0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SGD02N60

SGD02N60

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SGD02N60 - FAST IGBT IN NPT TECHNOLOGY - Infineon Technologies AG

  • 数据手册
  • 价格&库存
SGD02N60 数据手册
SGP02N60, Fast IGBT in NPT-technology • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability SGB02N60 SGD02N60 C G E P-TO-252-3-1 (D-PAK) (TO-252AA) P-TO-220-3-1 (TO-220AB) P-TO-263-3-2 (D²-PAK) (TO-263AB) • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SGP02N60 SGB02N60 SGD02N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Gate-emitter voltage Avalanche energy, single pulse IC = 2 A, VCC = 50 V, RGE = 25 Ω , start at Tj = 25°C Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Tj , Tstg -55...+150 °C 1) VCE 600V IC 2A VCE(sat) 2.2V Tj 150°C Package TO-220AB TO-263AB TO-252AA(DPAK) Ordering Code Q67040-S4504 Q67040-S4505 Q67041-A4707 Symbol VCE IC Value 600 6.0 2.9 Unit V A ICpul s VGE EAS 12 12 ±20 13 V mJ tSC Ptot 10 30 µs W VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C 1) Allowed number of short circuits: 1s. 1 Jul-02 SGP02N60, Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Thermal resistance, junction – ambient SMD version, device on PCB 1) SGB02N60 SGD02N60 Max. Value Unit Symbol Conditions RthJC RthJA RthJA TO-220AB TO-252AA TO-263AB 4.2 62 50 40 K/W Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µ A VCE(sat) VGE = 15V, IC=2A T j =2 5 ° C T j =1 5 0 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 15 0 µ A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 ° C T j =1 5 0 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) Symbol Conditions Value min. 600 1.7 3 Typ. 1.9 2.2 4 1.6 142 18 10 14 7 20 max. 2.4 2.7 5 Unit V µA 20 250 100 170 22 12 18 nC nH A nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 2 A V C E = 25 V , V G E = 0V , f = 1 MH z V C C = 48 0 V, I C =2 A V G E = 15 V T O - 22 0A B V G E = 15 V , t S C ≤ 10 µ s V C C ≤ 6 0 0 V, Tj ≤ 150°C Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: 1s. 1) 2 2 Jul-02 SGP02N60, Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =2 5 ° C , V C C = 40 0 V, I C = 2 A, V G E = 0/ 15 V , R G = 11 8 Ω , 1) L σ = 18 0 nH , 1) C σ = 18 0 pF Energy losses include “tail” and diode reverse recovery. Symbol Conditions SGB02N60 SGD02N60 Value min. typ. 20 13 259 52 0.036 0.028 0.064 max. 24 16 311 62 0.041 0.036 0.078 mJ Unit ns Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 ° C, V C C = 40 0 V, I C =2 A , V G E = 0/ 15 V , R G = 11 8 Ω , 1) L σ = 18 0 nH , 1) C σ = 18 0 pF Energy losses include “tail” and diode reverse recovery. 20 14 287 67 0.054 0.043 0.097 24 17 344 80 0.062 0.056 0.118 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L σ a n d Stray capacity C σ due to dynamic test circuit in Figure E. 3 Jul-02 SGP02N60, 16A SGB02N60 SGD02N60 t p =2 µ s Ic 14A 12A 10A IC, COLLECTOR CURRENT 10A 8A 6A T C =110°C 4A 2A 0A 10Hz T C =80°C IC, COLLECTOR CURRENT 15 µ s 1A 50 µ s 200 µ s 0.1A 1ms DC Ic 0 .01A 100Hz 1kHz 10kHz 100kHz 1V 10V 100V 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 118Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 35W 30W 25W 20W 15W 10W 5W 0W 25°C 7A 6A 5A 4A 3A 2A 1A 0A 25°C IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 50°C 75°C 100°C 125°C 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation (IGBT) as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Jul-02 SGP02N60, 7A 6A 5A 4A 3A 2A 1A 0A 0V V G E =20V 15V 13V 11V 9V 7V 5V 7A 6A 5A V G E =20V 4A 3A 2A 1A 0A 0V 15V 13V 11V 9V 7V 5V SGB02N60 SGD02N60 IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 1V 2V 3V 4V 5V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 7A 6A Tj=+25°C -55°C +150°C VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 8A 4.0V 3.5V IC = 4A 3.0V IC, COLLECTOR CURRENT 5A 4A 3A 2A 1A 0A 0V 2.5V IC = 2A 2.0V 1.5V 2V 4V 6V 8V 10V 1.0V -50°C 0°C 50°C 100°C 150°C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Jul-02 SGP02N60, SGB02N60 SGD02N60 t d(off) t d(off) t, SWITCHING TIMES tf 100ns t, SWITCHING TIMES tf 100ns td(on) t d(on) tr 10ns 0A 1A 2A 3A 4A 5A 10ns 0Ω 100 Ω 200 Ω 300 Ω tr 400 Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 1 1 8 Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 2A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE t d(off) 5.5V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V -50°C 0°C 50°C 100°C 150°C t, SWITCHING TIMES 100ns tf max. t d(on) typ. tr 10ns 0°C 50°C 100°C 150°C min. Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 2A, RG = 1 1 8 Ω, Dynamic test circuit in Figure E) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.15mA) 6 Jul-02 SGP02N60, 0.2mJ *) Eon and Ets include losses due to diode recovery. SGB02N60 SGD02N60 *) Eon and Ets include losses due to diode recovery. E, SWITCHING ENERGY LOSSES E ts * E, SWITCHING ENERGY LOSSES 0.2mJ 0.1mJ E ts * 0.1mJ E on * E off E on * E off 0.0mJ 0A 0.0mJ 0Ω 1A 2A 3A 4A 5A 100 Ω 200 Ω 300 Ω 400 Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 1 1 8 Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 2A, Dynamic test circuit in Figure E) 0.2mJ *) Eon and Ets include losses due to diode recovery. D =0.5 ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES E ts * 10 K/W 0 0.2 0.1 0.05 0.02 R,(K/W) 1.026 1.3 1.69 0.183 R1 0.1mJ E on * 10 K/W 0.01 -1 E off τ, (s) 0.035 3.62*10-3 4.02*10-4 4.21*10-5 R2 10 K/W 1µs -2 single pulse 10µs 100µs 0.0mJ 0°C C1 =τ1/ R1 C2 =τ 2/ R2 50°C 100°C 150°C 1m s 10m s 100m s 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 2A, RG = 1 1 8 Ω, Dynamic test circuit in Figure E) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Jul-02 SGP02N60, 25V SGB02N60 SGD02N60 20V VGE, GATE-EMITTER VOLTAGE C iss 100pF 15V 120V 480V 10V C, CAPACITANCE C oss 5V 10pF C rss 0V 0nC 5nC 10nC 15nC 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 2A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s 40A 20 µ s IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 11V 12V 13V 14V 15V tsc, SHORT CIRCUIT WITHSTAND TIME 30A 15 µ s 20A 10 µ s 10A 5µ s 0µ s 10V 0A 10V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V,Tj = 150°C) 8 Jul-02 SGP02N60, TO-220AB symbol SGB02N60 SGD02N60 dimensions [mm] min max 10.30 15.95 0.86 3.89 3.00 6.80 14.00 4.75 0.65 1.32 min [inch] max 0.4055 0.6280 0.0339 0.1531 0.1181 0.2677 0.5512 0.1870 0.0256 0.0520 A B C D E F G H K L M N P T 9.70 14.88 0.65 3.55 2.60 6.00 13.00 4.35 0.38 0.95 0.3819 0.5858 0.0256 0.1398 0.1024 0.2362 0.5118 0.1713 0.0150 0.0374 2.54 typ. 4.30 1.17 2.30 4.50 1.40 2.72 0.1 typ. 0.1693 0.0461 0.0906 0.1772 0.0551 0.1071 TO-263AB (D2Pak) symbol dimensions [mm] min max 10.20 1.30 1.60 1.07 min [inch] max 0.4016 0.0512 0.0630 0.0421 A B C D E F G H K L M N P Q R S T U V W X Y Z 9.80 0.70 1.00 1.03 0.3858 0.0276 0.0394 0.0406 2.54 typ. 0.65 0.85 0.1 typ. 0.0256 0.0335 5.08 typ. 4.30 1.17 9.05 2.30 4.50 1.37 9.45 2.50 0.2 typ. 0.1693 0.0461 0.3563 0.0906 0.1772 0.0539 0.3720 0.0984 15 typ. 0.00 4.20 2.40 0.40 10.80 1.15 6.23 4.60 9.40 16.15 0.20 5.20 3.00 0.60 0.5906 typ. 0.0000 0.1654 0.0945 0.0157 0.0079 0.2047 0.1181 0.0236 8° max 8° max 0.4252 0.0453 0.2453 0.1811 0.3701 0.6358 9 Jul-02 SGP02N60, P-TO252 (D-Pak) symbol min A B C D E F G H K L M N P R S T U 2.19 0.76 0.90 5.97 9.40 0.46 0.87 0.51 5.00 4.17 0.26 6.40 5.25 (0.65) 0.63 SGB02N60 SGD02N60 dimensions [mm] max 6.73 5.50 (1.15) 0.89 2.28 2.39 0.98 1.21 6.23 10.40 0.58 1.15 1.02 min 0.2520 0.2067 0.0248 inch] max 0.2650 0.2165 0.0350 (0.0256) (0.0453) 0.2520 0.0862 0.0941 0.0299 0.0354 0.2350 0.3701 0.0181 0.0343 0.0201 0.1969 0.1642 0.0102 0.0386 0.0476 0.2453 0.4094 0.0228 0.0453 0.0402 - P-TO251 (I-Pak) symbol min A B C D E F G H K L M N 6.47 5.25 4.19 0.63 [mm] dimensions [inch] max 6.73 5.41 4.43 0.89 min 0.2547 0.2067 0.1650 0.0248 max 0.2650 0.2130 0.1744 0.0350 2.29 typ. 2.18 2.39 0.76 1.01 5.97 9.14 0.46 0.98 0.86 1.11 6.23 9.65 0.56 1.15 0.0902 typ. 0.0858 0.0941 0.0299 0.0398 0.2350 0.3598 0.0181 0.0386 0.0339 0.0437 0.2453 0.3799 0.0220 0.0453 10 Jul-02 SGP02N60, τ1 Tj (t) p(t) SGB02N60 SGD02N60 τ2 r2 r1 τn rn r1 r2 rn TC Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =180pF. 11 Jul-02 SGP02N60, SGB02N60 SGD02N60 Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 12 Jul-02
SGD02N60 价格&库存

很抱歉,暂时无法提供与“SGD02N60”相匹配的价格&库存,您可以联系我们找货

免费人工找货