V e r s i o n 2 .0 , 1 1 S e p 2 00 8
CoolSET -F3R
ICE3BR0665JF
Off-Line SMPS Current Mode Controller with integrated 650V CoolMOS® and Startup cell (frequency jitter Mode) in FullPak
®
Power Management & Supply
Never
stop
thinking.
CoolSET®-F3R ICE3BR0665JF Revision History: Previous Version: Page 15 17,18 19 19 23 24~28 29,30 31 32
2008-09-11 1.1
Datasheet
Subjects (major changes since last revision) Add max. limitation for CBK capacitance Revise description of protection mode. Add constrains of 25.5V Vcc OVP Revise max. voltage for VFB, VCS and VBA Revise ID_Puls to Tj=125°C and add the avalanche rating Add Drain Source Avalanche Breakdown Voltage Add typical controller performance characteristics Add typical CoolMOS® performance characteristics Add input power curve Revise outline dimension
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http:// www.infineon.com CoolMOS®, CoolSET® are trademarks of Infineon Technologies AG.
Edition 2008-09-11 Published by Infineon Technologies AG, 81726 Munich, Germany, © 2008 Infineon Technologies AG. All Rights Reserved. Legal disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies Office. Infineon Technologies Components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
CoolSET®-F3R
ICE3BR0665JF
Off-Line SMPS Current Mode Controller with integrated 650V CoolMOS® and Startup cell (frequency jitter Mode) in FullPak
Product Highlights • TO220 FullPak with low Rdson MOSFET for high power application • Active Burst Mode to reach the lowest Standby Power Requirements < 100mW • Auto Restart protection for overload, overtemperature, overvoltage • External auto-restart enable function • Built-in soft start and blanking window • Extendable blanking Window for high load jumps • Built-in frequency jitter and soft driving for low EMI • Green Mould Compound • Pb-free lead plating; RoHS compliant 650V avalanche rugged CoolMOS® with built-in Startup Cell Active Burst Mode for lowest Standby Power Fast load jump response in Active Burst Mode 67kHz internally fixed switching frequency Auto Restart Protection Mode for Overload, Open Loop, VCC Undervoltage, Overtemperature & Overvoltage External auto-restart enable pin Built-in Soft Start Built-in blanking window with extendable blanking time for short duration high current Max Duty Cycle 75% Overall tolerance of Current Limiting < ±5% Internal PWM Leading Edge Blanking BiCMOS technology provide wide VCC range Built-in Frequency jitter and soft driving for low EMI
PG-TO220FS-6
PG-TO220-6-347
Features
• • • • • • • • • • • • •
Description
The CoolSET®-F3R FullPak is the enhanced version of CoolSET®-F3 and targets for the Off-Line Adapters and high power range SMPS in DVD R/W, DVD Combi, set top box, etc. It has a wide Vcc range to 25V by adopting the BiCMOS technology. With the merit of Active Burst Mode, it can achieve the lowest Standby Power Requirements (130°C Control Unit
Voltage Reference
Figure 26
Auto Restart mode
There are 2 modes of VCC overvoltage protection; one is during soft start and the other is at all conditions. The first one is VVCC voltage is > 20.7V and FB is > 4.5V and during soft_start period. The IC enters Auto Restart Mode. The VCC voltage is observed by comparator C1. This fault condition is to detect the abnormal operating during start up such as open loop during light load start up, etc. The logic can eliminate the possible of entering Auto Restart mode if there is a small voltage overshoots of VVCC during normal operating. The 2nd one is VVCC >25.5V and last for 120us and the IC enters Auto Restart Mode. This 25.5V Vcc OVP protection is inactivated during burst mode. The Thermal Shutdown block monitors the junction temperature of the IC. After detecting a junction temperature higher than 130°C, the Auto Restart Mode is entered. In case the pre-defined auto-restart features are not sufficient, there is a customer defined external Autorestart Enable feature. This function can be triggered by pulling down the BA pin to < 0.33V. It can simply add
Version 2.0
18
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Electrical Characteristics
4
Note:
Electrical Characteristics
All voltages are measured with respect to ground (Pin 5). The voltage levels are valid if other ratings are not violated.
4.1
Note:
Absolute Maximum Ratings
Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 4 (VCC) is discharged before assembling the application circuit.Ta=25°C unless otherwise specified.
Parameter
Switching drain current, pulse width tp limited by max. Tj=150°C Pulse drain current, pulse width tp limited by max. Tj=150°C
Symbol
Is ID_Puls -
Limit Values min. max.
11.64 23 0.3 4.8 27 5.5 5.5 5.5 150 150 82 3 260 42 2 60
Unit
A A mJ A V V V V °C °C K/W K/W °C W kV Ncm
Remarks
Avalanche energy, repetitive tAR limited EAR by max. Tj=150°C1) Avalanche current, repetitive tAR limited IAR by max. Tj=150°C VCC Supply Voltage FB Voltage BA Voltage CS Voltage Junction Temperature Storage Temperature Thermal Resistance Junction -Ambient Thermal Resistance Junction -case Soldering temperature, wavesoldering only allowed at leads Power dissipation, Tc=25°C ESD Capability (incl. Drain Pin) Mounting torque
1) 2)
ID=4.8A
VVCC VFB VBA VCS Tj TS RthJA RthJC Tsold Ptot VESD
-0.3 -0.3 -0.3 -0.3 -40 -55 -
Controller & CoolMOS®
1.6mm (0.063 in.) from case for 10s Refer to Figure 57 Human body model2) M2.5 screws
Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR*f According to EIA/JESD22-A114-B (discharging a 100pF capacitor through a 1.5kΩ series resistor)
Version 2.0
19
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Electrical Characteristics 4.2
Note:
Operating Range
Within the operating range the IC operates as described in the functional description.
Parameter
VCC Supply Voltage Junction Temperature of Controller Junction Temperature of CoolMOS®
Symbol
VVCC TjCon TjCoolMOS
Limit Values min.
VVCCoff -25 -25
Unit
V °C °C
Remarks
Max. value limited due to Vcc OVP Max. value limited due to thermal shut down of controller
max.
25 130 150
4.3
4.3.1 Note:
Characteristics
Supply Section The electrical characteristics involve the spread of values within the specified supply voltage and junction temperature range TJ from – 25 °C to 125 °C. Typical values represent the median values, which are related to 25°C. If not otherwise stated, a supply voltage of VCC = 18 V is assumed. Symbol min.
IVCCstart IVCCcharge1 IVCCcharge2 IVCCcharge3 0.55 -
Parameter
Start Up Current VCC Charge Current
Limit Values typ.
150 0.9 0.7 0.2
Unit
µA mA mA mA µA
Test Condition
VVCC =17V VVCC = 0V VVCC = 1V VVCC =17V VDrain = 600V at Tj=100°C 1)
max.
250 5.0 1.60 50
Leakage Current of Start Up Cell and CoolMOS® Supply Current with Inactive Gate Supply Current with Active Gate Supply Current in Auto Restart Mode with Inactive Gate Supply Current in Active Burst Mode with Inactive Gate VCC Turn-On Threshold VCC Turn-Off Threshold VCC Turn-On/Off Hysteresis
1)
IStartLeak
IVCCsup1 IVCCsup2 IVCCrestart
-
1.5 4.0 250
2.5 5.0 -
mA mA µA IFB = 0A IFB = 0A
IVCCburst1 IVCCburst2 VVCCon VVCCoff VVCChys
17.0 9.8 -
500 500 18.0 10.5 7.5
950 950 19.0 11.2 -
µA µA V V V
VFB = 2.5V VVCC = 11.5V,VFB = 2.5V
The parameter is not subjected to production test - verified by design/characterization
Version 2.0
20
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Electrical Characteristics
4.3.2 Internal Voltage Reference Symbol min.
Trimmed Reference Voltage VREF 4.90
Parameter
Limit Values typ.
5.00
Unit
V
Test Condition
measured at pin FB IFB = 0
max.
5.10
4.3.3 Parameter
PWM Section Symbol min.
fOSC1 fOSC2 fjitter Tjitter Dmax Dmin AV VOffset-Ramp 58 62 0.70 0 3.1 9
Limit Values typ.
67 67 ±2.7 4.0 0.75 3.3 0.68 0.5 15.4
Unit
kHz kHz kHz ms
Test Condition
max.
75 74.5 0.80 3.5 4.3 22 V V V kΩ CS=1V, limited by Comparator C41) VFB < 0.3V Tj = 25°C Tj = 25°C Tj = 25°C
Fixed Oscillator Frequency Frequency Jittering Range Frequency Jittering period Max. Duty Cycle Min. Duty Cycle PWM-OP Gain Voltage Ramp Offset
VFB Operating Range Min Level VFBmin VFB Operating Range Max level FB Pull-Up Resistor
1)
VFBmax RFB
The parameter is not subjected to production test - verified by design/characterization
4.3.4
Soft Start time Symbol min.
tSS -
Parameter
Soft Start time
Limit Values typ.
20.0
Unit
ms
Test Condition
VFB > 4.0V
max.
-
Version 2.0
21
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Electrical Characteristics
4.3.5 Parameter
Clamped VBA voltage during Normal Operating Mode Blanking time voltage limit for Comparator C3 Over Load & Open Loop Detection Limit for Comparator C4 Active Burst Mode Level for Comparator C5 Active Burst Mode Level for Comparator C6a Active Burst Mode Level for Comparator C6b Overvoltage Detection Limit for Comparator C1 Overvoltage Detection Limit for Comparator C2 Auto-restart Enable level at BA pin for Comparator C9 Charging current at BA pin
Control Unit Symbol min.
VBAclmp VBKC3 VFBC4 VFBC5 VFBC6a VFBC6b VVCCOVP1 0.85 3.85 4.28 1.13 3.45 2.97 19.6
Limit Values typ.
0.9 4.00 4.50 1.22 3.60 3.10 20.7
Unit
V V V V V V V
Test Condition
VFB = 4V
max.
0.95 4.15 4.72 1.31 3.74 3.22 21.7
After Active Burst Mode is entered After Active Burst Mode is entered VFB = 5V
VVCCOVP2
25.0
25.5
26.3
V
VAE
0.25
0.33
0.42
V
IBK
10.1
13.5
16.1
µA
Charge starts after the built-in 20ms blanking time elapsed Controller without external capacitor at BA pin Count when VCC>18V
Thermal Shutdown1) Built-in Blanking Time for Overload Protection or enter Active Burst Mode Inhibit Time for Auto-Restart enable function during start up Spike Blanking Time before Auto Restart Protection
1)
TjSD tBK
130 -
140 20
150 -
°C ms
tIHAE tSpike
-
1.0 30
-
ms µs
The parameter is not subjected to production test - verified by design/characterization The trend of all the voltage levels in the Control Unit is the same regarding the deviation except VVCCOVP and VVCCPD
Note:
Version 2.0
22
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Electrical Characteristics
4.3.6 Parameter
Peak Current Limitation (incl. Propagation Delay) Peak Current Limitation during Active Burst Mode Leading Edge Blanking CS Input Bias Current
Current Limiting Symbol min.
Vcsth VCS2 tLEB ICSbias 0.88 0.22 -1.5
Limit Values typ.
1.06 0.26 220 -0.2
Unit
V V ns µA
Test Condition
dVsense / dt = 0.6V/µs (see Figure 13)
max.
1.13 0.29 -
VCS =0V
4.3.7
CoolMOS® Section
Symbol min.
V(BR)DSS 650
Parameter
Drain Source Breakdown Voltage
Limit Values typ.
-
Unit
V
Test Condition
Tj = 110°C1) (Refer to Figure 65 for other V(BR)DSS in different Tj) VGS=0V, ID=0.25mA VGS=0V, ID=4.8A Tj = 25°C Tj=125°C1) Tj=150°C1) at ID = 4.5A VDS = 0V to 480V1)
max.
-
Drain Source Avalanche Breakdown Voltage Drain Source On-Resistance
V(BR)DS RDSon
-
700 0.59 1.31 1.60 34 302) 30
2)
0.66 1.46 1.79 -
V Ω Ω Ω pF ns ns
Effective output capacitance, energy related Rise Time Fall Time
1) 2)
Co(er) trise tfall
The parameter is not subjected to production test - verified by design/characterization Measured in a Typical Flyback Converter Application
Version 2.0
23
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Typical Controller Performance Characteristics
5
200 192
Typical Controller Performance Characteristics
0.85
Vcc Charge Current IVCCcharge3 [mA]
0.81 0.77 0.73 0.69 0.65 0.61 0.57 0.53 0.49 0.45 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-004-8889A23
Start Up Current I VCCstart [µA]
184 176 168 160 152 144 136 128 120 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-001-8889A23
Junction Temperature [°C]
Junction Temperature [°C]
Figure 27
1.00
Start Up Current IVCCstart
Figure 30
1.80
VCC Charge Current IVCCcharge3
Vcc Charge Current IVCCcharge1 [mA]
0.92 0.88 0.84
PI-002-8889A23
Vcc Supply Current IVCCsup1 [mA]
0.96
1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-005-8889A23
0.80 0.76 0.72 0.68 0.64 0.60 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 28
1.00
VCC Charge Current IVCCcharge1
Figure 31
4.5
VCC Supply Current IVCCsup1
Vcc Charge Current I VCCcharge2 [mA]
0.92 0.88 0.84
PI-003-8889A23
Vcc Supply Current IVCCsup2 [mA]
0.96
4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-006-8889A23
0.80 0.76 0.72 0.68 0.64 0.60 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 29
VCC Charge Current IVCCcharge2
Figure 32
VCC Supply Current IVCCsup2
Version 2.0
24
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Typical Controller Performance Characteristics
310 300 290 280 270
PI-007-8889A23
11.0
Vcc Turn-Off Threshold VVCCoff [V]
Vcc Supply Current IVCCrestart [uA]
10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10.0 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-010-8889A23
260 250 240 230 220 210 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 33
600
VCC Supply Current IVCCrestart
Figure 36
5.20 5.16
VCC Turn-Off Threshold VVCCoff
Vcc Supply Current IVCCburst [uA]
580
Reference Voltage VREF [V]
560 540 520
PI-008-8889A23
5.12 5.08 5.04 5.00 4.96 4.92 4.88 4.84 4.80 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-011-8889A23
500 480 460 440 420 400 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 34
VCC Supply Current IVCCburst
Figure 37
70
Reference Voltage VREF
18.5
Vcc Turn-On threshold VVCCon [V]
18.4 18.3 18.2 18.1 18.0 17.9 17.8 17.7 17.6 17.5 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-010-8889A23
Oscillator Frequency fosc1 [kHz]
69 68 67 66 65 64 63 62 61 60 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-012-8889A23
Junction Temperature [°C]
Junction Temperature [°C]
Figure 35
VCC Turn-On Threshold VVCCon
Figure 38
Oscillator Frequency fOSC1
Version 2.0
25
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Typical Controller Performance Characteristics
3.1
Frequency Jitter Range fjitter [+/-kHz]
0.73
3.0 2.9 2.8 2.7
PI-001-8889A23
Voltage Ramp Offset V Offset-Ramp [V]
0.72 0.71 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-016-8889A23
2.6 2.5 2.4 2.3 2.2 2.1 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 39
0.780 0.774 0.768
Frequency Jittering Range fjitter
Figure 42
Feedback Pull-Up resistor RFB [kOhm]
20 19 18 17 16 15 14 13 12 11 10 -25 -15
Voltage Ramp Offset VOffset-Ramp
Max. Duty Cycle Dmax
0.762 0.756 0.750 0.744 0.738 0.732 0.726 0.720 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-014-8889A23
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 40
3.50
Max. Duty Cycle Dmax
Figure 43
0.95
Feedback Pull-Up resistor RFB
Clamped VBA Voltage VBAclmp [V]
0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.85 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-020-8889A23
3.45 3.40
PWM OP Gain AV
3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-015-8889A23
Junction Temperature [°C]
Junction Temperature [°C]
Figure 41
PWM-OP Gain AV
Figure 44
Clamped VBA voltage VBAclmp
Version 2.0
26
11 Sep 2008
PI-019-8889A23
CoolSET®-F3R ICE3BR0665JF
Typical Controller Performance Characteristics
3.70
4.10
Blanking time voltage limit VBKC3 [V]
Active Burst Model Leve VFBC6a [V]
4.08 4.06 4.04 4.02
PI-021-8889A23
3.68 3.66 3.64 3.62 3.60 3.58 3.56 3.54 3.52 3.50 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-024-8889A23
4.00 3.98 3.96 3.94 3.92 3.90 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 45
4.70
Blanking time voltage limit VBKC3
Figure 48
3.30
Active Burst Mode Level VFBC6a
Active Burst Mode Level VFBC6b [V]
Over Load detection limit VFBC4 [V]
3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-025-8889A23
4.65 4.60 4.55 4.50 4.45 4.40 4.35 4.30 -25 -15
PI-022-8889A23
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 46
1.40
Over Load Detection Limit VFBC4
Figure 49
Active Burst Mode Level VFBC6b
1.36 1.32 1.28 1.24
PI-023-8889A23
Overvoltage Detection Limit VVCCovp1 [V]
21.0 20.9 20.8 20.7 20.6 20.5 20.4 20.3 20.2 20.1 20.0 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-026-8889A23
Active Burst mode Level VFBC5 [V]
1.20 1.16 1.12 1.08 1.04 1.00 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 47
Active Burst Mode Level VFBC5
Figure 50
Overvoltage Detection Limit VVCCOVP1
Version 2.0
27
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Typical Controller Performance Characteristics
Overvoltage Detection Level VVCCOVP2 [V]
26.0 25.9 25.8 25.7 25.6
PI-027-8889A23
1.20
Peak Current Limitation VCSth [V]
1.16 1.12 1.08 1.04 1.00 0.96 0.92 0.88 0.84 0.80 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-031-8889A23
25.5 25.4 25.3 25.2 25.1 25.0 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 51
0.38
Over Load Detection Limit VVCCOVP2
Figure 54
0.30
Peak Current Limitation Vcsth
Auto-restart Enable Level V AE [V]
0.37 0.36 0.35 0.34 0.33 0.32 0.31 0.30 0.29 0.28 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-028-8889A23
Peak Current Limitation VCS2 [V]
0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.20 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-032-8889A23
Junction Temperature [°C]
Junction Temperature [°C]
Figure 52
15.0
Auto-restart Enable Level VAE
Figure 55
290
Peak Current Limitation VCS2
Charging Current at BA pin IBK [µA]
14.5 14.0 13.5 13.0
PI-029-8889A23
Leading Edge Blanking tLEB [ns]
280 270 260 250 240 230 220 210 200 190 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
PI-033-8889A23
12.5 12.0 11.5 11.0 10.5 10.0 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 53
Charging Current at BA pin IBK
Figure 56
Leading Edge Blanking tLEB
Version 2.0
28
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Typical CoolMOS® Performance Characteristics
6
50
Typical CoolMOS® Performance Characteristics
25 20 15 10 5 0
0 40 80 T C [°C] 120 160
Vcc >10.5 V
40
P tot [W]
20
10
0
I D [A]
30
0
5
10 V DS [V]
15
20
Figure 57
Power dissipation; Ptot=f(TC)
Figure 60
Typ. output characteristics; ID=f(VDS),Tj=25°C, parameter : VCC
Ugs 8 V, T 150 C
102
12
limited by on-state resistance
10
1 µs
100 µs 1 ms 10 ms
I D [A]
101
10 µs
8 6 4 2 0
Vcc>10.5 V
I D [A]
100
DC
10
-1
0
101 V DS [V] 102 103
5
100
10 V DS [V]
15
20
Figure 58
Safe operation area; ID=f(VDS), parameter : D=0, TC=25°C
Figure 61
Typ. output characteristics; ID=f(VDS),Tj=150°C, parameter : VCC
101
3 2.8 2.6
0.5 0.2 0.1 0.05 0.02 0.01 single pulse
vcc > 10.5 V
Z thJC [K/W]
R DS(on) [ ]
10
0
2.4 2.2 2 1.8 1.6 1.4
10-1
10-2 10-5
10
-4
10
-3
10 t p [s]
-2
10
-1
10
0
10
1
0
5
I D [A]
10
15
Figure 59
Transient thermal impedance; ZthJC=f(tp),parameter: D=tp/T
Figure 62
Typ. drain-source on-state resistance; RDS(on)=f(ID); Tj=150°C, parameter : VCC
Version 2.0
29
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Typical CoolMOS® Performance Characteristics
1.8 1.6 1.4 103
Ciss
104
R DS(on) [ ]
C [pF]
1.2 1
98 % typ
102
Coss Crss
0.8 0.6 0.4 0.2 -60 -20
101
100 20 60 T j [°C] 100 140 180 0 100 200
V DS [V]
300
400
500
Figure 63
Drain-source on-state resistance; RDS(on)=f(Tj); ID=4.5A;, Vcc>10.5V
Figure 66
Typ. capacitances; C=f(VDS),VGS=0V,f=1MHz
200
6 5
150
4
E AS [mJ]
E oss [µJ]
100
3 2
50
1
0 20 60 100 T j [°C] 140 180
0 0 100 200 300 V DS [V] 400 500 600
Figure 64
Avalanche energy; EAS=f(Tj),ID=3A,VDD=50V
Figure 67
Typ. Coss stored energy; Eoss=f(VDS)
700
660
V BR(DSS) [V]
620
580
540 -60 -20 20 60 T j [°C] 100 140 180
Figure 65
Drain-source breakdown voltage; VBR(DSS)=f(Tj), ID=0.25mA
Version 2.0
30
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Input Power Curve
7
Input Power Curve
Two input power curves giving the typical input power versus ambient temperature are showed below; Vin=85Vac~265Vac (Figure 68) and Vin=230Vac+/-15% (Figure 69). The curves are derived based on a typical discontinuous mode flyback model which considers either 50% maximum duty ratio or 100V maximum secondary to primary reflected voltage (higher priority). The calculation is based on RthSA=2.7K/W as heatsink and RthCS=1.1K/W as thermal grease thermal resistance. The input power already includes the power loss at input common mode choke, bridge rectifier and the CoolMOS. The device saturation current (ID_Puls @ Tj=125°C) is also considered. To estimate the output power of the device, it is simply multiplying the input power at a particular operating ambient temperature with the estimated efficiency for the application. For example, a wide range input voltage (Figure 68), operating temperature is 50°C, estimated efficiency is 80%, then the estimated output power is 138W (173W * 80%).
220 200
Input power (85~265Vac) [W]
180 160
PI-001-ICE3BR0665JF_85Vac
140 120 100 80 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130
Ambient Temperature [°C]
Figure 68 Input power curve Vin=85~265Vac; Pin=f(Ta)
350 315
Input power (230Vac) [W]
280 245 210 175 140 105 70 35 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130
PI-002-ICE3BR0665JF_230Vac
Ambient Temperature [°C]
Figure 69 Input power curve Vin=230Vac+/-15%; Pin=f(Ta)
Version 2.0
31
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Outline Dimension
8
Outline Dimension
PG-TO220-6-347 (PB-free Plating FullPak Package Outline)
Figure 70
PG-TO220-6-347 (PB-free Plating Fullpak Package) Dimensions in mm
Version 2.0
32
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Marking
9
Marking
Marking
Figure 71
Marking for ICE3BR0665JF
Version 2.0
33
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Schematic for recommended PCB layout
10
Schematic for recommended PCB layout
TR1
BR1 Spark Gap 3 FUSE1
R11 C11 bulk cap D11
C12
D21
L
Spark Gap 1
X-CAP C1 L1
Vo
C21
GND
Spark Gap 2 Spark Gap 4 C2 Y-CAP C3 Y-CAP C4 Y-CAP BA GND C13 R12 CS D11 Z11
GND
C16 R21
N
IC11
DRAIN R13 R14 D13
F3 CoolSET VCC
FB C15 C14 NC
R23
R22 C22
*
C23
R24
IC12
IC21 R25
F3 CoolSET schematic for recommended PCB layout
Figure 72
Schematic for recommended PCB layout
General guideline for PCB layout design using F3/F3R CoolSET (refer to Figure 72): 1. “Star Ground “at bulk capacitor ground, C11: “Star Ground “means all primary DC grounds should be connected to the ground of bulk capacitor C11 separately in one point. It can reduce the switching noise going into the sensitive pins of the CoolSET device effectively. The primary DC grounds include the followings. a. DC ground of the primary auxiliary winding in power transformer, TR1, and ground of C16 and Z11. b. DC ground of the current sense resistor, R12 c. DC ground of the CoolSET device, GND pin of IC11; the signal grounds from C13, C14, C15 and collector of IC12 should be connected to the GND pin of IC11 and then “star “connect to the bulk capacitor ground. d. DC ground from bridge rectifier, BR1 e. DC ground from the bridging Y-capacitor, C4 2. High voltage traces clearance: High voltage traces should keep enough spacing to the nearby traces. Otherwise, arcing would incur. a. 400V traces (positive rail of bulk capacitor C11) to nearby trace: > 2.0mm b. 600V traces (drain voltage of CoolSET IC11) to nearby trace: > 2.5mm 3. Filter capacitor close to the controller ground: Filter capacitors, C13, C14 and C15 should be placed as close to the controller ground and the controller pin as possible so as to reduce the switching noise coupled into the controller. Guideline for PCB layout design when >3KV lightning surge test applied (refer to Figure 72): 1. Add spark gap Spark gap is a pair of saw-tooth like copper plate facing each other which can discharge the accumulated charge during surge test through the sharp point of the saw-tooth plate. a. Spark Gap 3 and Spark Gap 4, input common mode choke, L1: Gap separation is around 1.5mm (no safety concern)
Version 2.0
34
11 Sep 2008
CoolSET®-F3R ICE3BR0665JF
Schematic for recommended PCB layout
b. Spark Gap 1 and Spark Gap 2, Live / Neutral to GROUND: These 2 Spark Gaps can be used when the lightning surge requirement is >6KV. 230Vac input voltage application, the gap separation is around 5.5mm 115Vac input voltage application, the gap separation is around 3mm 2. Add Y-capacitor (C2 and C3) in the Live and Neutral to ground even though it is a 2-pin input 3. Add negative pulse clamping diode, D11 to the Current sense resistor, R12: The negative pulse clamping diode can reduce the negative pulse going into the CS pin of the CoolSET and reduce the abnormal behavior of the CoolSET. The diode can be a fast speed diode such as IN4148. The principle behind is to drain the high surge voltage from Live/Neutral to Ground without passing through the sensitive components such as the primary controller, IC11.
Version 2.0
35
11 Sep 2008
Total Quality Management
Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen. Dazu gehört eine bestimmte Geisteshaltung unserer Mitarbeiter. Total Quality im Denken und Handeln gegenüber Kollegen, Lieferanten und Ihnen, unserem Kunden. Unsere Leitlinie ist jede Aufgabe mit „Null Fehlern“ zu lösen – in offener Sichtweise auch über den eigenen Arbeitsplatz hinaus – und uns ständig zu verbessern. Unternehmensweit orientieren wir uns dabei auch an „top“ (Time Optimized Processes), um Ihnen durch größere Schnelligkeit den entscheidenden Wettbewerbsvorsprung zu verschaffen. Geben Sie uns die Chance, hohe Leistung durch umfassende Qualität zu beweisen. Wir werden Sie überzeugen. Quality takes on an allencompassing significance at Semiconductor Group. For us it means living up to each and every one of your demands in the best possible way. So we are not only concerned with product quality. We direct our efforts equally at quality of supply and logistics, service and support, as well as all the other ways in which we advise and attend to you. Part of this is the very special attitude of our staff. Total Quality in thought and deed, towards co-workers, suppliers and you, our customer. Our guideline is “do everything with zero defects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly improve. Throughout the corporation we also think in terms of Time Optimized Processes (top), greater speed on our part to give you that decisive competitive edge. Give us the chance to prove the best of performance through the best of quality – you will be convinced.
http://www.infineon.com
Published by Infineon Technologies AG