Datasheet, Rev. 1.0, Aug. 2008
BTS50080-1TEA
Smart High-Side Power Switch PROFET™ One Channel
Automotive Power
Smart High-Side Power Switch BTS50080-1TEA
Table of Contents
Table of Contents
1 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 5 5.1 5.2 5.3 5.3.1 5.4 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 7 7.1 8 9 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Assignment BTS50080-1TEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output On-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output Inductive Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short circuit impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection - Reversave™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Vbb Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 16 17 18 18 18 19
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Datasheet
2
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch PROFET™ One Channel
BTS50080-1TEA
1
Features • • • • • • • • • •
Overview
Part of scalable product family Load current sense Reversave™ Very low standby current Current controlled input pin Improved electromagnetic compatibility (EMC) Fast demagnetization of inductive loads Stable behavior at under-voltage Green Product (RoHS compliant) AEC Qualified
PG-TO252-5-11
Vbb(on) Minimum overvoltage protection VON(CL) Maximum on-state resistance at 150°C RDS(ON) Nominal load current IL(nom) Minimum load current limitation peak ILpeak(SC) Maximum stand-by current for whole device with load at Tj = 25 °C Ibb(OFF)
Operating voltage
5.5 .. 30 V 39 V 16 mΩ 10 A 70 A 6 µA
The BTS50080-1TEA is a one channel high-side power switch in PG-TO252-5-11 package providing embedded protective functions. The power transistor is built by a N-channel vertical power MOSFET with charge pump. The design is based on Smart SIPMOS chip on chip technology. The BTS50080-1TEA has a current controlled input and offers a diagnostic feedback with load current sense and a defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown.
Type BTS50080-1TEA Datasheet
Package PG-TO252-5-11 3
Marking S50080A Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Overview Protective Functions • • • • • • • • • • Reversave™, channel switches on in case of reverse polarity Reverse battery protection without external components Short circuit protection with latch Overload protection Multi-step current limitation Thermal shutdown with restart Overvoltage protection (including load dump) Loss of ground protection Loss of Vbb protection (with external diode for charged inductive loads) Electrostatic discharge protection (ESD)
Diagnostic Functions • • Proportional load current sense (with defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown) Open load detection in ON-state by load current sense
Applications • • • • µC compatible high-side power switch with diagnostic feedback for 12 V grounded loads All types of resistive, inductive and capacitive loads Most suitable for loads with high inrush currents, so as lamps Replaces electromechanical relays, fuses and discrete circuits
Datasheet
4
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Block Diagram and Terms
2
2.1
Block Diagram and Terms
Block Diagram
logic IC
voltage sensor over temperature
Rbb
base chip
Vbb
T
IN
ESD
clamp for inductive load current limitation
IIN VIS VIN IS I IS RIS
driver logic
gate control & charge pump load current sense
OUT IL LOAD
Overview .emf
forward voltage drop detection
Figure 1
Block Diagram
2.2
Terms
Following figure shows all terms used in this data sheet.
V bb V bIN
V bIS IIN
Ibb VBB
V ON, VOFF
IN
V IN R IN IIS V IS RIS
BTS50080-1TEA
IS OUT IL V OUT
Terms.emf
Figure 2
Terms
Datasheet
5
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Pin Configuration
3
3.1
Pin Configuration
Pin Assignment BTS50080-1TEA
TAB Vbb
OUT
1
2
3
4
5
OUT
V bb
IN
IS
TO252-5 .emf
Figure 3
Pin Configuration
3.2
Pin 1 2 3 4
Pin Definitions and Functions
Symbol OUT IN Vbb IS Function Output; output to the load; pin 1 and 5 must be externally shorted.1) Input; activates the power switch if shorted to ground. Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted. Sense Output; Diagnostic feedback; provides at normal operation a sense current proportional to the load current; in case of overload, overtemperature and/or short circuit a defined current is provided (see Table 1 “Truth Table” on Page 21). Output; output to the load; pin 1 and 5 must be externally shorted.1) Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted.
5 TAB
OUT Vbb
1) Not shorting all outputs will considerably increase the on-state resistance, reduce the peak current capability, the clamping capability and decrease the current sense accuracy.
Datasheet
6
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
General Product Characteristics
4
4.1
General Product Characteristics
Absolute Maximum Ratings
Absolute Maximum Ratings 1) Tj = 25°C (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Supply Voltages 4.1.1 4.1.2 4.1.3 Supply voltage (single pulse)2) Max. Unit Conditions
Vbb Supply voltage for short circuit protection Vbb(SC) Vbb(LD)
-16 0 –
38 30 45
V V V
– –
Supply Voltage for Load Dump protection3)
RI = 2 Ω , RL = 1.5 Ω
– – – – –
Logic Pins 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 Voltage at input pin Current through input pin Voltage at current sense pin Current through sense pin Input voltage slew rate Load current 5) Maximum energy dissipation per channel (single pulse)
4)
VbIN IIN VbIS IIS dVbIN/dt IL EAS
-16 -140 -16 -140 -20
63 15 63 15 20
V mA V mA V/µs
Power Stages 4.1.9 4.1.10 ILx(SC)
A J
–
0.3
Vbb = 12 V, IL(0) = 20 A, Tj(0) = 150°C
– –
Temperatures 4.1.11 4.1.12 Junction temperature Storage temperature
Tj Tstg VESD
-40 -55
150 150
°C °C
ESD Susceptibility 4.1.13 ESD susceptibility HBM Pin 2 (IN) Pin 4 (IS) Pin1/5 (OUT) kV -2 -2 -4 2 2 4 according to EIA/JESD 22-A 114B
1) 2) 3) 4)
Not subject to production test, specified by design. Short circuit is defined as a combination of remaining resistances and inductances. See Figure 13. Load Dump is specified in ISO 7637, RI is the internal resistance of the Load Dump pulse generator. Slew rate limitation can be achieved by means of using a series resistor for the small signal driver or in series in the input path. A series resistor RIN in the input path is also required for reverse operation at Vbb ≤ -16V. See also Figure 14. 5) Current limitation is a protection feature. Operation in current limitation is considered as “outside” normal operating range. Protection features are not designed for continuous repetitive operation.
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Datasheet
7
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
General Product Characteristics Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.
4.2
Pos. 4.2.1 4.2.2
Thermal Resistance
Parameter Junction to Case
1) 1)
Symbol Min.
Limit Values Typ. 80 45 22 Max. 1.1 – -
Unit K/W K/W
Conditions – –
Junction to Ambient free air device on small PCB 2) device on standard PCB3)
RthJC RthJA
1) Not subject to production test, specified by design. 2) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm thick) for Vbb connection. PCB is vertical without blown air. 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
Datasheet
8
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Power Stages
5
5.1
Power Stages
Input Circuit
The power stage is built by a N-channel vertical power MOSFET (DMOS) with charge pump.
Figure 4 shows the input circuit of the BTS50080-1TEA. The current source to Vbb ensures that the device switches off in case of open input pin. The zener diode protects the input circuit against ESD pulses.
VbIN
Rbb IIN I VZ,IN
Vbb
IN
VIN
Input.emf
Figure 4
Input Circuit
A high signal at the required external small signal transistor pulls the input pin to ground. A logic supply current IIN is flowing and the power DMOS switches on with a dedicated slope, which is optimized in terms of EMC emission.
IIN tON tOFF t
VOUT 90% 50% 25% 10%
(dV/dt)ON
(d V/dt)OFF
t
SwitchOn.emf
Figure 5
Switching a Load (resistive)
5.2
Output On-State Resistance
The on-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature Tj. Figure 6 shows these dependencies for the typical on-state resistance. The voltage drop in reverse polarity mode is described in Section 6.3.
Datasheet
9
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Power Stages
5 '621
W\S , / $
5 '621 P ,/
W\S $
P
Figure 6
& 7M 9 9 EE
Typical On-State Resistance
Vbb = 12 V Tj = 25°C
9 21
W\S
9
Figure 7
9 21a, /
9 21≥9 211/
$
,/
Typical Output Voltage Drop Limitation
5.3
Output Inductive Clamp
When switching off inductive loads, the output voltage VOUT drops below ground potential due to the involved inductance ( -diL/dt = -vL/L ; -VOUT ≅ -VL ).
Datasheet
10
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Power Stages
V bb VBB
VON
IL OUT V OUT L, RL
OutputClamp .emf
Figure 8
Output Clamp
To prevent destruction of the device, there is a voltage clamp mechanism implemented that keeps the voltage drop across the device at a certain level (VON(CL)). See Figure 8 and Figure 9 for details. The maximum allowed load inductance is limited.
V OUT Vbb t
ON
OFF
V OUT(CL) IL
VON(CL)
t
InductiveLoad.emf
Figure 9
Switching an Inductance
5.3.1
Maximum Load Inductance
While de-energizing inductive loads, energy has to be dissipated in the BTS50080-1TEA. This energy can be calculated via the following equation:
V bb – V ON ( CL ) RL ⋅ IL L = V ON ( CL ) ⋅ ------------------------------------ ⋅ ln 1 + ---------------------------------- + I L ⋅ ---- RL RL V ON(CL) – V bb
E
In the event of de-energizing very low ohmic inductances (RL≈0) the following, simplified equation can be used:
V ON(CL) 1 = -- LI L 2 ⋅ ---------------------------------V ON(CL) – V bb 2
E
The energy, which is converted into heat, is limited by the thermal design of the component. For given starting currents the maximum allowed inductance is therefore limited. See Figure 10 for the maximum allowed inductance at Vbb=12V.
Datasheet
11
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Power Stages
Vbb = 12 V Tj(o) ≤ 150°C
L
10 mH 1
0,1
0,01 1
Figure 10
10
A
100 IL
Maximum load inductance for single pulse, Tj(0) ≤ 150°C.
Datasheet
12
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Power Stages
5.4
Electrical Characteristics
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos. Parameter Symbol Min. General 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 Operating voltage 1) Undervoltage shutdown 2) Undervoltage restart of charge pump Operating current Stand-by current Tj = -40 °C, Tj = 25 °C Tj ≤120 °C2) Tj = 150 °C Input current for turn-on Input current for turn-off Limit Values Typ. Max. Unit Conditions
Vbb(on) VbIN(u) Vbb(ucp) IIN Ibb(OFF)
5.5 -
2.5 4 1.4 3 3 6
30 3.5 5.5 2.2 6 6 14
V V V mA µA
VIN = 0 V Tj = 25 °C
– –
IIN = 0 A
Input characteristics 5.4.6 5.4.7
IIN(on) IIN(off)
-
1.4 -
2.2 30
mA µA
VbIN ≥ Vbb(ucp) - VIN
–
Output characteristics 5.4.8 On-state resistance
Tj = 25 °C Tj = 150 °C Vbb = 5.5 V, Tj = 25 °C Vbb = 5.5 V, Tj = 150 °C
5.4.9 5.4.10 Output voltage drop limitation at small load currents Nominal load current (Tab to pin 1 and 5) 3) 4) Output clamp Inverse current output voltage drop 2) 5) (Tab to pin 1 and 5) Tj = 25 °C Tj = 150 °C Turn-on time to 90% VOUT Turn-off time to 10% VOUT Turn-on delay after inverse operation 2)
RDS(ON)
8 14 10 18 30 10 16 22 65 -
mΩ
VIN = 0 V, IL = 7.5 A,
(Tab to pin 1 and 5)
VON(NL) IL(nom)
-
mV A
–
5.4.11 5.4.12
VON(CL)
-VON(inv)
39
42
-
V mV
Ta = 85 °C, VON ≤ 0.5 V, Tj ≤ 150 °C IL = 40 mA, Tj = 25 °C IL = -7.5 A, RIS = 1 kΩ
-
700 300
-
Timings 5.4.13 5.4.14 5.4.15
tON tOFF td(inv)
-
300 300 1
500 500 -
µs µs ms
RL = 2.2 Ω RL = 2.2 Ω Vbb > VOUT, VIN(inv) = VIN(fwd) = 0V
Rev. 1.0, 2008-08-28
Datasheet
13
Smart High-Side Power Switch BTS50080-1TEA
Power Stages
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos. 5.4.16 5.4.17 Parameter Slew rate On 25% to 50% VOUT Slew rate Off 50% to 25% VOUT Symbol Min. (dV / dt)ON -(dV/dt)OFF Limit Values Typ. 0.3 0.3 Max. 0.5 0.6 V/µs V/µs Unit Conditions
RL = 2.2 Ω RL = 2.2 Ω
1) Please mind the limitations of the embedded protection functions. See Chapter 4.1 and Chapter 6 for details. 2) Not subject to production test, specified by design 3) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm thick) for Vbb connection. PCB is vertical without blown air. 4) Not subject to production test, parameters are calculated from RDS(ON) and Rth 5) During inverse operation (IL < 0 A, VbIN > 0 V), a current through the intrinsic body diode causing a voltage drop of VON(inv) results in a delayed switch on with a time delay td(inv) after the transition from inverse to forward operation. A sense current IIS(fault) can be provided by the pin IS until standard forward operation is reached.
Note: Characteristics show the deviation of parameter at the given supply voltage and junction temperature. Typical values show the typical parameters expected from manufacturing.
Datasheet
14
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Protection Functions
6
Protection Functions
The device provides embedded protective functions. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are neither designed for continuous nor repetitive operation.
6.1
Overload Protection
The load current IL is limited by the device itself in case of overload or short circuit to ground. There are multiple steps of current limitation ILx(SC) which are selected automatically depending on the voltage drop VON across the power DMOS. Please note that the voltage at the OUT pin is Vbb - VON. Figure 11 shows the dependency for a typical device.
, /6& $ 9 216&
Figure 11 Typical Current Limitation
W\S
9
9 21
Depending on the severity of the short condition as well as on the battery voltage the resulting voltage drop across the device varies. Whenever the resulting voltage drop VON exceeds the short circuit detection threshold VON(SC), the device will switch off immediately and latch until being reset via the input. The VON(SC) detection functionality is activated, when VbIN > 10 V typ. and the blanking time td(SC1) expired after switch on. In the event that either the short circuit detection via VON(SC) is not activated or that the on chip temperature sensor senses overtemperature before the blanking time td(SC1) expired, the device switches off resulting from overtemperature detection. After cooling down with thermal hysteresis, the device switches on again. The device will react as during normal switch on triggered by the input signal. Please refer to Figure 12 and Figure 19 for details.
Datasheet
15
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Protection Functions
VON(SC) detection
Overtemperature detection
IIN VON V ONx > VON(SC) ILx(SC) IL tm td(SC1)
Figure 12 Overload Behavior
IIN
t
IL
t
t
Τj
t
V_ON_detect .emf
t
thermal hysteresis
t
Over_Temp.emf
6.2
Short circuit impedance
The capability to handle single short circuit events depends on the battery voltage as well as on the primary and secondary short impedance. Figure 13 outlines allowable combinations for a single short circuit event of maximum, secondary inductance for given secondary resistance.
L SC
15
V bb = 16V 18V
24V
30V
5uH
Vbb IN OUT
LSC R SC
µH 12,5 10 7,5 5
10m Ω V bb
PROFET
IS SHORT CIRCUIT
LO AD
2,5 0
short_circuitemf .
0
50
100
150
200 mΩ
250 R SC
Figure 13
Short circuit
Datasheet
16
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Protection Functions
6.3
Reverse Polarity Protection - Reversave™
The device can not block a current flow in reverse polarity condition. In order to minimize power dissipation, the device offers Reversave™ functionality. In reverse polarity condition the channel will be switched on provided a sufficient gate to source voltage is generated VGS ≈ VRbb. Please refer to Figure 14 for details.
-Vbb IRbb Rbb Vbb
RIN -I IN D
IN IS
Logic
-IL
LOAD
power ground
RIS
-IIS
signal ground
Reverse.emf
Figure 14
Reverse battery protection
Additional power is dissipated by the integrated Rbb resistor. Use following formula for estimation of overall power dissipation Pdiss(rev) in reverse polarity mode.
2 2 P diss(rev) ≈ R ON(rev) ⋅ I L + R bb ⋅ I Rbb
For reverse battery voltages up to Vbb < 16 V the pin IN or the pin IS should be low ohmic connected to signal ground. This can be achieved e.g. by using a small signal diode D in parallel to the input switch or by using a small signal MOSFET driver. For reverse battery voltages higher then Vbb = 16 V an additional resistor RIN is recommended. The overall current through Rbb should not be above 80 mA.
1 1 0.08 A -------- + ------- = ------------------------------V bb – 12 V R IN R IS
Note: No protection mechanism is active during reverse polarity. The IC logic is not functional.
Datasheet
17
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Protection Functions
6.4
Overvoltage Protection
Beside the output clamp for the power stage as described in Section 5.3 there is a clamp mechanism implemented for all logic pins. See Figure 15 for details.
Rbb VZ,IN VZ,IS
Vbb
IN
IS
Figure 15 Overvoltage Protection
Logic
OUT
OverVoltage .emf
6.5
Loss of Ground Protection
In case of complete loss of the device ground connections the BTS50080-1TEA securely changes to or remains in off state.
6.6
Loss of Vbb Protection
In case of complete loss of Vbb the BTS50080-1TEA remains in off state. In case of loss of Vbb connection with charged inductive loads a current path with load current capability has to be provided, to demagnetize the charged inductances. It is recommended to use a diode, a Z-diode, or a varistor (VZL+VD < 30 V or VZb+VD < 16 V if RIN = 0). For higher clamp voltages currents through IN and IS have to be limited to -140 mA. Please refer to Figure 16 for details.
V bb Rbb Vbb
Vbb
R bb
Vbb
IN RIN
IS
VD RIS inductive LOAD VZL
Vbb_disconnect_A .emf
VZb
IN IS RIN
Logic
Logic
VD
R IS
inductive LOAD
Vbb_disconnect_B.emf
Figure 16
Loss of Vbb
Datasheet
18
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Protection Functions
6.7
Electrical Characteristics
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos. Parameter Symbol Min. Overload Protection 6.7.1 Load current limitation peak1) 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C Load current limitation 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C Load current limitation1) 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C Load current limitation 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C Load current limitation1) 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C Short circuit shutdown detection voltage 1) Short circuit shutdown delay after input current pos. slope3) Thermal shut down temperature Thermal hysteresis 1) Limit Values Typ. Max. Unit Conditions
ILpeak(SC)
70 180 125 90 80 75 60 60 55 50 40 40 35 25 25 25 3.5 650 175
1)
A 220 A 45 110 A 33 80 A 20 60 A 15 40 4.5 1200 V µs °C K
VON = 1.5 V, (Tab to pin 1 and 5)
6.7.2
IL12(SC)
VON = 12 V, tm = 170 µs,
(Tab to pin 1 and 5)
6.7.3
IL18(SC)
VON = 18 V, (Tab to pin 1 and 5)
6.7.4
IL24(SC)
VON = 24 V, tm = 170 µs,
(Tab to pin 1 and 5)
6.7.5
IL30(SC)
VON = 30 V, (Tab to pin 1 and 5)
6.7.6 6.7.7 6.7.8 6.7.9
VON(SC) td(SC1) Tj(SC)
∆ Tj
2.5 350 150 -
VbIN > 10 V typ., Tj = 25 °C VON > VON(SC)
-
10
Reverse Polarity 6.7.10 On-State resistance in case of reverse polarity Vbb = -8 V, Tj =25 °C 1) Vbb = -8 V, Tj =150 °C 1) Vbb = -12 V, Tj =25 °C Vbb = -12 V, Tj =150 °C Integrated resistor in Vbb line Overvoltage protection Input pin Sense pin
RON(rev)
9.5 16 9 15 100 20 18 150
mΩ
VIN = 0 V, IL = -7.5 A, RIS = 1 kΩ,
(pin 1 and 5 to TAB)
6.7.11
Rbb VZ VZ,IN VZ,IS
-
Ω V
Tj = 25 °C Ibb = 15 mA
Overvoltage 6.7.12 63 63 67 67 V V
1) Not subject to production test, specified by design
Datasheet
19
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Protection Functions
2) Short circuit current limit for max. duration of td(SC1), prior to shutdown, see also Figure 12. 3) min. value valid only if input “off-signal” time exceeds 30 µs
Datasheet
20
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Diagnosis
7
Diagnosis
For diagnosis purpose, the BTS50080-1TEA provides an enhanced sense signal at the pin IS. The pin IS provides during normal operation a sense current, which is proportional to the load current as long as VbIS > 5 V. The ratio of the output current is defined as kILIS = IL/IIS. During switch-on no current is provided, until the forward voltage drops below VON < 1 V typ. The output sense current is limited to IIS(lim). The pin IS provides in case of any fault conditions a defined fault current IIS(fault) as long as VbIS > 8 V. Fault conditions are overcurrent (VON > 1 V typ.), current limit or overtemperature switch off. The pin IS provides no current during open load in ON and de-energisation of inductive loads.
Vb,IS Vbb R bb IIS I IS(fault) IS VIS
Figure 17 Table 1 Parameter Normal operation Overload Short circuit to GND Overtemperature Short circuit to Vbb Open load Block Diagram: Diagnosis Truth Table Input Current Level L H1) L H L H L H L H L H
1)
VZ,IS
R IS
Sense.emf
Output Level L H L H L L L L H H Z1) H
Current Sense IIS ≈ 0 (IIS(LL)) nominal
IIS(fault) ≈ 0 (IIS(LL)) IIS(fault) ≈ 0 (IIS(LL)) IIS(fault) ≈ 0 (IIS(LL))
≈ 0 (IIS(LL))
< nominal2) ≈ 0 (IIS(LL)) ≈ 0 (IIS(LH))
1) H = “High” Level, L = “Low” Level, Z = high impedance, potential depends on external circuit 2) Low ohmic short to Vbb may reduce the output current IL and therefore also the sense current IIS.
The accuracy of the provided current sense ratio (kILIS = IL / IIS) depends on the load current. Please refer to Figure 18 for details. A typical resistor RIS of 1 kΩ is recommended.
Datasheet
21
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Diagnosis
25000 k ILIS 20000 15000 max. 10000 5000 0 0
Figure 18 Current sense ratio kILIS1)
typ. min.
5
10
15
20
25 A
30 IL
Details about timings between the diagnosis signal IIS, the forward voltage drop VON and the load current IL in ONstate can be found in Figure 19. Note: During operation at low load current and at activated forward voltage drop limitation the “two level control” of VON(NL) can cause a sense current ripple synchronous to the “two level control” of VON(NL) . The ripple frequency increases at reduced load currents.
IIN VON
normal operation VON1V typ. t
I IN VON
short VON>VON(SC)
over-temperature VON 1 V, typ. IIN = 0 VIN = 0, IL ≤ 0 IL = 0 20 A IL = 10
20 A
IIS(LL) Current sense offset current IIS(LH) Current sense settling time to 90% tson(IS) IIS_stat. 1) Current sense settling time to 90% tslc(IS) IIS_stat. 1) Fault-Sense signal delay after input tdelay(fault)
current positive slope
VON > 1 V, typ.
1) Not subject to production test, specified by design
Datasheet
23
Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Package Outlines
8
Package Outlines
Figure 20
PG-TO252-5-11
Green Product To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Packages”: http://www.infineon.com/packages. Datasheet 24
Dimensions in mm Rev. 1.0, 2008-08-28
Smart High-Side Power Switch BTS50080-1TEA
Revision History
9
Version Data sheet Rev. 1.0
Revision History
Date 2008-08-22 Changes Initial version of data sheet.
Datasheet
25
Rev. 1.0, 2008-08-28
Edition 2008-08-28 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
www.infineon.com
Published by Infineon Technologies AG