0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SGB15N60

SGB15N60

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SGB15N60 - Fast IGBT in NPT-technology - Infineon Technologies AG

  • 详情介绍
  • 数据手册
  • 价格&库存
SGB15N60 数据手册
SGB15N60 Fast IGBT in NPT-technology • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Qualified according to JEDEC for target applications • Pb-free lead plating; RoHS compliant • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SGB15N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Gate-emitter voltage Avalanche energy, single pulse IC = 15 A, VCC = 50 V, RGE = 25 Ω , start at Tj = 25°C Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Soldering temperature (reflow soldering, MSL1) Tj , Tstg -55...+150 245 °C 2 1 C G E PG-TO-263-3-2 VCE 600V IC 15A VCE(sat) 2.3V Tj 150°C Marking G15N60 Package PG-TO-263-3-2 Symbol VCE IC Value 600 31 15 Unit V A ICpul s VGE EAS 62 62 ±20 85 V mJ tSC Ptot 10 139 µs W VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev.2.3 Nov 06 SGB15N60 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Thermal resistance, junction – ambient 1) Symbol RthJC RthJA Conditions Max. Value 0.9 40 Unit K/W Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µ A VCE(sat) V G E = 1 5 V , I C = 15 A T j =2 5 ° C T j =1 5 0 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 40 0 µ A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 ° C T j =1 5 0 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) Symbol Conditions Value min. 600 1.7 3 3 Typ. 2 2.3 4 10.9 800 84 52 76 7 150 max. 2.4 2.8 5 Unit V µA 40 2000 100 960 101 62 99 nC nH A nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 15 A V C E = 25 V , V G E = 0V , f = 1 MH z V C C = 48 0 V, I C =1 5 A V G E = 15 V V G E = 15 V , t S C ≤ 10 µ s V C C ≤ 6 0 0 V, Tj ≤ 150°C - Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: 1s. 2 Rev.2.3 Nov 06 1) 2 SGB15N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =2 5 ° C , V C C = 40 0 V, I C = 1 5 A, V G E = 0/ 15 V , R G = 21 Ω , 1) L σ = 18 0 nH , 1) C σ = 25 0 pF Energy losses include “tail” and diode reverse recovery. 32 23 234 46 0.30 0.27 0.57 38 28 281 55 0.36 0.35 0.71 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 ° C V C C = 40 0 V, I C = 1 5 A, 1) L σ =1 8 0n H, 1) C σ = 2 50 pF V G E = 0/ 15 V , R G = 21 Ω Energy losses include “tail” and diode reverse recovery. 31 23 261 54 0.45 0.41 0.86 38 28 313 65 0.54 0.53 1.07 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev.2.3 Nov 06 SGB15N60 80A 100A Ic 70A 60A tp=5µs 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 50A 40A 30A 20A 10A 0A 10Hz TC=110°C TC=80°C 10A 50µs 200µs 1A 1ms Ic 0.1A 1V 10V 100V DC 1000V 100Hz 1kHz 10kHz 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 21Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 35A 140W 30A 120W 100W 80W 60W 40W 20W 0W 25°C IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 25A 20A 15A 10A 5A 0A 25°C 50°C 75°C 100°C 125°C 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev.2.3 Nov 06 SGB15N60 50A 45A 40A 50A 45A 40A IC, COLLECTOR CURRENT VGE=20V 15V 13V 11V 9V 7V 5V IC, COLLECTOR CURRENT 35A 30A 25A 20A 15A 10A 5A 0A 0V 35A 30A 25A 20A 15A 10A 5A VGE=20V 15V 13V 11V 9V 7V 5V 1V 2V 3V 4V 5V 0A 0V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 45A 40A Tj=+25°C -55°C +150°C VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 50A 4.0V 3.5V IC = 30A IC, COLLECTOR CURRENT 35A 30A 25A 20A 15A 10A 5A 0A 0V 2V 4V 6V 3.0V 2.5V IC = 15A 2.0V 1.5V 8V 10V 1.0V -50°C 0°C 50°C 100°C 150°C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev.2.3 Nov 06 SGB15N60 td(off) td(off) t, SWITCHING TIMES 100ns tf t, SWITCHING TIMES 100ns tf td(on) tr 10ns 0Ω td(on) tr 10ns 5A 10A 15A 20A 25A 30A 20Ω 40Ω 60Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 1 Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) 5.5V td(off) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V -50°C 0°C 50°C 100°C 150°C typ. max. t, SWITCHING TIMES 100ns tf tr td(on) min. 10ns 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1 Ω, Dynamic test circuit in Figure E) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.4mA) 6 Rev.2.3 Nov 06 SGB15N60 1.8mJ 1.6mJ *) Eon and Ets include losses due to diode recovery. 1.4mJ Ets* 1.2mJ *) Eon and Ets include losses due to diode recovery. Ets* E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 1.4mJ 1.2mJ 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ 0.0mJ 0A Eon* Eoff 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ 0.0mJ 0Ω Eoff Eon* 5A 10A 15A 20A 25A 30A 35A 20Ω 40Ω 60Ω 80Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 1 Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) 1.0mJ Ets* ZthJC, TRANSIENT THERMAL IMPEDANCE *) Eon and Ets include losses due to diode recovery. 10 K/W D=0.5 0.2 10 K/W -1 0 E, SWITCHING ENERGY LOSSES 0.8mJ 0.1 0.05 0.02 0.6mJ Eon* 0.4mJ Eoff 10 K/W -2 0.01 R,(1/W) 0.5321 0.2047 0.1304 0.0027 R1 τ, (s) 0.04968 2.58*10-3 2.54*10-4 3.06*10-4 R2 0.2mJ 10 K/W single pulse -3 C 1= τ1/R 1 C 2= τ2/R 2 0.0mJ 0°C 50°C 100°C 150°C 10 K/W 1µs -4 10µs 100µs 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1 Ω, Dynamic test circuit in Figure E) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev.2.3 Nov 06 SGB15N60 25V 1nF 20V Ciss VGE, GATE-EMITTER VOLTAGE 15V 120V 480V C, CAPACITANCE 100pF Coss 10V 5V Crss 0V 0nC 25nC 50nC 75nC 100nC 10pF 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s 250A tsc, SHORT CIRCUIT WITHSTAND TIME 20 µ s IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 200A 15 µ s 150A 10 µ s 100A 5µ s 50A 0µ s 1 0V 11V 12V 13V 14V 15V 0A 10V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev.2.3 Nov 06 SGB15N60 PG-TO263-3-2 9 Rev.2.3 Nov 06 SGB15N60 τ1 Tj (t) p(t) r1 r2 τ2 τn rn r1 r2 rn TC Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit =180nH Leakage inductance Lσ a n d Stray capacity C σ =250pF. 10 Rev.2.3 Nov 06 SGB15N60 Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 11/30/06. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 11 Rev.2.3 Nov 06
SGB15N60
物料型号: - SGB15N60

器件简介: - 快速IGBT,采用NPT技术,与前一代相比,关断偏置电压($E_{off}$)降低了75%,并且导通损耗低。 - 短路承受时间为10微秒至15微秒。 - 设计用于电机控制和逆变器。 - NPT技术适用于600V应用,提供非常紧密的参数分布、高鲁棒性和温度稳定行为以及并行开关能力。 - 根据JEDEC1标准对目标应用进行认证。 - 无铅引脚镀层,符合RoHS标准。

引脚分配: - 3个引脚,分别为集电极、发射极和门极。

参数特性: - 最大额定值: - 集电极-发射极电压:600V - DC集电极电流:31A(Tc=25°C),15A(Tc=100°C) - 脉冲集电极电流:62A - 门极-发射极电压:±20V - 雪崩能量:85mJ - 短路承受时间:10秒 - 功率耗散:139W - 工作结和存储温度:-55°C至+150°C - 焊接温度:245°C - 热阻: - IGBT热阻(结-外壳):0.9K/W - 热阻(结-环境):40K/W - 电气特性(在Tj=25°C下,除非另有说明): - 集电极-发射极击穿电压:600V - 集电极-发射极饱和电压:1.7V至2.8V - 门极-发射极阈值电压:3V至5V - 零门极电压集电极电流:40μA至2000μA - 门极-发射极漏电流:100nA - 跨导:3S至10.9S - 输入电容:800pF至960pF - 输出电容:84pF至101pF - 反向传输电容:52pF至62pF - 门极电荷:76nC至99nC - 内部发射极电感:7nH - 短路集电极电流:150A

功能详解: - 该IGBT器件具有低关断偏置电压和低导通损耗,适用于需要快速开关的应用,如电机控制和逆变器。其NPT技术提供了紧密的参数分布和高鲁棒性,适合600V应用。

应用信息: - 设计用于电机控制和逆变器。

封装信息: - PG-TO-263-3-2封装。
SGB15N60 价格&库存

很抱歉,暂时无法提供与“SGB15N60”相匹配的价格&库存,您可以联系我们找货

免费人工找货