rate resistor. Overvoltage, overtemperature and overcurrent are indicated by a fault current IIS(LIM) at the IS pin as described in the paragraph “Status Flag Diagnosis With Current Sense Capability” on Page 19 and Figure 12. In the following the protection functions are listed in order of their priority. 5.3.1 Overvoltage mode (Smart Clamping) If the supply voltage is exceeding the over voltage level VOVM(ON) the device enters the overvoltage mode. The IC operates in normal mode again with a hysteresis VOVM(HY) if the supply voltage decreases below the Overvoltage Mode OFF voltage level VOVM(off). In case of overvoltage the device shuts the lowside MOSFET off and a fault current IIS(LIM) is provided at the IS pin. The highside MOSFET is still operational and follows the inputs IN and INH. Current Limitation and Overtemperature Protection are still active for the highside switch, and can independently switch off the highside MOSFET, if it was on before. If the highside MOSFET is off, an implemented voltage clamp mechanism keeps the voltage drop -VDS(HS) over the highside at a certain level -VDS(HS)_CL. 5.3.2 Undervoltage Shut Down To avoid uncontrolled motion of the driven motor at low voltages the device shuts off (output is tri-state), if the supply voltage drops below the switch-off voltage VUV(OFF). The IC becomes active again with a hysteresis VUV(HY) if the supply voltage rises above the switch-on voltage VUV(ON). Note: With decreasing Vs < VUV(OFF)max, activation of the Current Limitation mode may occur before Undervoltage Shut Down with ambient temperatures less than 25°C. See Table “Switch-OFF Voltage” on Page 18. 5.3.3 Overtemperature Protection The BTN7933B is protected against overtemperature by an integrated temperature sensor. Overtemperature leads to a shut down of both output stages. This state is latched until the device is reset by a low signal with a minimum length of treset at the INH pin, provided that its temperature has decreased at least the thermal hysteresis ΔT in the meantime. Repetitive use of the overtemperature protection impacts lifetime. 5.3.4 Current Limitation The current in the bridge is measured in both switches. As soon as the current in forward direction in one switch (high side or low side) is reaching the limit ICLx, this switch is deactivated and the other switch is activated for tCLS. During that time all changes at the IN pin are ignored. However, the INH pin can still be used to switch both MOSFETs off. After tCLS the switches return to their initial setting. The error signal at the IS pin is reset after 2 * tCLS. Unintentional triggering of the current limitation by short current spikes (e.g. inflicted by EMI coming from the motor) is suppressed by internal filter circuitry. Due to thresholds and reaction delay times of the filter circuitry the effective current limitation level ICLx depends on the slew rate of the load current dI/dt as shown in Figure 10. Data Sheet 15 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics IL ICLx ICLx 0 tCLS t Figure 9 Timing Diagram Current Limitation (Inductive Load) High Side Switch 55 50 Low Side Switch 55 I C L H [A] 45 40 35 30 25 20 0 500 1000 I C L L [A] Tj = 25°C Tj = - 40°C 50 45 40 Tj = 150°C ICLH0 ICLL0 35 30 25 20 1500 2000 Tj = 25°C Tj = - 40°C Tj = 150°C 0 500 1000 1500 2000 dIL/dt [A/ms] Figure 10 Typical Current Limitation Level vs. Current Slew Rate dI/dt dIL/dt [A/ms] Data Sheet 16 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics High Side Switch 50 Low Side Switch 50 I C L H [ A] I C L L [ A] 45 Tj = - 40°C Tj = 25°C 45 40 Tj = 150°C 40 35 35 Tj = - 40°C Tj = 25°C 30 30 Tj = 150°C 25 25 20 4 6 8 10 12 14 16 18 20 20 4 6 8 10 12 14 16 18 20 VS [V] Figure 11 Typical Current Limitation Detection Levels vs. Supply Voltage VS [V] In combination with a typical inductive load, such as a motor, this results in a switched mode current limitation. This method of limiting the current has the advantage of greatly reduced power dissipation in the BTN7933B compared to driving the MOSFET in linear mode. Therefore it is possible to use the current limitation for a short time without exceeding the maximum allowed junction temperature (e.g. for limiting the inrush current during motor start up). However, the regular use of the current limitation is allowed as long as the specified maximum junction temperature is not exceeded. Exceeding this temperature can reduce the lifetime of the device. 5.3.5 • • • Short Circuit Protection The device is short circuit protected against output short circuit to ground output short circuit to supply voltage short circuit of load The short circuit protection is realized by the previously described current limitation in combination with the overtemperature shut down of the device. Data Sheet 17 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics 5.3.6 Electrical Characteristics - Protection Functions VS = 8 V to 18 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Under Voltage Shut Down 5.3.1 5.3.2 Switch-ON Voltage Switch-OFF Voltage 1) Symbol Min. Limit Values Typ. – – – 0.2 – – 0.2 – Max. 5.5 4.5 5.5 – – 30 – – Unit Conditions VUV(ON) VUV(OFF) – 3.0 3.0 V V V V V V V V VS increasing VS decreasing, IN = 1, INH = 1 VS decreasing, IN = 0, INH = 1 2) 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 ON/OFF hysteresis VUV(HY) – 27.8 Over Voltage Mode Over voltage Mode OFF Voltage VOVM(OFF) Over voltage Mode ON Voltage ON/OFF hysteresis Drain Source Clamp Voltage High Side Switch VOVM(ON) 28 VOVM(HY) – -VDS(HS)_CL 30 VS decreasing VS increasing 2) ID(HS) = -1 mA, HSS off, 2) Current Limitation 5.3.8 5.3.9 Current Limitation Detection level ICLH0 High Side Current Limitation Detection level ICLL0 Low Side Shut OFF Time for HS and LS Thermal Shut Down Junction Temperature Thermal Switch ON Junction Temperature Thermal Hysteresis 30 20 42 32 54 44 A A VS = 13.5 V VS = 13.5 V Current Limitation Timing 5.3.10 5.3.11 5.3.12 5.3.13 5.3.14 tCLS TjSD TjSO ΔT 70 155 150 – 4 115 175 – 7 – 210 200 190 – – µs °C °C K µs VS = 13.5 V; 2) – – 2) 2) Thermal Shut Down Reset Pulse at INH Pin (INH low) treset 1) With decreasing Vs < VUV(OFF)max, activation of the Current Limitation mode may occur before Undervoltage Shut Down with ambient temperatures less than 25°C. 2) Not subject to production test, specified by design Data Sheet 18 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics 5.4 5.4.1 Control and Diagnostics Input Circuit The control inputs IN and INH consist of TTL/CMOS compatible schmitt triggers with hysteresis which control the integrated gate drivers for the MOSFETs. Setting the INH pin to high enables the device. In this condition one of the two power switches is switched on depending on the status of the IN pin. To deactivate both switches, the INH pin has to be set to low. No external driver is needed. The BTN7933B can be interfaced directly to a microcontroller, as long as the maximum ratings in Chapter 4.1 are not exceeded. 5.4.2 Dead Time Generation In bridge applications it has to be assured that the highside and lowside MOSFET are not conducting at the same time, connecting directly the battery voltage to GND. This is assured by a circuit in the driver IC, generating a so called dead time between switching off one MOSFET and switching on the other. The dead time generated in the driver IC is automatically adjusted to the selected slew rate. 5.4.3 Adjustable Slew Rate In order to optimize electromagnetic emission, the switching speed of the MOSFETs is adjustable by an external resistor. The slew rate pin SR allows the user to optimize the balance between emission and power dissipation within his own application by connecting an external resistor RSR to GND. 5.4.4 Status Flag Diagnosis With Current Sense Capability The status pin IS is used as a combined current sense and error flag output. In normal operation (current sense mode), a current source is connected to the status pin, which delivers a current proportional to the forward load current flowing through the active high side switch. If the high side switch is inactive or the current is flowing in the reverse direction no current will be driven except for a marginal leakage current IIS(LK). The external resistor RIS determines the voltage per output current. E.g. with the nominal value of 6k for the current sense ratio kILIS = IL / IIS, a resistor value of RIS = 1 kΩ leads to VIS = (IL / 6 A)V. In case of a fault condition the status output is connected to a current source which is independent of the load current and provides IIS(lim). The maximum voltage at the IS pin is determined by the choice of the external resistor and the supply voltage. In case of current limitation the IIS(lim) is activated for 2 * tCLS. Normal operation: current sense mode VS ESD-ZD Fault condition: error flag mode VS IS ESD-ZD IIS~ ILoad IIS(lim) Sense output logic IIS~ ILoad RIS VIS IIS(lim) Sense output logic IS R IS V IS Figure 12 Sense Current and Fault Current Data Sheet 19 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Block Description and Characteristics IIS [mA] IIS(lim) er low i kil lue va s hi lis r ki ghe u val e Current Sense Mode (High Side) Error Flag Mode ICLx Figure 13 Sense Current vs. Load Current IL [A] 5.4.5 Truth Table Inputs INH IN X 0 1 X 0 0 1 1 Outputs HSS OFF OFF ON OFF (CL) OFF (CL) ON OFF OFF OFF OFF ON LSS OFF ON OFF OFF OFF IS 0 0 CS 1 1 Stand-by mode LSS active HSS active HSS possible Smart Clamping; error detected Shut-down of LSS, HSS possible Smart Clamping, error detected HSS active (OC and OT still valid), LSS off, error detected UV lockout Stand-by mode, reset of latch Shut-down with latch, error detected Switched mode, error detected1) Switched mode, error detected1) Mode Device State Normal Operation Over-Voltage Mode (OVM) 0 1 1 Under-Voltage (UV) Overtemperature (OT) or Short Circuit of HSS or LSS Current Limitation Mode/ Overcurrent (OC) X 0 1 1 1 1 X X X 1 0 OFF OFF OFF OFF ON OFF 1 0 0 1 1 1 1) Will return to normal operation after tCLS; Error signal is reset after 2*tCLS (see Chapter 5.3.4) Switches OFF = switched off ON = switched on CL = Smart Clamping 20 Rev. 1.0, 2009-09-09 Status Flag IS CS = Current sense mode 1 = Logic HIGH (error) Inputs 0 = Logic LOW 1 = Logic HIGH X = 0 or 1 Data Sheet High Current PN Half Bridge BTN7933B Block Description and Characteristics 5.4.6 Electrical Characteristics - Control and Diagnostics VS = 8 V to 18 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Control Inputs (IN and INH) 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 High level Voltage INH, IN Low level Voltage INH, IN Input Voltage hysteresis Input Current high level Input Current low level Symbol Min. Limit Values Typ. 1.75 1.6 1.4 350 200 30 25 Max. 2.15 2 – – – 150 125 V V mV µA µA – – 1) Unit Conditions VINH(H) VIN(H) VINH(L) VIN(L) VINHHY VINHY IINH(H) IIN(H) IINH(L) IIN(L) kILIS – – 1.1 – – – – VIN = VINH = 5.3 V VIN = VINH = 0.4 V RIS = 1 kΩ I L = 15 A IL = 8 A IL = 3 A VS = 13.5 V RIS = 1kΩ VIN = 0 V or VINH = 0 V VIN = VINH = 5 V IL = 0 A Current Sense 5.4.6 Current Sense ratio in static oncondition kILIS = IL / IIS 103 4.7 4.1 3.5 4 – – 6 6 6 5 – 1 8 8.5 9.5 6.5 1 80 mA µA µA 5.4.7 5.4.8 5.4.9 Maximum analog Sense Current, IIS(lim) Sense Current in fault Condition Isense Leakage current Isense Leakage current, active high side switch IISL IISH 1) Not subject to production test, specified by design Data Sheet 21 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Application Information 6 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. 6.1 Application Example Microcontroller XC866 I/O Reset Vdd CQ 22µF Voltage Regulator WO RO Q D CD 47nF Reverse Polarity Protection DZ 1 10V CS 470µF R1 10kΩ TLE 4278G GND I VS I/O I/O I/O I/O Vss e.g. IPD80P03P4L -07 RIN1 RINH1 10kΩ 10kΩ BTN7933B INH IN IS SR OUT VS CSc1 470nF CSc2 470nF BTN7933B VS INH IN OUT IS SR GND GND RINH2 10kΩ RIN2 10kΩ M RIS12 470Ω RSR1 0..51kΩ RSR2 0..51kΩ High Current H-Bridge Figure 14 Application Example: H-Bridge with two BTN7933B Note: This is a simplified example of an application circuit. The function must be verified in the real application. 6.2 Layout Considerations Due to the fast switching times for high currents, special care has to be taken to the PCB layout. Stray inductances have to be minimized in the power bridge design as it is necessary in all switched high power bridges. The BTN7933B has no separate pin for power ground and logic ground. Therefore it is recommended to assure that the offset between the ground connection of the slew rate resistor, the current sense resistor and ground pin of the device (GND / pin 1) is minimized. If the BTN7933B is used in a H-bridge or B6 bridge design, the voltage offset between the GND pins of the different devices should be small as well. A ceramic capacitor from VS to GND close to each device is recommended to provide current for the switching phase via a low inductance path and therefore reducing noise and ground bounce. A reasonable value for this capacitor would be about 470 nF. The digital inputs need to be protected from excess currents (e.g. caused by induced voltage spikes) by series resistors in the range of 10 kΩ. Data Sheet 22 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Application Information 6.3 Half-bridge Configuration Considerations If the BTN7933B is used in a half-bridge configuration with the load connected between OUT and VS and the supply voltage is exceeding the Overvoltage Mode ON level VOVM(ON), the implemented “Overvoltage mode (Smart Clamping)” feature leads to automatically turning off the low side switch. If the load is connected between OUT and GND and the supply voltage is exceeding the Overvoltage Mode ON level VOVM(ON) while the high side switch is turned off and low side MOSFET is on, the low side MOSFET will be turned off. If the voltage drop over the high side switch exceeds the high side clamp voltage -VDS(HS)_CL a current can flow through the high side switch and the load to GND. It shall be insured that the power dissipated in the NovalithIC™ does not exceed the maximum ratings. Microcontroller XC866 I/O Reset Vdd CQ 22µF Voltage Regulator WO RO Q D CD 47nF Reverse Polarity Protection DZ 1 10V CS 470µF R1 10kΩ TLE 4278G GND I VS I/O I/O I/O Vss e.g. IPD80P03P4L -07 RIN 10kΩ RINH 10kΩ BTN7933B INH IN IS SR OUT VS CSc 470nF M RIS 1k Ω RSR 0..51k Ω GND High Current Half-Bridge Figure 15 Application Example: Half-Bridge with a BTN7933B (Load to GND) Note: This is a simplified example of an application circuit. The function must be verified in the real application. Data Sheet 23 Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Package Outlines 7 Package Outlines 4.4 10 ±0.2 0...0.3 1±0.3 1.27 ±0.1 A B 0.05 2.4 0.1 4.7 ±0.5 2.7 ±0.3 7.551) 8.5 1) (15) 9.25 ±0.2 0...0.15 7 x 0.6 ±0.1 6 x 1.27 0.25 M 0.5 ±0.1 AB 8˚ MAX. 0.1 B 1) Typical Metal surface min. X = 7.25, Y = 6.9 All metal surfaces tin plated, except area of cut. Footprint GPT09114 10.8 16.15 4.6 9.4 0.47 0.8 8.42 Figure 16 PG-TO263-7-1 (Plastic Green Transistor Single Outline Package) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 24 Dimensions in mm Rev. 1.0, 2009-09-09 High Current PN Half Bridge BTN7933B Revision History 8 Revision 1.0 Revision History Date 2009-09-09 Changes Initial version Data Sheet Data Sheet 25 Rev. 1.0, 2009-09-09 Edition 2009-09-09 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
BTN7933B
物料型号: - 型号:BTN7933B - 封装:PG-TO263-7-1

器件简介: - BTN7933B是一款集成的高电流半桥驱动器,适用于电机驱动应用。它属于NovalithIC™家族,包含一个P沟道高侧MOSFET和一个N沟道低侧MOSFET以及一个集成的驱动IC,构成一个高电流半桥。由于P沟道高侧开关的设计,消除了对充电泵的需求,从而最小化了电磁干扰(EMI)。通过集成的驱动IC,可以轻松地与微控制器接口,具有逻辑电平输入、电流感应诊断、斜率调整、死区时间生成、过电压智能钳位以及过温、欠压、过流和短路保护功能。

引脚分配: - 1号引脚:GND(地) - 2号引脚:IN(输入,用于激活高侧或低侧开关) - 3号引脚:INH(抑制,低电平时设备进入睡眠模式) - 4号和8号引脚:OUT(功率输出) - 5号引脚:SR(斜率,通过连接电阻调整功率开关的斜率) - 6号引脚:IS(电流感应和诊断) - 7号引脚:VS(供电)

参数特性: - 通路电阻:最大55 mΩ @ 150°C(典型值28 mΩ @ 25°C) - 高侧:最大17 mΩ @ 150°C(典型值10 mΩ @ 25°C) - 低侧:最大38 mΩ @ 150°C(典型值18 mΩ @ 25°C) - 增强的开关速度,以减少开关损耗(上升/下降时间低至500ns) - 扩展工作电压范围至4.5V(高侧开关) - 低静态电流:典型值7 μA @ 25°C - PWM能力高达25 kHz,结合主动自由轮模式 - 电流限制模式减少过流时的功率消耗 - 电流限制水平至少20 A / 典型值32 A(低侧) - 具有电流感应能力的状態标志诊断 - 过温保护,具有锁定行为 - 智能钳位在过电压下 - 欠压关闭 - 驱动电路具有逻辑电平输入 - 可调斜率以优化EMI - 操作高达28V - 绿色产品(RoHS合规) - AEC合格

功能详解: - BTN7933B提供成本优化的解决方案,用于受保护的高电流PWM电机驱动,具有非常低的占用空间。 - 集成的保护功能旨在防止数据表中描述的故障条件下IC的破坏。 - 过电压模式(智能钳位):如果供电电压超过过电压水平,设备进入过电压模式,并在电压下降到一定水平后恢复正常模式。 - 欠压关闭:为了避免低电压下驱动电机的不受控运动,如果供电电压下降到一定水平以下,设备将关闭输出。 - 过温保护:通过集成的温度传感器保护设备免受过温影响,导致两个输出阶段关闭。 - 电流限制:当桥中的电流达到限制时,将停用一个开关并激活另一个开关一段时间,在此期间忽略IN引脚的所有变化。 - 短路保护:通过电流限制和过温关闭实现短路保护。

应用信息: - 应用示例:使用两个BTN7933B的H桥配置。 - 布局考虑:由于高电流的快速开关时间,PCB布局需要特别注意,以最小化杂散电感。 - 半桥配置考虑:如果BTN7933B在半桥配置中使用,并且供电电压超过过电压模式开启水平,将自动关闭低侧开关。

封装信息: - 封装类型:PG-TO263-7-1(塑料绿色晶体管单轮廓封装) - 尺寸信息和典型金属表面尺寸在PDF中有详细描述。
BTN7933B 价格&库存

很抱歉,暂时无法提供与“BTN7933B”相匹配的价格&库存,您可以联系我们找货

免费人工找货