0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SGD04N60

SGD04N60

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SGD04N60 - Fast IGBT in NPT-technology 75% lower Eoff compared to previous generation - Infineon Tec...

  • 数据手册
  • 价格&库存
SGD04N60 数据手册
SGP04N60 SGD04N60 Fast IGBT in NPT-technology • 75% lower Eoff compared to previous generation C combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls G E - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour PG-TO-220-3-1 PG-TO-252-3-1 (D-PAK) - parallel switching capability (TO-220AB) (TO-252AA) • Pb-free lead plating; RoHS compliant 2 • Qualified according to JEDEC for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SGP04N60 SGD04N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Gate-emitter voltage Avalanche energy, single pulse IC = 4 A, VCC = 50 V, RGE = 25 Ω , start at Tj = 25°C Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Soldering temperature, PG-TO-252: (reflow soldering, MSL3) Others: wavesoldering, 1.6mm (0.063 in.) from case for 10s Tj , Tstg Ts -55...+150 260 260 °C 1) VCE 600V 600V IC 4A 4A VCE(sat)150°C 2.3V 2.3V Tj 150°C 150°C Marking G04N60 G04N60 Package PG-TO-220-3-1 PG-TO-252-3-11 Symbol VCE IC Value 600 9.4 4.9 Unit V A ICpul s VGE EAS 19 19 ±20 25 V mJ tSC Ptot 10 50 µs W VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C 2 1) J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Thermal resistance, junction – ambient SMD version, device on PCB 1) Symbol RthJC RthJA RthJA Conditions Max. Value 2.5 Unit K/W PG-TO-220-3-1 PG-TO-252-3-1 62 50 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µ A VCE(sat) VGE = 15V, IC=4A T j =2 5 ° C T j =1 5 0 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 20 0 µ A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 ° C T j =1 5 0 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) Symbol Conditions Value min. 600 1.7 3 Typ. 2.0 2.3 4 3.1 264 29 17 24 7 40 max. 2.4 2.8 5 Unit V µA 20 500 100 317 35 20 31 nC nH A nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 4 A V C E = 25 V , V G E = 0V , f = 1 MH z V C C = 48 0 V, I C =4 A V G E = 15 V V G E = 15 V , t S C ≤ 10 µ s V C C ≤ 6 0 0 V, Tj ≤ 150°C - Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: 1s. 2 Rev. 2.2 Sep 07 1) 2 SGP04N60 SGD04N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =2 5 ° C , V C C = 40 0 V, I C = 4 A, V G E = 0/ 15 V , R G =67Ω , 1) L σ = 18 0 nH , 1) C σ = 18 0 pF Energy losses include “tail” and diode reverse recovery. 22 15 237 70 0.070 0.061 0.131 26 18 284 84 0.081 0.079 0.160 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 ° C V C C = 40 0 V, I C =4 A , V G E = 0/ 15 V , R G = 67 Ω , 1) L σ = 18 0 nH , 1) C σ = 18 0 pF Energy losses include “tail” and diode reverse recovery. 22 16 264 104 0.115 0.111 0.226 26 19 317 125 0.132 0.144 0.277 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 Ic 10A t p =2 µ s 20A 15 µ s IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT T C =80°C 10A T C =110°C 1A 50 µ s 200 µ s 1ms 0.1A DC Ic 0A 1 0Hz 0 .01A 100Hz 1kHz 10kHz 100kHz 1V 10V 100V 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 67Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 60W 12A 50W 10A 40W IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 8A 30W 6A 20W 4A 10W 2A 0W 2 5°C 50°C 75°C 100°C 125°C 0A 2 5°C 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 15A 15A 12A 12A VGE=20V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT VGE=20V 9A 15V 13V 11V 9V 7V 5V 9A 6A 15V 13V 11V 9V 7V 5V 6A 3A 3A 0A 0V 1V 2V 3V 4V 5V 0A 0V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 12A 10A 8A 6A 4A 2A 0A 0V Tj=+25°C -55°C +150°C VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 14A 4.0V 3.5V IC = 8A IC, COLLECTOR CURRENT 3.0V 2.5V IC = 4A 2.0V 1.5V 2V 4V 6V 8V 10V 1.0V -50°C 0°C 50°C 100°C 150°C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 td(off) t d(off) t, SWITCHING TIMES 100ns tf t, SWITCHING TIMES 100ns tf t d(on) t d(on) tr 10ns 0A 2A 4A 6A 8A 10A 10ns 0Ω 50 Ω 100 Ω 150 Ω tr 200 Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 67Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 4A, Dynamic test circuit in Figure E) 5.5V td(off) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V - 50°C 0°C 50°C 100°C 150°C typ. max. t, SWITCHING TIMES 100ns tf td(on) tr 10ns 0 °C 50°C 100°C 150°C min. Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 4A, RG = 67Ω, Dynamic test circuit in Figure E) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.2mA) 6 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 0.6mJ *) Eon and Ets include losses due to diode recovery. 0.4mJ *) Eon and Ets include losses due to diode recovery. 0.5mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 0.3mJ 0.4mJ E ts * E ts * 0.2mJ 0.3mJ E on * 0.2mJ E off 0.1mJ E off 0.1mJ E on * 0.0mJ 0A 2A 4A 6A 8A 10A 0.0mJ 0Ω 50 Ω 100 Ω 150 Ω 200 Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 67Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 4A, Dynamic test circuit in Figure E) 0.3mJ *) Eon and Ets include losses due to diode recovery. D =0.5 10 K/W 0 ZthJC, TRANSIENT THERMAL IMPEDANCE 0.2 0.1 0.05 E, SWITCHING ENERGY LOSSES 0.2mJ E ts * 10 K/W 0.02 0.01 R,(K/W) 0.815 0.698 0.941 0.046 R1 -1 0.1mJ E on * 10 K/W -2 τ, (s) 0.0407 5.24*10-3 4.97*10-4 4.31*10-5 R2 E off 0.0mJ 0 °C single pulse 50°C 100°C 150°C 10 K/W 1 µs -3 C1 =τ1/ R1 C2 =τ 2/ R2 10µs 100µs 1m s 10m s 100m s 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 4A, RG = 67Ω, Dynamic test circuit in Figure E) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 25V C iss 20V VGE, GATE-EMITTER VOLTAGE 15V 120V 480V C, CAPACITANCE 100pF 10V C oss 5V 10pF 0V 0 nC C rss 10nC 20nC 30nC 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 4A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s 70A IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 11V 12V 13V 14V 15V 60A 50A 40A 30A 20A 10A 0A 1 0V tsc, SHORT CIRCUIT WITHSTAND TIME 20 µ s 15 µ s 10 µ s 5µ s 0µ s 1 0V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 PG-TO-220-3-1 9 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 P-TO252-3-11 10 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 τ1 Tj (t) p(t) r1 r2 τ2 τn rn r1 r2 rn TC Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance L σ =180nH a n d Stray capacity C σ =180pF. Published by Infineon Technologies AG, 11 Rev. 2.2 Sep 07 SGP04N60 SGD04N60 Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 9/12/07. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 12 Rev. 2.2 Sep 07
SGD04N60 价格&库存

很抱歉,暂时无法提供与“SGD04N60”相匹配的价格&库存,您可以联系我们找货

免费人工找货