Datasheet, Version 2.1, 15 Nov 2005
PWM-FF IC
ICE3D S 01L ICE3D S 01LG
Off-Line SMPS Current Controller with integrated Startup Cell Mode 500V
Power Management & Supply
Never
stop
thinking.
ICE3DS01L(G) Revision History: Previous Version: Page 2005-11-15 2.0 Datasheet
Subjects (major changes since last revision) update to PB-free package
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.
Edition 2005-11-15 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München
© Infineon Technologies AG 1999. All Rights Reserved.
Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
F3
Off-Line SMPS Current Mode Controller with integrated 500V Startup Cell
Product Highlights
• Active Burst Mode to reach the lowest Standby Power Requirements < 100mW • Latched Off Mode to increase Robustness and Safety of the System • Adjustable Blanking Window for High Load Jumps to increase Reliability • PB-free Plating and RoHS compilance Description Features
• • • • • • • • • • • • • • • Active Burst Mode for lowest Standby Power @ light load controlled by Feedback Signal Fast Load Jump Response in Active Burst Mode 500V Startup Cell switched off after Start Up 110kHz internally fixed Switching Frequency Latched Off Mode for Overtemperature Detection Latched Off Mode for Overvoltage Detection Latched Off Mode for Short Winding Detection Auto Restart Mode for Overload and Open Loop Auto Restart Mode for VCC Undervoltage User defined Soft Start Minimum of external Components required Max Duty Cycle 72% Overall Tolerance of Current Limiting < ±5% Internal Leading Edge Blanking Soft driving for Low EMI
ICE3DS01L ICE3DS01LG
PG-DIP-8-6
test
PG-DSO-8-8
P-DSO-8-3, -6
The F3 Controller provides Active Burst Mode to reach the lowest Standby Power Requirements 140°C Control Unit
FB
Figure 18
t
Latched Off Mode
Figure 17
Signals in Active Burst Mode
The VCC voltage is observed by comparator C1 if 21V is exceeded. The output of C1 is combined with the output of C4 which observes FB signal if 4.8V is exceeded. Therefore the overvoltage detection is only activated if the FB signal is
Version 2.1
14
15 Nov 2005
F3 ICE3DS01L/LG
Functional Description
outside the operating range > 4.8V, e.g. when Open Loop happens. Therewith small voltage overshoots of VVCC during normal operating can not start the Latched Off Mode. The internal Voltage Reference is switched off once Latched Off Mode is entered in order to reduce the current consumption of the IC as much as possible. Latched Off Mode can only be reset by decreasing VVCC < 6V. In this stage only the UVLO is working which controls the Startup Cell by switching on/off at VVCCon/VVCCoff. In this phase the average current consumption is only 300µA. As there is no longer a self supply by the auxiliary winding VCC drops. The Undervoltage Lockout switches on the integrated Startup Cell when VCC falls below 8.5V. The Startup Cell is switched off again when VCC has exceeded 15V. As the Latched Off Mode was entered there is no Start Up Phase after VCC has exceeded the switch-on level of the Undervoltage Lockout. Therefore VCC changes between the switch-on and switch-off levels of the Undervoltage Lockout with a saw tooth shape (see Figure 19). 3.6.3.2 Auto Restart Mode
SoftS
6.5V 5kΩ RSoftS
4.4V 1 S1 G2 Voltage Reference C3 5.4V 4.8V C4 & G5 Auto Restart Mode Control Unit
VVCC
15V
FB
Figure 20
t
8.5V
Auto Restart Mode
IVCCStart
1.05mA
VOUT
Figure 19 Signals in Latched Off Mode
t
After detecting a junction temperature higher than 140°C Latched Off Mode is entered. The signals coming from the temperature detection and VCC overvoltage detection are fed into a spike blanking with a time constant of 8.0µs to ensure system reliability. Furthermore short winding and short diode on the secondary side can be detected by the comparator C11 which is in parallel to the propagation delay compensated current limit comparator C10. In normal operating mode comparator C10 keeps the maximum level of the CS signal at 1V. If there is a failure such as short winding or short diode C10 is no longer able to limit the CS signal at 1V. C11 detects then the over current and enters immediately the Latched Off Mode to keep the SMPS in a safe stage.
In case of Overload or Open Loop FB exceeds 4.8V which will be observed by C4. At this time S1 is released that VSoftS can increase. If VSoftS exceeds 5.4V which is observed by C3 Auto Restart Mode is entered as both inputs of the gate G5 are high. In combining the FB and SoftS signals there is a blanking window generated which prevents the system to enter Auto Restart Mode due to large load jumps. This time window is the same as for the Active Burst Mode and can therefore be adjusted by the external CSoftS. In case of VCC undervoltage the UVLO starts a new startup cycle. Short Optocoupler leads to VCC undervoltage as there is now self supply after activating the internal reference and bias. In contrast to the Latched Off Mode there is always a Startup Phase with switching cycles in Auto Restart Mode. After this Start Up Phase the conditions are again checked whether the failure is still present. Normal operation is proceeded once the failure mode is removed that leads to Auto Restart Mode.
Version 2.1
15
15 Nov 2005
F3 ICE3DS01L/LG
Electrical Characteristics
4
Note:
Electrical Characteristics
All voltages are measured with respect to ground (Pin 8). The voltage levels are valid if other ratings are not violated.
4.1
Note:
Absolute Maximum Ratings
Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 7 (VCC) is discharged before assembling the application circuit. Symbol VHV VVCC VFB VSoftS VGate VCS Tj TS PtotDSO8 PtotDIP8 RthJADSO8 RthJADIP8 VESD -0.3 -0.3 -0.3 -0.3 -0.3 -40 -55 Limit Values min. max. 500V 22 6.5 6.5 22 6.5 150 150 0.45 0.90 185 90 3 V V V V V V °C °C W W K/W K/W kV PG-DSO-8-8, Tamb < 50°C PG-DIP-8-6, Tamb < 50°C PG-DSO-8-8 PG-DIP-8-6 Human body model1) Internally clamped at 11.5V Unit Remarks
Parameter HV Voltage VCC Supply Voltage FB Voltage SoftS Voltage Gate Voltage CS Voltage Junction Temperature Storage Temperature Total Power Dissipation Thermal Resistance Junction-Ambient ESD capability (incl. Pin HV)
1)
According to EIA/JESD22-A114-B (discharging a 100pF capacitor through a 1.5kΩ series resistor)
4.2
Note: Parameter
Operating Range
Within the operating range the IC operates as described in the functional description. Symbol VVCC Limit Values min. max. 20 130 V °C Max value limited due to thermal shut down of controller VVCCoff -25 Unit Remarks
VCC Supply Voltage
Junction Temperature of Controller TjCon
Version 2.1
16
15 Nov 2005
F3 ICE3DS01L/LG
Electrical Characteristics 4.3
4.3.1 Note:
Characteristics
Supply Section The electrical characteristics involve the spread of values guaranteed within the specified supply voltage and junction temperature range TJ from – 25 °C to 130 °C. Typical values represent the median values, which are related to 25°C. If not otherwise stated, a supply voltage of VCC = 15 V is assumed. Symbol min. IVCCstart IVCCcharge1 IVCCcharge2 IStartLeak IVCCsup1 IVCCsup2 IVCClatch IVCCrestart -1.60 Limit Values typ. 170 -1.05 -0.88 2 6.0 7.2 300 300 max. 220 -0.55 20 7.5 8.7 µA mA mA µA mA mA µA µA VSoftS = 4.4V IFB = 0 IFB = 0 ISofts = 0 IFB = 0 ISofts = 0 VFB = 2.5V VSoftS = 4.4V VVCC = 9V VFB = 2.5V VSoftS = 4.4V VVCC =14V VVCC = 0V VVCC =14V VVCC>16V Unit Test Condition
Parameter Start Up Current VCC Charge Current Start Up Cell Leakage Current Supply Current with Inactive Gate Supply Current with Active Gate (CLoad=1nF) Supply Current in Latched Off Mode Supply Current in Auto Restart Mode with Inactive Gate Supply Current in Active Burst Mode with Inactive Gate
IVCCburst1 IVCCburst2
-
1.1 1.0
1.3 1.2
mA mA
VCC Turn-On Threshold VCC Turn-Off Threshold VCC Turn-On/Off Hysteresis 4.3.2 Parameter Trimmed Reference Voltage
VVCCon VVCCoff VVCChys
14.2 8.0 -
15.0 8.5 6.5
15.8 9.0 -
V V V
Internal Voltage Reference Symbol min. VREF 6.37 Limit Values typ. 6.50 max. 6.63 V measured at pin FB IFB = 0 Unit Test Condition
Version 2.1
17
15 Nov 2005
F3 ICE3DS01L/LG
Electrical Characteristics
4.3.3 Parameter Fixed Oscillator Frequency Max. Duty Cycle Min. Duty Cycle PWM-OP Gain Max. Level of Voltage Ramp VFB Operating Range Min Level VFB Operating Range Max level Feedback Pull-Up Resistor Soft-Start Pull-Up Resistor
1)
PWM Section Symbol min. fOSC1 fOSC2 Dmax Dmin AV VMax-Ramp VFBmin VFBmax RFB RSoftS 98 102 0.67 0 3.5 0.3 16 39 Limit Values typ. 110 110 0.72 3.7 0.85 0.7 20 50 max. 119 117 0.77 3.9 4.75 27 62 V V V kΩ kΩ CS=1V limited by Comparator C41) VFB < 0.3V kHz kHz Tj = 25°C Unit Test Condition
Design characteristic (not meant for production testing) Control Unit Symbol min. VSoftSC2 VSoftSclmp VSoftSC3 ISoftSstart VFBC6 VFBC5 VFBC4 3.85 4.23 5.20 1.23 3.85 4.62 Limit Values typ. 4.00 4.40 5.40 1.9 1.32 4.00 4.80 max. 4.15 4.57 5.60 1.40 4.15 4.98 V V V mA V V V VFB > 5V VFB < 4.5V VFB > 5V VSoftS = 0V VSoftS > 5.6V After Active Burst Mode is entered VSoftS > 5.6V Unit Test Condition
4.3.4 Parameter
Deactivation Level for SoftS Comparator C7 by C2 Clamped VSoftS Voltage during Normal Operating Mode Activation Limit of Comparator C3 SoftS Startup Current Active Burst Mode Level for Comparator C6 Active Burst Mode Level for Comparator C5 Over Load & Open Loop Detection Limit for Comparator C4 Overvoltage Detection Limit Latched Thermal Shutdown Spike Blanking Power Down Reset for Latched Mode Note:
VVCCOVP TjSD tSpike VVCCPD
20 130 4.0
21 140 8.0 6.0
22 150 7.5
V °C µs V
VFB > 5V guaranteed by design After Latched Off Mode is entered
The trend of all the voltage levels in the Control Unit is the same regarding the deviation except VVCCOVP and VVCCPD
Version 2.1
18
15 Nov 2005
F3 ICE3DS01L/LG
Electrical Characteristics
4.3.5 Parameter Peak Current Limitation (incl. Propagation Delay Time) (see Figure 7) Over Current Detection for Latched Off Mode Peak Current Limitation during Active Burst Mode Leading Edge Blanking CS Spike Blanking for Comparator C11 CS Input Bias Current 4.3.6 Parameter GATE Low Voltage Driver Section Symbol min. VGATElow -0.2 GATE High Voltage VGATEhigh GATE Rise Time (incl. Gate Rising Slope) GATE Fall Time GATE Current, Peak, Rising Edge GATE Current, Peak, Falling Edge
1) 2)
Current Limiting Symbol min. Vcsth 0.950 Limit Values typ. 1.000 max. 1.050 V dVsense / dt = 0.6V/µs Unit Test Condition
VCS1 VCS2 tLEB tCSspike ICSbias
1.570 0.232 -1.0
1.66 0.257 220 190 -0.2
1.764 0.282 0
V V ns ns µA VCS =0V VFB < 1.2V VSoftS = 4.4V
Limit Values typ. 0.8 1.6 0.2 11.5 10.5 7.5 150 55 max. 1.2 1.5 2.0 0.7
Unit V V V V V V V V ns ns A A
Test Condition VVCC = 5 V IGate = 5 mA VVCC = 5 V IGate = 20 mA IGate = 0 A IGate = 20 mA IGate = -20 mA VVCC = 20V CL = 4.7nF VVCC = 11V CL = 4.7nF VVCC = VVCCoff + 0.2V CL = 4.7nF VGate = 2V ...9V1) CL = 4.7nF VGate = 9V ...2V1) CL = 4.7nF CL = 4.7nF2) CL = 4.7nF2)
trise tfall IGATE IGATE
-0.5 -
Transient reference value Design characteristic (not meant for production testing)
Version 2.1
19
15 Nov 2005
F3 ICE3DS01L/LG
Typical Performance Characteristics
5
190 186
Typical Performance Characteristics
8,0 7,5
Start Up Current I VCCstart [uA]
182 178 174
PI-001
VCC Supply Current IVCCsup1 [mA]
7,0 6,5 6,0
PI-004
170 166 162 158 154 150
5,5 5,0 4,5 4,0 3,5 3,0
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 21
1,5 1,4
Start Up Current IVCCstart
Figure 24
9,0 8,5
VCC Supply Current IVCCsup1
VCC Charge Current IVCCcharge1 [mA]
VCC Supply Current IVCCsup2 [mA]
1,3 1,2 1,1
PI-002
8,0 7,5 7,0
PI-005
1,0 0,9 0,8 0,7 0,6 0,5
6,5 6,0 5,5 5,0 4,5 4,0
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 22
1,5 1,4 1,3 1,2 1,1
VCC Charge Current IVCCcharge1
Figure 25
400 380
VCC Supply Current IVCCsup2
VCC Charge Current I VCCcharge2 [mA]
VCC Supply Current IVCClatch [uA]
360 340 320
PI-006
PI-003
1,0 0,9 0,8 0,7 0,6 0,5
300 280 260 240 220 200
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 23
VCC Charge Current IVCCcharge2
Figure 26
VCC Supply Current IVCClatch
Version 2.1
20
15 Nov 2005
F3 ICE3DS01L/LG
Typical Performance Characteristics
400 380
16,0 15,8
VCC Turn-On Threshold VVCCon [V]
VCC Supply Current IVCCrestart [uA]
360 340 320
PI-007
15,6 15,4 15,2
PI-010
300 280 260 240 220 200
15,0 14,8 14,6 14,4 14,2 14,0
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 27
1,20 1,17
VCC Supply Current IVCCrestart
Figure 30
9,0 8,9
VCC Turn-On Threshold VVCCon
VCC Turn-Off Threshold VVCCoff [V]
VCC Supply Current IVCCburst1 [mA]
1,14 1,11 1,08
PI-008
8,8 8,7 8,6
PI-011
1,05 1,02 0,99 0,96 0,93 0,90
8,5 8,4 8,3 8,2 8,1 8,0
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 28
1,20
VCC Supply Current IVCCburst1
Figure 31
7,0
VCC Turn-Off Threshold VVCCoff
VCC Turn-On/Off Hysteresis VVCChys [V]
1,17
6,9 6,8 6,7 6,6
PI-012
VCC Supply Current IVCCburst2 [mA]
1,14 1,11 1,08
PI-009
1,05 1,02 0,99 0,96 0,93 0,90
6,5 6,4 6,3 6,2 6,1 6,0
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 29
VCC Supply Current IVCCburst2
Figure 32
VCC Turn-On/Off Hysteresis VVCChys
Version 2.1
21
15 Nov 2005
F3 ICE3DS01L/LG
Typical Performance Characteristics
6,60 6,58 6,56 6,54
3,90 3,86 3,82 3,78
Reference Voltage VREF [V]
PWM-OP Gain AV
6,52
PI-013
3,74
PI-016
6,50 6,48 6,46 6,44 6,42 6,40
3,70 3,66 3,62 3,58 3,54 3,50
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 33
120
Reference Voltage VREF
Figure 36
1,10
PWM-OP Gain AV
Max. Level Voltage Ramp V Max-Ramp [V]
118
1,05 1,00 0,95 0,90
PI-017
Oscillator Frequency fOSC1 [kHz]
116 114 112
PI-014
110 108 106 104 102 100
0,85 0,80 0,75 0,70 0,65 0,60
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 34
0,750
Oscillator Frequency fOSC1
Figure 37
26
Max. Level Voltage Ramp VMax-Ramp
0,740 0,735
Feedback Pull-Up Resistor R FB [kOhm]
0,745
25 24 23 22
PI-018
Max. Duty Cycle
0,730
PI-015
0,725 0,720 0,715 0,710 0,705 0,700
21 20 19 18 17 16
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 35
Max. Duty Cycle Dmax
Figure 38
Feedback Pull-Up Resistor RFB
Version 2.1
22
15 Nov 2005
F3 ICE3DS01L/LG
Typical Performance Characteristics
60
5,65
Soft-Start Pull-Up Resistor RSoftS [kOhm]
56 54 52
PI-019
Threshold Comparator C3 V SoftSC3 [V]
58
5,60 5,55 5,50 5,45
PI-022
50 48 46 44 42 40
5,40 5,35 5,30 5,25 5,20 5,15
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 39
4,20 4,16 4,12 4,08 4,04
Soft-Start Pull-Up Resistor RSoftS
Figure 42
1,360 1,352
Threshold Comparator C3 VSoftSC3
Threshold Comparator C2 VSoftSC2 [V]
Threshold Comparator C6 VFBC6 [V]
1,344 1,336 1,328
PI-023
3,96 3,92 3,88 3,84 3,80
PI-020
4,00
1,320 1,312 1,304 1,296 1,288 1,280
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 40
4,60 4,56
Threshold Comparator C2 VSoftSC2
Figure 43
4,20 4,16
Threshold Comparator C6 VFBC6
Clamped SoftS Voltage V SoftSclmp [V]
Threshold Comparator C5 VFBC5 [V]
4,52 4,48 4,44
PI-021
4,12 4,08 4,04
PI-024
4,40 4,36 4,32 4,28 4,24 4,20
4,00 3,96 3,92 3,88 3,84 3,80
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 41
Clamped SoftS Voltage VSoftSclmp
Figure 44
Threshold Comparator C5 VFBC5
Version 2.1
23
15 Nov 2005
F3 ICE3DS01L/LG
Typical Performance Characteristics
5,00 4,96
1,05
Peak Current Limitation Vcsth [V]
Threshold Comparator C4 VFBC4 [V]
1,04 1,03 1,02 1,01
PI-028
4,92 4,88 4,84
PI-025
4,80 4,76 4,72 4,68 4,64 4,60
1,00 0,99 0,98 0,97 0,96 0,95 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 45
22,0
Threshold Comparator C4 VFBC4
Figure 48
1,700 1,688
Peak Current Limitation Vcsth
Overvoltage Detection Limit V VCCOVP [V]
21,8 21,6 21,4 21,2
PI-026
Over Current Detection VCS1 [V]
1,676 1,664 1,652
PI-029
21,0 20,8 20,6 20,4 20,2 20,0
1,640 1,628 1,616 1,604 1,592 1,580
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 46
8,0 7,6
Overvoltage Detection Limit VVCCOVP
Figure 49
0,270 0,267
Over Current Detection VCS1
VCC Power Down Reset VVCCPD [V]
7,2 6,8 6,4
PI-027
Peak Current Limitation VCS2 [V]
0,264 0,261 0,258
PI-030
6,0 5,6 5,2 4,8 4,4 4,0
0,255 0,252 0,249 0,246 0,243 0,240
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 47
Threshold Power Down Reset VVCCPD
Figure 50
Peak Current Limitation VCS2
Version 2.1
24
15 Nov 2005
F3 ICE3DS01L/LG
Typical Performance Characteristics
400 370
12,0 11,7
Leading Edge Blanking tLEB [ns]
Gate High Voltage VGATEhigh [V]
340 310 280
PI-031
11,4 11,1 10,8
PI-034
250 220 190 160 130 100
10,5 10,2 9,9 9,6 9,3 9,0
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 51
300
Leading Edge Blanking tLEB
Figure 54
300 280 260
GATE High Voltage VGATEhigh
CS Spike Blanking for C11 t CSspike [ns]
280 260
Gate Rise Time trise [ns]
240 220
PI-032
240 220
PI-035
200 180 160 140 120 100
200 180 160 140 120 100
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 52
1,3 1,2
CS Spike Blanking for C11 tCSspike
Figure 55
80 76 72
GATE Rise Time trise
GATE Low Voltage VGATElow [V]
1,1
GATE Fall Time tfall [ns]
1,0 0,9
PI-033
68 64
PI-036
0,8 0,7 0,6 0,5 0,4 0,3
60 56 52 48 44 40
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 53
GATE Low Voltage VGATElow
Figure 56
GATE Fall Time tfall
Version 2.1
25
15 Nov 2005
F3 ICE3DS01L/LG
Outline Dimension
6
Outline Dimension
PG-DIP-8-6 (Plastic Dual In-Line Outline)
Figure 57 PG-DSO-8-8 (Plastic Dual Small Outline)
Figure 58
Dimensions in mm
Version 2.1
26
15 Nov 2005
Total Quality Management
Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen. Dazu gehört eine bestimmte Geisteshaltung unserer Mitarbeiter. Total Quality im Denken und Handeln gegenüber Kollegen, Lieferanten und Ihnen, unserem Kunden. Unsere Leitlinie ist jede Aufgabe mit „Null Fehlern“ zu lösen – in offener Sichtweise auch über den eigenen Arbeitsplatz hinaus – und uns ständig zu verbessern. Unternehmensweit orientieren wir uns dabei auch an „top“ (Time Optimized Processes), um Ihnen durch größere Schnelligkeit den entscheidenden Wettbewerbsvorsprung zu verschaffen. Geben Sie uns die Chance, hohe Leistung durch umfassende Qualität zu beweisen. Wir werden Sie überzeugen. Quality takes on an allencompassing significance at Semiconductor Group. For us it means living up to each and every one of your demands in the best possible way. So we are not only concerned with product quality. We direct our efforts equally at quality of supply and logistics, service and support, as well as all the other ways in which we advise and attend to you. Part of this is the very special attitude of our staff. Total Quality in thought and deed, towards co-workers, suppliers and you, our customer. Our guideline is “do everything with zero defects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly improve. Throughout the corporation we also think in terms of Time Optimized Processes (top), greater speed on our part to give you that decisive competitive edge. Give us the chance to prove the best of performance through the best of quality – you will be convinced.
http://www.infineon.com
Published by Infineon Technologies AG