SGP02N60,
Fast IGBT in NPT-technology
• 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability
SGB02N60 SGD02N60
C
G
E
P-TO-252-3-1 (D-PAK) (TO-252AA)
P-TO-220-3-1 (TO-220AB)
P-TO-263-3-2 (D²-PAK) (TO-263AB)
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SGP02N60 SGB02N60 SGD02N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Gate-emitter voltage Avalanche energy, single pulse IC = 2 A, VCC = 50 V, RGE = 25 Ω , start at Tj = 25°C Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Tj , Tstg -55...+150 °C
1)
VCE 600V
IC 2A
VCE(sat) 2.2V
Tj 150°C
Package TO-220AB TO-263AB TO-252AA(DPAK)
Ordering Code Q67040-S4504 Q67040-S4505 Q67041-A4707
Symbol VCE IC
Value 600 6.0 2.9
Unit V A
ICpul s VGE EAS
12 12 ±20 13 V mJ
tSC Ptot
10 30
µs W
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
1)
Allowed number of short circuits: 1s. 1 Jul-02
SGP02N60,
Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Thermal resistance, junction – ambient SMD version, device on PCB
1)
SGB02N60 SGD02N60
Max. Value Unit
Symbol
Conditions
RthJC RthJA RthJA TO-220AB TO-252AA TO-263AB
4.2 62 50 40
K/W
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µ A VCE(sat) VGE = 15V, IC=2A T j =2 5 ° C T j =1 5 0 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 15 0 µ A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 ° C T j =1 5 0 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current
2)
Symbol
Conditions
Value min. 600 1.7 3 Typ. 1.9 2.2 4 1.6 142 18 10 14 7 20 max. 2.4 2.7 5
Unit
V
µA 20 250 100 170 22 12 18 nC nH A nA S pF
IGES gfs Ciss Coss Crss QGate LE IC(SC)
V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 2 A V C E = 25 V , V G E = 0V , f = 1 MH z V C C = 48 0 V, I C =2 A V G E = 15 V T O - 22 0A B V G E = 15 V , t S C ≤ 10 µ s V C C ≤ 6 0 0 V, Tj ≤ 150°C
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: 1s.
1) 2
2
Jul-02
SGP02N60,
Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =2 5 ° C , V C C = 40 0 V, I C = 2 A, V G E = 0/ 15 V , R G = 11 8 Ω , 1) L σ = 18 0 nH , 1) C σ = 18 0 pF Energy losses include “tail” and diode reverse recovery. Symbol Conditions
SGB02N60 SGD02N60
Value min. typ. 20 13 259 52 0.036 0.028 0.064 max. 24 16 311 62 0.041 0.036 0.078 mJ Unit
ns
Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 ° C, V C C = 40 0 V, I C =2 A , V G E = 0/ 15 V , R G = 11 8 Ω , 1) L σ = 18 0 nH , 1) C σ = 18 0 pF Energy losses include “tail” and diode reverse recovery. 20 14 287 67 0.054 0.043 0.097 24 17 344 80 0.062 0.056 0.118 mJ ns Symbol Conditions Value min. typ. max. Unit
1)
Leakage inductance L σ a n d Stray capacity C σ due to dynamic test circuit in Figure E. 3 Jul-02
SGP02N60,
16A
SGB02N60 SGD02N60
t p =2 µ s
Ic
14A 12A
10A
IC, COLLECTOR CURRENT
10A 8A 6A T C =110°C 4A 2A 0A 10Hz T C =80°C
IC, COLLECTOR CURRENT
15 µ s 1A
50 µ s
200 µ s 0.1A 1ms DC
Ic
0 .01A
100Hz
1kHz
10kHz
100kHz
1V
10V
100V
1000V
f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 118Ω)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C)
35W 30W 25W 20W 15W 10W 5W 0W 25°C
7A 6A 5A 4A 3A 2A 1A 0A 25°C
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
50°C
75°C
100°C
125°C
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE Figure 3. Power dissipation (IGBT) as a function of case temperature (Tj ≤ 150°C)
TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C)
4
Jul-02
SGP02N60,
7A 6A 5A 4A 3A 2A 1A 0A 0V V G E =20V 15V 13V 11V 9V 7V 5V
7A 6A 5A V G E =20V 4A 3A 2A 1A 0A 0V 15V 13V 11V 9V 7V 5V
SGB02N60 SGD02N60
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
1V
2V
3V
4V
5V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C)
7A 6A
Tj=+25°C -55°C +150°C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
8A
4.0V
3.5V
IC = 4A
3.0V
IC, COLLECTOR CURRENT
5A 4A 3A 2A 1A 0A 0V
2.5V
IC = 2A
2.0V
1.5V
2V
4V
6V
8V
10V
1.0V
-50°C
0°C
50°C
100°C
150°C
VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V)
Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V)
5
Jul-02
SGP02N60,
SGB02N60 SGD02N60
t d(off)
t d(off)
t, SWITCHING TIMES
tf 100ns
t, SWITCHING TIMES
tf 100ns
td(on)
t d(on)
tr 10ns 0A 1A 2A 3A 4A 5A 10ns 0Ω 100 Ω 200 Ω 300 Ω
tr 400 Ω
IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 1 1 8 Ω, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 2A, Dynamic test circuit in Figure E)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
t d(off)
5.5V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V -50°C 0°C 50°C 100°C 150°C
t, SWITCHING TIMES
100ns tf
max.
t d(on)
typ.
tr 10ns 0°C 50°C 100°C 150°C
min.
Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 2A, RG = 1 1 8 Ω, Dynamic test circuit in Figure E)
Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.15mA)
6
Jul-02
SGP02N60,
0.2mJ
*) Eon and Ets include losses due to diode recovery.
SGB02N60 SGD02N60
*) Eon and Ets include losses due to diode recovery.
E, SWITCHING ENERGY LOSSES
E ts *
E, SWITCHING ENERGY LOSSES
0.2mJ
0.1mJ
E ts *
0.1mJ
E on * E off
E on *
E off 0.0mJ 0A 0.0mJ 0Ω
1A
2A
3A
4A
5A
100 Ω
200 Ω
300 Ω
400 Ω
IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 1 1 8 Ω, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 2A, Dynamic test circuit in Figure E)
0.2mJ
*) Eon and Ets include losses due to diode recovery. D =0.5
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
E ts *
10 K/W
0
0.2 0.1 0.05 0.02
R,(K/W) 1.026 1.3 1.69 0.183
R1
0.1mJ
E on *
10 K/W 0.01
-1
E off
τ, (s) 0.035 3.62*10-3 4.02*10-4 4.21*10-5
R2
10 K/W 1µs
-2
single pulse 10µs 100µs
0.0mJ 0°C
C1 =τ1/ R1 C2 =τ 2/ R2
50°C
100°C
150°C
1m s
10m s 100m s
1s
Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 2A, RG = 1 1 8 Ω, Dynamic test circuit in Figure E)
tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
7
Jul-02
SGP02N60,
25V
SGB02N60 SGD02N60
20V
VGE, GATE-EMITTER VOLTAGE
C iss 100pF
15V
120V
480V
10V
C, CAPACITANCE
C oss
5V 10pF C rss 0V 0nC 5nC 10nC 15nC 0V 10V 20V 30V
QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 2A)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz)
25 µ s
40A
20 µ s
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
11V 12V 13V 14V 15V
tsc, SHORT CIRCUIT WITHSTAND TIME
30A
15 µ s
20A
10 µ s
10A
5µ s
0µ s 10V
0A 10V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C)
VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V,Tj = 150°C)
8
Jul-02
SGP02N60,
TO-220AB
symbol
SGB02N60 SGD02N60
dimensions
[mm] min max 10.30 15.95 0.86 3.89 3.00 6.80 14.00 4.75 0.65 1.32 min
[inch] max 0.4055 0.6280 0.0339 0.1531 0.1181 0.2677 0.5512 0.1870 0.0256 0.0520
A B C D E F G H K L M N P T
9.70 14.88 0.65 3.55 2.60 6.00 13.00 4.35 0.38 0.95
0.3819 0.5858 0.0256 0.1398 0.1024 0.2362 0.5118 0.1713 0.0150 0.0374
2.54 typ. 4.30 1.17 2.30 4.50 1.40 2.72
0.1 typ. 0.1693 0.0461 0.0906 0.1772 0.0551 0.1071
TO-263AB (D2Pak)
symbol
dimensions
[mm] min max 10.20 1.30 1.60 1.07 min
[inch] max 0.4016 0.0512 0.0630 0.0421
A B C D E F G H K L M N P Q R S T U V W X Y Z
9.80 0.70 1.00 1.03
0.3858 0.0276 0.0394 0.0406
2.54 typ. 0.65 0.85
0.1 typ. 0.0256 0.0335
5.08 typ. 4.30 1.17 9.05 2.30 4.50 1.37 9.45 2.50
0.2 typ. 0.1693 0.0461 0.3563 0.0906 0.1772 0.0539 0.3720 0.0984
15 typ. 0.00 4.20 2.40 0.40 10.80 1.15 6.23 4.60 9.40 16.15 0.20 5.20 3.00 0.60
0.5906 typ. 0.0000 0.1654 0.0945 0.0157 0.0079 0.2047 0.1181 0.0236
8° max
8° max
0.4252 0.0453 0.2453 0.1811 0.3701 0.6358
9
Jul-02
SGP02N60,
P-TO252 (D-Pak)
symbol min A B C D E F G H K L M N P R S T U 2.19 0.76 0.90 5.97 9.40 0.46 0.87 0.51 5.00 4.17 0.26 6.40 5.25 (0.65) 0.63
SGB02N60 SGD02N60
dimensions [mm] max 6.73 5.50 (1.15) 0.89 2.28 2.39 0.98 1.21 6.23 10.40 0.58 1.15 1.02 min 0.2520 0.2067 0.0248 inch] max 0.2650 0.2165 0.0350
(0.0256) (0.0453) 0.2520 0.0862 0.0941 0.0299 0.0354 0.2350 0.3701 0.0181 0.0343 0.0201 0.1969 0.1642 0.0102 0.0386 0.0476 0.2453 0.4094 0.0228 0.0453 0.0402 -
P-TO251 (I-Pak)
symbol min A B C D E F G H K L M N 6.47 5.25 4.19 0.63 [mm]
dimensions [inch] max 6.73 5.41 4.43 0.89 min 0.2547 0.2067 0.1650 0.0248 max 0.2650 0.2130 0.1744 0.0350
2.29 typ. 2.18 2.39 0.76 1.01 5.97 9.14 0.46 0.98 0.86 1.11 6.23 9.65 0.56 1.15
0.0902 typ. 0.0858 0.0941 0.0299 0.0398 0.2350 0.3598 0.0181 0.0386 0.0339 0.0437 0.2453 0.3799 0.0220 0.0453
10
Jul-02
SGP02N60,
τ1
Tj (t) p(t)
SGB02N60 SGD02N60
τ2
r2 r1
τn
rn
r1
r2
rn
TC
Figure D. Thermal equivalent circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =180pF.
11
Jul-02
SGP02N60,
SGB02N60 SGD02N60
Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
12
Jul-02