PR OFET™ + 12V BTS5045-2EKA
Smart High-Side Power Switch Dual Channel, 45mΩ
Data Sheet
Rev. 2.0, 2010-08-02
Automotive Power
BTS5045-2EKA
Table of Contents
Table of Contents
1 2 3 3.1 3.2 3.3 4 4.1 4.2 4.3 4.3.1 4.3.2 5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5 6 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.5.3 6.6 7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3 7.3.4 7.3.5 7.3.6 7.4 8 8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 7 8
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Appearance with Channel in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 16 16 17 17 19 21 21 21 22 23 23 23 24 25 26 27 27 28 29 29 30 31 31 31 32 33 33 33 34
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 Rev. 2.0, 2010-08-02
Data Sheet PROFET™+ 12V
BTS5045-2EKA
Table of Contents 8.2 8.3 8.4 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.2.6 9.2.7 9.2.8 9.2.9 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5 9.5.1 9.5.2 9.5.3 9.5.4 10 10.1 11 12 DEN / DSEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimum Functional Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption One Channel active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption Two Channels active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standby Current for Whole Device with Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage Drop Limitation at Low Load Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drain to Source Clamp Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slew Rate at Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slew Rate at Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON / OFF matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch ON Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch OFF Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Condition in the Low Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Condition in the High Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Sense at no Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Detection Threshold in ON State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sense Signal Maximum Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sense Signal maximum Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Voltage Threshold ON to OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Voltage Threshold OFF to ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Voltage Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Current High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 39 39 39 40 40 40 41 41 41 42 42 42 43 43 44 44 45 45 45 46 46 46 47 47 48 48 48 49 49
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Data Sheet PROFET™+ 12V
3
Rev. 2.0, 2010-08-02
Smart High-Side Power Switch
BTS5045-2EKA
1
Application • • •
Overview
Suitable for resistive, inductive and capacitive loads Replaces electromechanical relays, fuses and discrete circuits Most suitable for loads with high inrush current, such as lamps
Basic Features • • • • • • • • • Two channel device Very low stand-by current 3.3 V and 5 V compatible logic inputs Electrostatic discharge protection (ESD) Optimized electromagnetic compatibility Logic ground independent from load ground Very low power DMOS leakage current in OFF state Green product (RoHS compliant) AEC qualified PG-DSO-14-40 EP
Description The BTS5045-2EKA is a 45 mΩ dual channel Smart High-Side Power Switch, embedded in a PG-DSO-14-40 EP, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 1 * P27W/P21W, as well as LEDs in the harsh automotive environment. Table 1 Parameter Operating voltage range Maximum supply voltage Maximum ON state resistance at TJ = 150 °C per channel Nominal load current (one channel active) Nominal load current (both channels active) Typical current sense ratio Minimum current limitation Maximum standby current with load at TJ = 25 °C Product Summary Symbol Value 5 V ... 28 V 41 V 90 mΩ 4.5 A 3A 1500 25 A 500 nA
VS(OP) VS(LD) RDS(ON) IL(NOM)1 IL(NOM)2 kILIS IL5(SC) IS(OFF)
Type BTS5045-2EKA Data Sheet PROFET™+ 12V
Package PG-DSO-14-40 EP 4
Marking BTS5045-2EKA Rev. 2.0, 2010-08-02
BTS5045-2EKA
Overview Diagnostic Functions • • • • • • Proportional load current sense for both channels multiplexed Open load in ON and OFF Short circuit to battery and ground Overtemperature Stable diagnostic signal during short circuit Enhanced kILIS dependency with temperature and load current
Protection Functions • • • • • • • Stable behavior during undervoltage Reverse polarity protection with external components Secure load turn-off during logic ground disconnect with external components Overtemperature protection with restart Overvoltage protection with external components Voltage dependent current limitation Enhanced short circuit operation
Data Sheet PROFET™+ 12V
5
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Block Diagram
2
Block Diagram
Channel 0 voltage sensor over temperature driver logic ESD protection gate control & charge pump T clamp for inductive load over current switch limit
VS
internal power supply
IN0 DEN
IS
load current sense and open load detection forward voltage drop detection VS
OUT 0
Channel 1 T
IN1 DSEL
Control and protection circuit equivalent to channel 0
OUT 1
GND
Block diagram DxS.vsd
Figure 1
Block Diagram for the BTS5045-2EKA
Data Sheet PROFET™+ 12V
6
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Pin Configuration
3
3.1
Pin Configuration
Pin Assignment
GND IN0 DEN IS DSEL IN1 NC
1 2 3 4 5 6 7
14 13 12 11 10 9 8
OUT0 OUT0 OUT0 NC OUT1 OUT1 OUT1
Pinout dual SO14 .vsd
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Pin 1 2 3 4 5 6 7, 11 8, 9, 10 12, 13, 14 Cooling Tab
Symbol GND IN0 DEN IS DSEL IN1 NC OUT1 OUT0
Function GrouND; Ground connection INput channel 0; Input signal for channel 0 activation Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device Sense; Sense current of the selected channel Diagnostic SELection; Digital signal to select the channel to be diagnosed INput channel 1; Input signal for channel 1 activation Not Connected; No internal connection to the chip OUTput 1; Protected high side power output channel 11) OUTput 0; Protected high side power output channel 01) Voltage Supply; Battery voltage
VS
1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow.
Data Sheet PROFET™+ 12V
7
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Pin Configuration
3.3
Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
VS I IN0 VIN0 VIN1 I DEN VDEN IDSEL VDSEL IIS IS VIS GND DEN I IN1 VS IN0 IN1
IS VDS0 I OUT0
OUT0
VOUT0
VDS1
OUT1 DSEL
I OUT1
VOUT1
IGND
voltage and current convention.vsd
Figure 3
Voltage and Current Definition
Data Sheet PROFET™+ 12V
8
Rev. 2.0, 2010-08-02
BTS5045-2EKA
General Product Characteristics
4
4.1
General Product Characteristics
Absolute Maximum Ratings
Table 2 Parameter
Absolute Maximum Ratings 1) Symbol Min. Values Typ. – – Max. 28 16 V V Unit Note / Test Condition – Number
TJ = -40°C to +150°C; (unless otherwise specified)
Supply Voltages Supply voltage Reverse polarity voltage
VS -VS(REV)
-0.3 0
P_4.1.1 P_4.1.2
Supply voltage for short circuit protection
VBAT(SC)
0
–
24
V
t < 2 min TA = 25 °C RL ≥ 6 Ω RGND = 150 Ω 2) RECU = 20 mΩ RCable= 16 mΩ/m LCable= 1 μH/m, l = 0 or 5 m
See Chapter 6 and Figure 53
P_4.1.3
Supply voltage for Load dump VS(LD) protection Short Circuit Capability Permanent short circuit IN pin toggles Input Pins Voltage at INPUT pins Current through INPUT pins Voltage at DEN pin Current through DEN pin Voltage at DSEL pin Current through DSEL pin Sense Pin Voltage at IS pin Current through IS pin Power Stage Load current Power dissipation (DC) | IL |
–
–
41
V
3)
RL = 6 Ω
100 – – k cycle V mA V mA V mA V mA A W
2)
RI = 2 Ω
P_4.1.12
nRSC1
100 ppm tON = 300ms –
P_4.1.4
VIN IIN VDEN IDEN VDSEL IDSEL VIS IIS
-0.3 – -2 -0.3 – -2 -0.3 – -2 -0.3 -25 – –
– – – – – – – – – –
6 7 2 6 7 2 6 7 2
P_4.1.13 P_4.1.14 P_4.1.15 P_4.1.16 P_4.1.17 P_4.1.18 P_4.1.19 P_4.1.20 P_4.1.21 P_4.1.22
t < 2 min
– – t < 2 min – –
t < 2 min
– – – –
VS
50
IL(LIM)
2
PTOT
TA = 85 °C TJ < 150 °C
Data Sheet PROFET™+ 12V
9
Rev. 2.0, 2010-08-02
BTS5045-2EKA
General Product Characteristics Table 2 Parameter Absolute Maximum Ratings (cont’d)1) Symbol Min. Maximum energy dissipation EAS Single pulse (one channel) Voltage at power transistor Currents Current through ground pin Temperatures Junction temperature Storage temperature ESD Susceptibility ESD susceptibility (all pins) ESD susceptibility OUT Pin vs. GND and VS connected ESD susceptibility ESD susceptibility pin (corner pins)
1) 2) 3) 4) 5)
TJ = -40°C to +150°C; (unless otherwise specified)
Values Typ. – Max. 35 mJ – Unit Note / Test Condition Number P_4.1.23
IL(0) = 4 A TJ(0) = 150 °C VS = 13.5 V
– –
VDS I GND
– -10 -150 -40 -55 -2 -4 -500 -750
– –
41 10 20 150 150 2 4 500 750
V mA
P_4.1.26 P_4.1.27
t < 2 min
°C °C kV kV V V – –
4) 4)
TJ TSTG VESD VESD VESD VESD
– – – – – –
P_4.1.28 P_4.1.30 HBM HBM CDM CDM P_4.1.31 P_4.1.32 P_4.1.33 P_4.1.34
5) 5)
Not subject to production test. Specified by design. Hardware set-up in accordance to AEC Q100-012 and AEC Q101-006. VS(LD) is setup without the DUT connected to the generator per ISO 7637-1. ESD susceptibility HBM according to EIA/JESD 22-A 114B. “CDM” EIA/JESD22-C101 or ESDA STM5.3.1
Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.
Data Sheet PROFET™+ 12V
10
Rev. 2.0, 2010-08-02
BTS5045-2EKA
General Product Characteristics
4.2
Functional Range
Table 3 Parameter
Functional Range TJ = -40°C to +150°C; (unless otherwise specified) Symbol Min. Values Typ. 13.5 – Max. 18 28 V V 8 5 Unit Note / Test Condition –
2)
Number P_4.2.1
Nominal operating voltage Extended operating voltage
VNOM VS(OP)
RL = 6 Ω VDS < 0.5 V
3.8 4.3 5 V
1)
VIN = 4.5 V
P_4.2.2
See Figure 15 Minimum functional supply voltage
VS(OP)_MIN
VIN = 4.5 V RL = 6 Ω From IOUT = 0 A
to
P_4.2.3
VDS < 0.5 V;
See Figure 15 See Figure 29 Undervoltage shutdown
1)
VS(UV)
3
3.5
4.1
V
VDEN = 0 V RL = 6 Ω From VDS < 1 V; to IOUT = 0 A
See Figure 15 See Figure 30
VIN = 4.5 V
P_4.2.4
Undervoltage shutdown hysteresis Operating current One channel active
VS(UV)_HYS IGND_1
– –
850 3.5
– 6
mV mA
2)
–
P_4.2.13
P_4.2.5 VIN = 5.5 V VDEN = 5.5 V Device in RDS(ON) VS = 18 V See Figure 31
Operating current All channels active
IGND_2
–
5
8
mA
VIN = 5.5 V P_4.2.6 VDEN = 5.5 V Device in RDS(ON) VS = 18 V
See Figure 32
1)
Standby current for whole device with load (ambiente)
IS(OFF)
–
0.1
0.5
μA
VS = 18 V VOUT = 0 V VIN floating VDEN floating TJ ≤ 85 °C
See Figure 33
P_4.2.7
Data Sheet PROFET™+ 12V
11
Rev. 2.0, 2010-08-02
BTS5045-2EKA
General Product Characteristics Table 3 Parameter Functional Range (cont’d)TJ = -40°C to +150°C; (unless otherwise specified) Symbol Min. Maximum standby current for IS(OFF)_150 whole device with load – Values Typ. 3 Max. 20 μA Unit Note / Test Condition Number P_4.2.10
VS = 18 V VOUT = 0 V VIN floating VDEN floating TJ = 150 °C
See Figure 33
2)
Standby current for whole device with load, diagnostic active
IS(OFF_DEN)
–
0.6
–
mA
VS = 18 V VOUT = 0 V VIN floating VDEN = 5.5 V
P_4.2.8
1) Test at TJ = -40°C only 2) Not subject to production test. Specified by design.
Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Table 4 Parameter
Thermal Resistance Symbol Min. Values Typ. 5 32 Max. – – K/W K/W – – Unit Note / Test Condition
1) 1) 2)
Number P_4.3.1 P_4.3.2
Junction to soldering point Junction to ambient Both channels active
RthJS RthJA
1) Not subject to production test. Specified by design.
2)Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70μm Cu, 2 x 35 μm Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4 and Figure 5.
4.3.1
PCB set up
70µm 1.5mm 35µm
0.3mm
PCB 2s2p.vsd
Figure 4
2s2p PCB Cross Section 12 Rev. 2.0, 2010-08-02
Data Sheet PROFET™+ 12V
BTS5045-2EKA
General Product Characteristics
PCB bottom view
PCB top view
1 14
2
13
3 COOLING TAB VS 5
12
4
11
10
6
9
7
thermique SO14.vsd
8
Figure 5
PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area
4.3.2
Thermal Impedance
100
10
Zth-JA [K /W ]
1
2s2p 1s0p - 600 mm² 1s0p - 300 mm² 1s0p - footprint
0.1 0.0001
0.001
0.01
0.1
1
10
100
1000
time [sec]
Figure 6 Typical Thermal Impedance. PCB set up according Figure 5 13 Rev. 2.0, 2010-08-02
Data Sheet PROFET™+ 12V
BTS5045-2EKA
General Product Characteristics
100 90
80 Rthja [K/W]
70 60
1s0p
50
40
30
0
100
200
300
400
500
600
700
footprint
Area [mm2]
Figure 7
Typical Thermal Resistance. PCB set up 1s0p
Data Sheet PROFET™+ 12V
14
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Power Stage
5
5.1
Power Stage
Output ON-state Resistance
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8 shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 6.4.
100
85 75 RDS(ON)(m ) Ω 65
RDS(ON)(m ) Ω
90 80 70 60 50 40 30 20 10
55 45 35 25 15 -40 -10 20 50 80 Junction Temperature (Tj) 110 140
0 0 3 6 9 12 Supply Voltage VS (V) 15 18
Rdson_45.vsd
Figure 8
Typical ON-state Resistance
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope, which is optimized in terms of EMC emission.
5.2
Turn ON/OFF Characteristics with Resistive Load
Figure 9 shows the typical timing when switching a resistive load.
IN VIN_H VIN_L VOUT 90% VS 70% VS 30% VS 10% VS t ON tOFF_DELAY dV/dt ON dV/dt
OFF
t
tON_DELAY
tOFF t
Switching times.vsd
Figure 9
Switching a Resistive Load Timing
Data Sheet PROFET™+ 12V
15
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Power Stage
5.3
Inductive Load
5.3.1
Output Clamping
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device by avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless, the maximum allowed load inductance is limited.
VS
ZDS(AZ) IN LOGIC VBAT GND VIN ZGND OUT L, RL IL VOUT VDS
Output clamp.svg
Figure 10
Output Clamp (OUT0 and OUT1)
IN
t V OUT VS t V S-VDS(AZ) IL
t
Switching an inductance.vsd
Figure 11
Switching an Inductive Load Timing
Data Sheet PROFET™+ 12V
16
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Power Stage
5.3.2
Maximum Load Inductance
During demagnetization of inductive loads, energy has to be dissipated in the BTS5045-2EKA. This energy can be calculated with following equation:
RL × IL L- V S – V DS ( AZ ) E = V DS ( AZ ) × ----- × -------------------------------- × ln ⎛ 1 – --------------------------------⎞ + I L ⎝ RL RL V S – V DS ( AZ )⎠
Following equation simplifies under the assumption of RL = 0 Ω.
(1)
VS 2 1 E = -- × L × I × ⎛ 1 – --------------------------------⎞ ⎝ 2 V S – V DS ( AZ )⎠
(2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for the maximum allowed energy dissipation as a function of the load current.
1000
100
E AS [mJ]
10
1 0 1 2 3 4 5 EAS45.vsd 6
I L [A]
Figure 12
Maximum Energy Dissipation Single Pulse, TJ(0) = 150 °C; VS = 13.5V
5.4
Inverse Current Capability
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not be higher than IL(INV). Otherwise, the second channel can be corrupted and erratic behavior can be observed. If the affected channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a parasitic diagnostic can be observed at the unaffected channel. After, the diagnosis is valid and reflects the output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection function are available.
Data Sheet PROFET™+ 12V
17
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Power Stage
VBAT
VS
Gate driver
Device logic
OL comp.
INV Comp.
IL(INV)
OUT
VINV
GND
ZGND
inverse current.svg
Figure 13
Inverse Current Circuitry
Data Sheet PROFET™+ 12V
18
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Power Stage
5.5
Electrical Characteristics Power Stage
Table 5
Electrical Characteristics: Power Stage
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter ON-state resistance per channel Symbol Min. Values Typ. 85 Max. 90 mΩ 67 Unit Note / Test Condition Number P_5.5.1
RDS(ON)_150
IL = IL4 = 4 A VIN = 4.5 V TJ = 150 °C
See Figure 8
1)
ON-state resistance per channel Nominal load current One channel active Nominal load current All channel active
RDS(ON)_25 IL(NOM)1 IL(NOM)2
– – – – 41
45 4.5 3 10 47
– – – 25 53
mΩ A A mV V
TJ = 25 °C TA = 85 °C
P_5.5.21 P_5.5.2 P_5.5.3
1)
TJ < 150 °C
Output voltage drop limitation VDS(NL) at small load currents Drain to source clamping voltage VDS(AZ) = [VS - VOUT] Output leakage current per channel; TJ ≤ 85 °C Output leakage current per channel; TJ = 150 °C Inverse current capability Slew rate 30% to 70% VS Slew rate 70% to 30% VS Slew rate matching dV/dtON - dV/dtOFF
IL = IL0 = 50 mA
See Figure 34
P_5.5.4 P_5.5.5
VDS(AZ)
IDS = 20 mA See Figure 11 See Figure 35
2)
IL(OFF)
–
0.1
0.5
μA
IL(OFF)_150
–
1,5
10
μA
IL(INV) dV/dtON
-dV/dtOFF ΔdV/dt
– 0.1 0.1 -0.15 30 30 -50 10 10
3 0.25 0.25 0 100 100 0 35 35
– 0.5 0.5 0.15 230 230 50 100 100
A V/μs V/μs V/μs μs μs μs μs μs
VIN floating VOUT = 0 V TJ ≤ 85 °C VIN floating VOUT = 0 V TJ = 150 °C 1) VS < VOUTx RL = 6 Ω VS = 13.5 V
See Figure 9 See Figure 36 See Figure 37 See Figure 38 See Figure 39 See Figure 40
P_5.5.6
P_5.5.8
P_5.5.9 P_5.5.11 P_5.5.12 P_5.5.13 P_5.5.14 P_5.5.15 P_5.5.16 P_5.5.17 P_5.5.18
VS VS
Turn-ON time to VOUT = 90% tON Turn-OFF time to VOUT = 10% tOFF ΔtSW
Turn-ON / OFF matching tOFF - tON
VS VS
Turn-ON time to VOUT = 10% tON_delay Turn-OFF time to VOUT = 90% tOFF_delay
Data Sheet PROFET™+ 12V
19
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Power Stage Table 5 Electrical Characteristics: Power Stage (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Switch ON energy Symbol Min. Values Typ. 0.8 Max. – mJ – Unit Note / Test Condition
1)
Number P_5.5.19
EON
RL = 6 Ω VOUT = 90% VS VS = 18 V
See Figure 41
1)
Switch OFF energy
EOFF
–
0.7
–
mJ
RL = 6 Ω VOUT = 10% VS VS = 18 V
See Figure 42
P_5.5.20
1) Not subject to production test, specified by design. 2) Test at TJ = -40°C only
Data Sheet PROFET™+ 12V
20
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Protection Functions
6
Protection Functions
The device provides integrated protection functions. These functions are designed to prevent the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are designed for neither continuous nor repetitive operation.
6.1
Loss of Ground Protection
In case of loss of the module ground and the load remains connected to ground, the device protects itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN pins. In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the BTS5045-2EKA to ensure switching OFF of channels. In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches the situation.
ZGND can be either resistor or diode.
ZIS(AZ)
VS ZD(AZ) VBAT
RSENSE RDSEL RDEN RIN
IS DSEL DEN INx LOGIC
ZDS(AZ)
IOUT(GND)
OUTx
ZDESD
RIS
GND
ZGND
Loss of ground protection.svg
Figure 14
Loss of Ground Protection with External Components
6.2
Undervoltage Protection
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM range. Figure 15 sketches the undervoltage mechanism.
Data Sheet PROFET™+ 12V
21
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Protection Functions
VOUT
undervoltage behavior .vsd
VS(UV)
VS(OP)
VS
Figure 15
Undervoltage Behavior
6.3
Overvoltage Protection
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power transistor switches ON and the voltage across the logic section is clamped. As a result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx, DSEL and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to overvoltage, the BTS5045-2EKA remains ON. In the case the BTS5045-2EKA was OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ZGND as a resistor (150 Ω) will offer superior results compared to a diode and resistor (1 kΩ).
ISOV
ZIS(AZ)
IN1
RSENSE RDSEL RDEN RIN
VS ZD(AZ) VBAT
IS DSEL DEN INx LOGIC
ZDS(AZ)
Figure 16
Data Sheet PROFET™+ 12V
IN0
OUTx
ZDESD
RIS
GND
ZGND
Overvoltage protection.svg
Overvoltage Protection with External Components 22 Rev. 2.0, 2010-08-02
BTS5045-2EKA
Protection Functions
6.4
Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDSEL, RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RDSEL = RIN = RSENSE = 4.7 kΩ. ZGND can be either a 150 Ω resistor or Schottky diode with 1 kΩ resistor in parallel. In case the overvoltage is not considered in the application, RGND can be replaced by a Schottky diode and 1kΩ resistor in parallel. Optionally a capacitor in parallel is recommended for EMC reasons. During reverse polarity, no protection functions are available.
Micro controller protection diodes
R SENSE RDSEL RDEN RIN
ZIS(AZ) IS DSEL DEN INx LOGIC
VS ZD(AZ) ZDS(AZ)
VDS(REV)
-VS(REV)
OUTx
Figure 17
Reverse Polarity Protection with External Components
6.5
Overload Protection
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTS5045-2EKA offers several protection mechanisms.
6.5.1
Current Limitation
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 18 shows the behavior of the current limitation as a function of the drain to source voltage.
Data Sheet PROFET™+ 12V
IN0 ZDESD GND
RIS ZGND
Reverse Polarity .vsd
23
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Protection Functions
40
35
I L5(SC)
30
Current Limit I L(SC) (A)
25
20
I L28(SC)
15
10
5
0
0 5 10 15 20 25
current limitation _45m.vsd
Drain source Voltage VDS (V)
Figure 18
Current Limitation (typical behavior)
6.5.2
Temperature Limitation in the Power DMOS
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF latches the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the situation. The ΔTSTEP describes the device’s warming, due to the overcurrent in the channel. A retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is switched ON again, if the IN pin signal is still high (restart behavior).
Data Sheet PROFET™+ 12V
24
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Protection Functions
IN
IL LOAD CURRENT LIMITATION PHASE IL(x)SC
t LOAD CURRENT BELOW LIMITATION PHASE
IL(NOM) t TDMOS ΔTJ(SW) TJ(SC) ΔTJ(SW) ΔTJ(SW)
TA tsIS(FAULT) IIS IIS(FAULT) IL( NOM) / kILIS 0A V DEN tsIS(OFF) ΔTSTEP tsIS(OT_blank)
t
t
0V
t
Hard start.vsd
Figure 19
Overload Protection
Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described.
6.5.3
Short Circuit Appearance with Channel in Parallel
The two channels are not synchronized in the restart event. When the two channels are in temperature limitation, the channel which has cooled down the fastest doesn’t wait for the second one to be cooled down as well to restart. Thus, it is not recommended to use the device with channels in parallel.
Data Sheet PROFET™+ 12V
25
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Protection Functions
6.6
Electrical Characteristics for the Protection Functions
Table 6
Electrical Characteristics: Protection
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Loss of Ground Output leakage current while IOUT(GND) GND disconnected Reverse Polarity Drain source diode voltage during reverse polarity Overvoltage Overvoltage protection Overload Condition Load current limitation – 0.1 – mA Symbol Min. Values Typ. Max. Unit Note / Test Condition Number
VS = 2 8 V See Figure 14 IL = - 2 A TJ = 150 °C
See Figure 17
1) 2)
P_6.6.1
VDS(REV)
200
650
700
mV
P_6.6.2
VS(AZ)
41
47
53
V
ISOV = 5 mA
See Figure 16
P_6.6.3
IL5(SC)
25
32
40
A
3)
VDS = 5 V See Figure 18 and Figure 43
2)
P_6.6.4
Load current limitation
IL28(SC)
–
16
–
A
VDS = 28 V See Figure 18 and Figure 44
P_6.6.7
Short circuit current during over temperature toggling Dynamic temperature increase while switching Thermal shutdown temperature
IL(RMS)
–
3
–
A
2)
VIN = 4.5 V RSHORT = 100 mΩ LSHORT = 5 μH
4)
P_6.6.12
ΔTJ(SW)
– 150
80 170 4) 20
– 200 4) –
K °C K
See Figure 19 See Figure 19 See Figure 19
P_6.6.8 P_6.6.10 P_6.6.11
TJ(SC)
5)
Thermal shutdown hysteresis ΔTJ(SC) – 1) All pins are disconnected except VS and OUT.
2) 3) 4) 5) Not Subject to production test, specified by design Test at TJ = -40°C only Functional test only Test at TJ = +150°C only
5) 4)
Data Sheet PROFET™+ 12V
26
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions
7
Diagnostic Functions
For diagnosis purpose, the BTS5045-2EKA provides a combination of digital and analog signals at pin IS. These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case DEN is activated, the SENSE of the channel X is enabled/disabled via associated pin DSEL. Table 7 gives the truth table. Table 7 DEN 0 1 1 Diagnostic Truth Table DSEL don’t care 0 1 IS Z Sense output 0 IIS(0) Sense output 1 IIS(1)
7.1
IS Pin
The BTS5045-2EKA provides a SENSE current written IIS at pin IS. As long as no “hard” failure mode occurs (short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic mechanism is described on Figure 20. The accuracy of the SENSE depends on temperature and load current. The IS pin multiplexes the current IIS(0) and IIS(1), via the pin DSEL. Thanks to this multiplexing, the matching between kILISCHANNEL0 and kILISCHANNEL1 is optimized. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the IS pin of the supplied device.
Vs
IIS0 = IL0 / kILIS
IIS1 = IL1 / kILIS
IIS(FAULT) ZIS(AZ)
0 1
IS DEN DSEL
Figure 20
FAULT
0 1
Sense schematic.svg
Diagnostic Block Diagram
Data Sheet PROFET™+ 12V
27
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions
7.2
SENSE Signal in Different Operating Modes
Table 8 gives a quick reference for the state of the IS pin during device operation. Table 8 Sense Signal, Function of Operation Mode Input level Channel X OFF DEN1) H Output Level Diagnostic Output Z ~ GND Z Z Z Z
Operation Mode Normal operation Short circuit to GND Overtemperature Short circuit to VS Open Load Inverse current Normal operation Current limitation Short circuit to GND Overtemperature TJ(SW) event Short circuit to VS Open Load Inverse current Underload Don’t care
1) 2) 3) 4) 5)
ON
VS < VOL(OFF) > VOL(OFF)2) ~ VINV ~ VS < VS
~ GND Z
IIS(FAULT)
Z
IIS(FAULT) IIS(FAULT) IIS = IL / kILIS IIS(FAULT) IIS(FAULT) IIS(FAULT) IIS < IL / kILIS IIS < IIS(OL) IIS < IIS(OL)4) IIS(OL) < IIS < IL(nom) / kILIS
Z
VS ~ VS3) ~ VINV ~ VS5)
Don’t care L Don’t care
The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pin. With additional pull-up resistor. The output current has to be smaller than IL(OL). After maximum tINV. The output current has to be higher than IL(OL).
Data Sheet PROFET™+ 12V
28
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions
7.3
SENSE Signal in the Nominal Current Range
Figure 21 and Figure 22 show the current sense as a function of the load current in the power DMOS. Usually, a pull-down resistor RIS is connected to the IS pin. This resistor has to be higher than 560 Ω to limit the power losses in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal SENSE, assuming an ideal kILIS factor value. The red curves show the accuracy the device provides across full temperature range, at a defined current.
6,0
5,0
IIS = kilis4
IL KILIS ideal
4,0
I IS [ m A ]
3,0
Kilis3
2,0
1,0
Kilis1
Kilis2
0,0 0 1 2 3 4 5 6 7
I L [ A]
kilis BTS5045
Figure 21
Current Sense for Nominal Load
7.3.1
SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required around half the nominal current IL(NOM). To achieve this accuracy requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and temperature conditions, the BTS5045-2EKA allows limited derating of the kILIS value, at nominal load current (IL3; TJ = +25 °C). This derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the SENSE current, assuming one calibration point at nominal load at +25 °C. The blue line indicates the ideal kILIS ratio. The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration point at nominal temperature and nominal battery voltage. The red lines indicate the kILIS accuracy without calibration.
Data Sheet PROFET™+ 12V
29
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions
2500
2000
Calibration point
k ilis
1500
1000
500 0 1 2 3 4 5 6
kilis BTS 5045
7
I L [A]
Figure 22
Improved SENSE Accuracy with One Calibration Point
7.3.2
SENSE Signal Timing
Figure 23 shows the timing during settling and disabling of the SENSE.
VINx
t IL t ONx
90% of IL s tatic
t OFFx
t ONx
VDEN
t
IIS t sIS(ON)
90% of IIS s tatic
tsIS(LC) t sIS(OFF) t sIS(ON_DEN)
t tsIS(chC)
VDSEL
t
t VINy t I Ly t ONy
t
current sense settling disabling time.vsd
Figure 23
SENSE Settling / Disabling Timing 30 Rev. 2.0, 2010-08-02
Data Sheet PROFET™+ 12V
BTS5045-2EKA
Diagnostic Functions
7.3.3
SENSE Signal in Open Load
7.3.3.1
Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case, the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve shows the ideal kILIS ratio.
I IS
IIS(OL)
IL IL(OL)
Sense for OL .vsd
Figure 24
Current Sense Ratio for Low Currents
7.3.3.2
Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc.... in the application. To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched to the IIS(FAULT). An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be used as well for short circuit to battery detection, see Chapter 7.3.4.
Data Sheet PROFET™+ 12V
31
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions
Vbat SOL
VS
IIS(FAULT)
ROL
OL comp. OUT
IS
ILOFF
GND
Ileakage
RIS
ZGND
VOL(OFF)
RPD
Rleakage
Open Load in OFF.svg
Figure 25
Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3
Open Load Diagnostic Timing
Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open load in OFF diagnosis request, otherwise the diagnosis can be wrong.
Load is present VIN
Open load
VOUT VS-VOL(OFF)
RDS(ON) x IL
t
shutdown with load t
IOUT
IIS
90% of IIIS(FAULT) static
tsIS(FAULT_OL_OFF) tsIS(LC)
t
Error Settling Disabling Time.vsd
t
Figure 26
SENSE Signal in Open Load Timing
Data Sheet PROFET™+ 12V
32
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions
7.3.4
SENSE Signal with OUT in Short Circuit to VS
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the normal operation will flow through the DMOS of the BTS5045-2EKA, which can be recognized at the SENSE signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case, an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation.
Vbat
VS
IIS(FAULT)
OL comp.
VBAT
IS OUT GND
VOL(OFF)
RIS
ZGND
RSC_VS
Short circuit to Vs.svg
Figure 27
Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5
SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details. In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected. The device has a thermal restart behavior, such that when the overtemperature or the exceed dynamic temperature condition has disappeared, the DMOS is reactivated if the IN is still at logical level one. If the DEN pin is activated, and DSEL pin is selected to the correct channel, SENSE is not toggling with the restart mechanism and remains to IIS(FAULT).
7.3.6
SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and indicate open load in ON state. The unaffected channel indicates normal behavior as long as the IINV current is not exceeding the maximum value specified in Chapter 5.4.
Data Sheet PROFET™+ 12V
33
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions
7.4
Electrical Characteristics Diagnostic Function
Table 9
Electrical Characteristics: Diagnostics
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Min. Load Condition Threshold for Diagnostic Open load detection threshold in OFF state Open load detection threshold in ON state Values Typ. – Max. 6 Unit Note / Test Condition V
1)
Number
VS - VOL(OFF) 4
VIN = 0 V VDEN = 4.5 V
See Figure 26
P_7.5.1
IL(OL)
5
–
30
mA
VIN = VDEN = 4.5 V IIS(OL) = 8 μA
See Figure 24 See Figure 46
P_7.5.2
Sense Pin IS pin leakage current when sense is disabled Sense signal saturation voltage
IIS_(DIS)
–
–
1
μA
1)
VS - VIS
(RANGE)
0
–
3
V
VDEN = 0 V IL = IL4 = 4 A 3) VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V IIS = 6 mA
See Figure 47
VIN = 4.5 V
P_7.5.4
P_7.5.6
Sense signal maximum current in fault condition
IIS(FAULT)
6
15
35
mA
VIS = VIN = VDSEL = 0 V P_7.5.7 VOUT = VS > 10 V VDEN = 4.5 V
See Figure 20 See Figure 48
Sense pin maximum voltage
VIS(AZ)
41
47
53
V
IIS = 5 mA
See Figure 20
P_7.5.3
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition Current sense ratio
IL0 = 50 mA
Current sense ratio IL1 = 0.5 A Current sense ratio
kILIS0 kILIS1 kILIS2 kILIS3
-50 -34 -13 -9 -8 -8
1650 1500 1500 1500 1500 0
+50 +34 +13 +9 +8 +8
% % % % % %
VIN = 4.5 V VDEN = 4.5 V
See Figure 21
P_7.5.8 P_7.5.9 P_7.5.10 P_7.5.11 P_7.5.12
TJ = -40 °C; 150 °C
IL2 = 1 A
Current sense ratio
IL3 = 2 A
Current sense ratio kILIS4 IL4 = 4 A kILIS derating with current and ΔkILIS temperature Diagnostic Timing in Normal Condition
3)
kILIS3 versus kILIS2 See Figure 22
P_7.5.17
Data Sheet PROFET™+ 12V
34
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions Table 9 Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Min. Current sense settling time to tsIS(ON) kILIS function stable after positive input slope on both INput and DEN 0 Values Typ. – Max. 250 Unit Note / Test Condition μs Number P_7.5.18
VDEN = VIN = 0 to 4.5 V VS = 13.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 2 A See Figure 23
1)
3)
Current sense settling time with load current stable and transition of the DEN
tsIS(ON_DEN)
0
–
20
μs
VIN = 4.5 V VDEN = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 2 A
See Figure 23
1)
P_7.5.19
Current sense settling time to tsIS(LC) IIS stable after positive input slope on current load
0
–
20
μs
P_7.5.20 VIN = 4.5 V VDEN = 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL2 = 1 A to IL = IL3 =2A See Figure 23
Diagnostic Timing in Open Load Condition Current sense settling time to tsIS(FAULT_OL_ 0 IIS stable for open load OFF) detection in OFF state – 150 μs
1)
VIN = 0V VDEN = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VOUT = VS = 13.5 V
See Figure 26
P_7.5.22
Diagnostic Timing in Overload Condition Current sense settling time to tsIS(FAULT) IIS stable for overload detection 0 – 250 μs
VIN = VDEN = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VDS = 5 V See Figure 19
3)
1) 2)
P_7.5.24
Current sense over temperature blanking time
tsIS(OT_blank)
–
350
–
μs
VIN = VDEN = 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VDS = 5 V to 0 V
See Figure 19
P_7.5.32
Data Sheet PROFET™+ 12V
35
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Diagnostic Functions Table 9 Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Diagnostic disable time DEN transition to IIS < 50% IL /kILIS Symbol Min. Values Typ. – Max. 30 0 Unit Note / Test Condition μs
1)
Number P_7.5.25
tsIS(OFF)
VIN = 4.5 V VDEN = 4.5 V to 0 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 2 A
See Figure 23
Current sense settling time from one channel to another
tsIS(ChC)
0
–
20
μs
VIN0 = VIN1 = 4.5 V VDEN = 4.5 V VDSEL = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL(OUT0) = IL3 = 2 A IL(OUT1) = IL2 = 1 A
See Figure 23
P_7.5.26
1) DSEL pin select channel 0 only. 2) Test at TJ = -40°C only 3) Not subject to production test, specified by design
Data Sheet PROFET™+ 12V
36
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Input Pins
8
8.1
Input Pins
Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage thresholds. An implemented Schmidt trigger avoids any undefined state if the voltage on the input pin is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via a 4.7kΩ input resistor.
IN
GND
Figure 28 Input Pin Circuitry
Input circuitry.vsd
8.2
DEN / DSEL Pin
The DEN / DSEL pins enable and disable the diagnostic functionality of the device. The pins have the same structure as the Input pins, please refer to Figure 28.
8.3
Input Pin Voltage
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a hysteresis is implemented. This ensures a certain immunity to noise.
Data Sheet PROFET™+ 12V
37
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Input Pins
8.4
Electrical Characteristics
Table 10
Electrical Characteristics: Input Pins
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter INput Pins Characteristics Low level input voltage range VIN(L) High level input voltage range VIN(H) Input voltage hysteresis Low level input current High level input current DEN Pin Low level input voltage range VDEN(L) High level input voltage range VDEN(H) Input voltage hysteresis Low level input current High level input current DSEL Pin Low level input voltage range VDSEL(L) High level input voltage range VDSEL(H) Input voltage hysteresis Low level input current High level input current -0.3 2 – 1 2 – – 250 10 10 0.8 6 – 25 25 V V mV μA μA – –
1)
Symbol Min. -0.3 2 – 1 2
Values Typ. – – 250 10 10 Max. 0.8 6 – 25 25
Unit
Note / Test Condition See Figure 49 See Figure 50
1)
Number
V V mV μA μA
P_8.4.1 P_8.4.2 P_8.4.3 P_8.4.4 P_8.4.5
VIN(HYS) IIN(L) IIN(H)
See Figure 51
VIN = 0.8 V VIN = 5.5 V
See Figure 52
-0.3 2 – 1 2
– – 250 10 10
0.8 6 – 25 25
V V mV μA μA
– –
1)
P_8.4.6 P_8.4.7 P_8.4.8 P_8.4.9 P_8.4.10 P_8.4.11 P_8.4.12 P_8.4.13 P_8.4.14 P_8.4.15
VDEN(HYS) IDEN(L) IDEN(H)
VDEN = 0.8 V VDEN = 5.5 V
VDSEL(HYS) IDSEL(L) IDSEL(H)
VDSEL = 0.8 V VDSEL = 5.5 V
1) Not subject to production test, specified by design
Data Sheet PROFET™+ 12V
38
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9
Characterization Results
The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed at 8 V, 13.5 V and 18 V, from -40°C to 160°C. When no dependency to voltage is seen, only one curve (13,5V) is sketched.
9.1
General Product Characteristics
9.1.1
P_4.2.3
Minimum Functional Supply Voltage
5
VS(OP)_MIN (V)
4,6
4,2
3,8 -40 0 40 80 120 160 Junction Temp (°C)
minimum functional supply.vsd
Figure 29
Minimum Functional Supply Voltage VS(OP)_MIN = f(TJ)
9.1.2
P_4.2.4
Undervoltage Shutdown
4
3,75 VS(UV) (V)
3,5
3,25
3 -40 0 40 80 120 160 Junction Temp (°C)
Undervoltage_shutdown.vsd
Figure 30
Undervoltage Threshold VS(UV) = f(TJ)
Data Sheet PROFET™+ 12V
39
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9.1.3
P_4.2.5
Current Consumption One Channel active
6
I_GND1 @ 8V I_GND1 @ 13.5V I_GND1 @ 18V
I_GND1 (m ) A
3
0 -40 0 40 80 120 160 Junction Temp (°C)
Current consumption one channel active.vsd
Figure 31
Current Consumption for Whole Device with Load. One Channel Active IGND_1 = f(TJ;VS)
9.1.4
P_4.2.6
Current Consumption Two Channels active
9
I_GND2 @ 8V I_GND2 @ 13.5V I_GND2 @ 18V
I_GND2 (m ) A
6
3
0 -40 0 40 80 120 160 Junction Temp (°C)
Current consumption two channel active.vsd
Figure 32
Current Consumption for Whole Device with Load. Two Channels Active IGND_2 = f(TJ;VS)
9.1.5
Standby Current for Whole Device with Load
P_4.2.7, P_4.2.10
IS(OFF) @ 18V IS(OFF) @ 13.5V 6 IS(OFF) @ 8V
IS (OFF) (µ ) A
4
2
0 -40
0
40
80
120
160
Junction Tem p (°C)
Figure 33
Standby Current for Whole Device with Load. IS(OFF) = f(TJ;VS) 40 Rev. 2.0, 2010-08-02
Data Sheet PROFET™+ 12V
BTS5045-2EKA
Characterization Results
9.2
Power Stage
9.2.1
P_5.5.4
Output Voltage Drop Limitation at Low Load Current
13
VDS(NL) (mV)
11
9
7 -40 0 40 80 120 160 Junction Temp (°C)
Output Voltage drop limitation at low load current.vsd
Figure 34
Output Voltage Drop Limitation at Low Load Current VDS(NL) = f(TJ;VS) ; IL = IL(0) = 50mA
9.2.2
P_5.5.5
Drain to Source Clamp Voltage
52
VDS(AZ) (V)
48
44
40 -40 0 40 80 120 160 Junction Temp (°C)
Drain to source clamp voltage.vsd
Figure 35
Drain to Source Clamp Voltage VDS(AZ) = f(TJ)
Data Sheet PROFET™+ 12V
41
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9.2.3
P_5.5.11
Slew Rate at Turn ON
0,5
dV/dt_ON @ 8V dV/dt_ON @ 13.5V dV/dt_ON @ 18V
dV/dt_ON (V/µs)
0,3
0,1 -40 0 40 80 120 160 Junction Temp (°C)
dV_dt_ON.vsd
Figure 36
Slew Rate at Turn ON dV/dtON = f(TJ;VS), RL = 6 Ω
9.2.4
P_5.5.12
Slew Rate at Turn OFF
0,5
dV/dt_OFF @ 8V dV/dt_OFF @ 13.5V dV/dt_OFF @ 18V
dV/dt_OFF (V/µs)
0,3
0,1 -40 0 40 80 120 160 Junction Temp (°C)
dV_dt_OFF.vsd
Figure 37
Slew Rate at Turn OFF - dV/dtOFF = f(TJ;VS), RL = 6 Ω
9.2.5
P_5.5.14
Turn ON
230 tON 90%@18V tON 90%@13,5V tON 90%@8V
t_ON 90% (µs)
130
30 -40
0
40
80
120
160
Junction Temp (°C)
tON_90.vsd
Figure 38
Turn ON tON = f(TJ;VS), RL = 6 Ω 42 Rev. 2.0, 2010-08-02
Data Sheet PROFET™+ 12V
BTS5045-2EKA
Characterization Results
9.2.6
P_5.5.11
Turn OFF
230 tOFF 10%@18V tOFF 10%@13,5V tOFF 10%@8V
t_OFF 10% (µs)
130
30 -40
0
40
80
120
160
Junction Temp (°C)
tOFF_90.vsd
Figure 39
Turn OFF tOFF = f(TJ;VS), RL = 6 Ω
9.2.7
P_5.5.16
Turn ON / OFF matching
50
delta_t_SW @ 8V delta_t_SW @ 13.5V delta_t_SW @ 18V
25 delta t SW (µs)
0
-25
-50 -40 0 40 80 120 160 Junction Temp (°C)
delta_t_SW_OFF_ON.vsd
Figure 40
Turn ON / OFF matching ΔtSW = f(TJ;VS), RL = 6 Ω
Data Sheet PROFET™+ 12V
43
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9.2.8
P_5.5.19
Switch ON Energy
1 00 0
S w itc h O N energy @ 18V S w itc h O N energy @ 13,5V S w itc h O N energy @ 8V
75 0 E_ON (µJ)
50 0
25 0
0 -4 0 0 40 80 120 160 J u n c tio n T e m p (°C )
Figure 41
Switch ON Energy EON = f(TJ;VS), RL = 6 Ω
9.2.9
P_5.5.20
Switch OFF Energy
1000
S w itc h O N energy @ 18V S w itc h O N energy @ 13,5V S w itc h O N energy @ 8V
750 E_ON (µJ)
500
250
0 -4 0 0 40 80 120 160 J u n c tio n T e m p (°C )
Figure 42
Switch OFF Energy EOFF = f(TJ;VS), RL = 6 Ω
Data Sheet PROFET™+ 12V
44
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9.3
Protection Functions
9.3.1
P_6.6.4
Overload Condition in the Low Voltage Area
40
IL(SC)_5V @ 8V IL(SC)_5V @ 13.5V IL(SC)_5V @ 18V
35
IL5(SC) (V)
30
25
20 -40
0
40
80
120
160
Junction Tem p (°C)
Figure 43
Overload Condition in the Low Voltage Area IL5(SC) = f(TJ;VS)
9.3.2
P_6.6.7
Overload Condition in the High Voltage Area
20
IL28(SC) (V)
15
10 -40 0 40 80 120 160 Junction Temp (°C)
Figure 44
Overload Condition in the High Voltage Area IL28(SC) = f(TJ;VS)
Data Sheet PROFET™+ 12V
45
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9.4
Diagnostic Mechanism
9.4.1
Current Sense at no Load
2,5
2 I_IS @ IL = 0mA (µA)
1,5
1
0,5
0 -40 0 40 80 120 160 Junction Temp (°C)
Current_sense_0mA.vsd
Figure 45
Current Sense at no Load IIS = f(TJ;VS); IL = 0
9.4.2
P_7.5.2
Open Load Detection Threshold in ON State
Figure 46
Open Load Detection ON State Threshold IL(OL) = f(TJ;VS)
Data Sheet PROFET™+ 12V
46
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9.4.3
P_7.5.3
Sense Signal Maximum Voltage
3
VIS _R ANGE @ 8V VIS _R ANGE @ 13.5V VIS _R ANGE @ 18V
IS _RANGE
(V) 2 V 1 -40 0 40 80 120 160 Junction T em p (°C)
Figure 47
Sense Signal Maximum Voltage VS - VIS(RANGE) =f(TJ;VS)
9.4.4
P_7.5.7
Sense Signal maximum Current
S
-V
IIS_FAULT @ 8V
36
IIS_FAULT @ 13.5V IIS_FAULT @ 18V
IIS_FAULT (mA)
26
16
6 -40 0 40 80 120 160 Junction Temp (°C)
IIS_FAULT.vsd
Figure 48
Sense Signal Maximum Current in Fault Condition IIS(FAULT) = f(TJ;VS)
Data Sheet PROFET™+ 12V
47
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9.5
Input Pins
9.5.1
P_8.4.1
Input Voltage Threshold ON to OFF
2
I_IN(L) @ 8V I_IN(L) @ 13.5V I_IN(L) @ 18V
1,5 V_INH(L) (V)
1
0,5
0 -40 0 40 80 120 160 Junction Temp (°C)
Input_pin_low_voltage.vsd
Figure 49
Input Voltage Threshold VIN(L) = f(TJ;VS)
9.5.2
P_8.4.2
Input Voltage Threshold OFF to ON
2
1,5 V_INH(H) (V)
1
0,5
0 -40 0 40 80 120 160 Junction Temp (°C)
Input_pin_high_voltage.vsd
Figure 50
Input Voltage Threshold VIN(H) = f(TJ;VS)
Data Sheet PROFET™+ 12V
48
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Characterization Results
9.5.3
P_8.4.3
Input Voltage Hysteresis
400
V_IN(HYS) @ 8V V_IN(HYS) 13.5V V_IN(HYS) @ 18V
300 V_IN(HYS) (mV)
200
100
0 -40 0 40 80 120 160 Junction Temp (°C)
Input_pin_voltage_hysteresis.vsd
Figure 51
Input Voltage Hysteresis VIN(HYS) = f(TJ;VS)
9.5.4
P_8.4.5
Input Current High Level
25
20 I_INH(H) (µA)
15
10
5
0 -40 0 40 80 120 160 Junction Temp (°C)
Input_pin_high_current.vsd
Figure 52
Input Current High Level IIN(H) = f(TJ;VS)
Data Sheet PROFET™+ 12V
49
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Application Information
10
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.
VBAT
R/L cable
T1
CVS
Z2
VDD
ROL
Vdd OUT OUT OUT OUT
RIN
Vs IN0 IN1
RDEN
R/L cable
OUT0
COUT0
RPD
RIN
DEN DSEL
RDSEL
Micro controller
R/L cable
OUT1 A/D
CSENSE RA/D RSENSE
IS
GND
Z1 Vss
RIS
D
RGND RPD
COUT1
Application example.svg
Figure 53
Application Diagram with BTS5045-2EKA
Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Table 11 Reference Bill of Material Value 4.7 kΩ 4.7 kΩ 47 kΩ 4.7 kΩ 1.2 kΩ Purpose Protection of the micro controller during overvoltage, reverse polarity Guarantee BTS5045-2EKA channels OFF during loss of ground Protection of the micro controller during overvoltage, reverse polarity Guarantee BTS5045-2EKA channels OFF during loss of ground Polarization of the output Improve BTS5045-2EKA immunity to electromagnetic noise Protection of the micro controller during overvoltage, reverse polarity Guarantee BTS5045-2EKA channels OFF during loss of ground Sense resistor
RIN RDEN RPD RDSEL RIS
Data Sheet PROFET™+ 12V
50
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Application Information Table 11 Reference Bill of Material (cont’d) Value 4.7 kΩ 1.5 kΩ 4.7 kΩ BAS21 1 kΩ 36 V Zener diode BC 807 100 pF 100 nF 4.7 nF 4.7 nF Purpose Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro controller specification. Ensure polarization of the BTS5045-2EKA output during open load in OFF diagnostic Protection of the micro controller during overvoltage, reverse polarity Protection of the BTS5045-2EKA during reverse polarity To keep the device GND at a stable potential during clamping Protection of the device during overvoltage Switch the battery voltage for open load in OFF diagnostic Sense signal filtering Filtering of the voltage spikes on the battery line Protection of the BTS5045-2EKA during ESD and BCI Protection of the BTS5045-2EKA during ESD and BCI
RSENSE ROL RA/D
D
RGND Z1 Z2 T1 CSENSE CVS COUT0 COUT1
7 V Zener diode Protection of the micro controller during overvoltage
10.1
• • •
Further Application Information
Please contact us to get the pin FMEA Existing App. Notes For further information you may visit http://www.infineon.com/profet
Data Sheet PROFET™+ 12V
51
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Package Outlines
11
Package Outlines
0.35 x 45˚ 3.9 ±0.11)
Stand Off (1.47)
0.1 C D 2x
1.7 MAX.
8˚ MAX.
8˚ MAX. 0˚...8˚
0.2 -0.1
0.19 +0.06
0.64 ±0.25
6 ±0.2
0.1+0 -0.1
1.27 0.41±0.09
2)
0˚...8˚ 0.2
M
C C A-B D 14x
0.08 C Seating Plane
8˚ MAX.
M
D
0.2
D
Bottom View A
14 8 1
6.4 ±0.1
7
1
7
14
8
B 8.65 ±0.1 Index Marking 0.1 C A-B 2x
1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion of 0.13 max. 3) JEDEC reference MS-012 variation BB
2.65 ±0.1
GPS01207
Figure 54
PG-DSO-14-40 EP (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet PROFET™+ 12V
52
Rev. 2.0, 2010-08-02
BTS5045-2EKA
Revision History
12
Revision History
Version 2.0
Date 2010-05-31
Parameter
Changes Creation of the Data Sheet
Data Sheet PROFET™+ 12V
53
Rev. 2.0, 2010-08-02
Edition 2010-08-02 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.