SKP06N60 SKA06N60
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
• 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: Motor controls, Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode PG-TO-220-3-1 (TO-220AB) • Isolated TO-220, 2.5kV, 60s • Pb-free lead plating; RoHS compliant 1 • Qualified according to JEDEC for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKP06N60 SKA06N60 Maximum Ratings Parameter Symbol Value
SKP06N60 SKA06N60
C
G
E
PG-TO-220-3-31 / -111 (FullPAK)
VCE 600V 600V
IC 6A 5A
VCE(sat) 2.3V 2.3V
Tj 150°C 150°C
Marking K06N60 K06N60
Package PG-TO-220-3-1 PG-TO-220-3-31 / -111
Unit
Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Diode forward current TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25°C Mounting Torque, Screw: M2.5 (Fullpak), M3 (TO220) Operating junction and storage temperature Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s
3 2
VCE IC
600 12 6.9
600 9 5.0 24 24 12 6 24 ±20 10 32 0.5 260
V A
ICpul s IF
24 24 12 6
IFpul s VGE tSC Ptot M Tj , Tstg Ts
24 ±20 10 68 0.6 260
V µs W Nm °C
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
-55...+150 -55...+150 °C
1 2
J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 3 Maximum mounting processes: 3 1 Rev. 2.3 Sep 07
SKP06N60 SKA06N60
Thermal Resistance Parameter Symbol Conditions Max. Value
SKP06N60 SKA06N60
Unit
Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient RthJA PG-TO-220-3-1 PG-TO220-3-31 /-111 62 65 RthJCD 3.5 5.0 RthJC 1.85 3.9 K/W
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µ A VCE(sat) VGE = 15V, IC=6A T j =2 5 ° C T j =1 5 0 ° C Diode forward voltage VF V G E = 0V , I F = 6 A T j =2 5 ° C T j =1 5 0 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 25 0 µ A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 ° C T j =1 5 0 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current
2)
Symbol
Conditions
Value min. 600 1.7 1.2 3 Typ. 2.0 2.3 1.4 1.25 4 4.2 350 38 23 32 7 60 max. 2.4 2.8 1.8 1.65 5
Unit
V
µA 20 700 100 420 46 28 42 nC nH A nA S pF
IGES gfs Ciss Coss Crss QGate LE IC(SC)
V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 6 A V C E = 25 V , V G E = 0V , f = 1 MH z V C C = 48 0 V, I C =6 A V G E = 15 V
V G E = 15 V , t S C ≤ 10 µ s V C C ≤ 6 0 0 V, Tj ≤ 150°C
-
2)
Allowed number of short circuits: 1s. 2 Rev. 2.3 Sep 07
SKP06N60 SKA06N60
Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm d i r r /d t T j =2 5 ° C , V R = 2 00 V , I F = 6 A, d i F / d t =2 0 0 A/ µ s 200 17 183 200 2.8 180 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j =2 5 ° C , V C C = 40 0 V, I C = 6 A, V G E = 0/ 15 V , R G =50Ω , 1) L σ = 18 0 nH , 1) C σ = 25 0 pF Energy losses include “tail” and diode reverse recovery. 25 18 220 54 0.110 0.105 0.215 30 22 264 65 0.127 0.137 0.263 mJ ns Symbol Conditions Value min. typ. max. Unit
Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm d i r r /d t T j =1 5 0 ° C V R = 2 00 V , I F = 6 A, d i F / d t =2 0 0 A/ µ s 290 27 263 500 5.0 200 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 ° C V C C = 40 0 V, I C = 6 A, V G E = 0/ 15 V , R G = 50 Ω , 1) L σ =1 8 0n H, 1) C σ = 2 50 pF Energy losses include “tail” and diode reverse recovery. 24 17 248 70 0.167 0.153 0.320 29 20 298 84 0.192 0.199 0.391 mJ ns Symbol Conditions Value min. typ. max. Unit
1)
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2.3 Sep 07
SKP06N60 SKA06N60
30A
SKP06N60 SKA06N60
Ic
tp=2µs 10A 15µs
IC, COLLECTOR CURRENT
20A TC=80°C
IC, COLLECTOR CURRENT
50µs
TC=110°C 10A
1A
200µs 1ms
Ic
0A 10Hz
SKP06N60 SKA06N60
0.1A 1V 10V 100V
DC
100Hz 1kHz 10kHz 100kHz
1000V
f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 50Ω)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C)
SKP06N60
80W
SKP06N60
Ptot, POWER DISSIPATION
60W
IC, COLLECTOR CURRENT
10A
40W
SKA06N60
20W
SKA06N60
5A
0W 2 5°C
50°C
75°C
100°C
125°C
0A 25°C
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C)
TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C)
4
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
20A
20A
15A
15A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
VGE=20V 10A 15V 13V 11V 9V 7V 5V
VGE=20V 10A 15V 13V 11V 9V 7V 5V
5A
5A
0A 0V
1V
2V
3V
4V
5V
0A 0V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C)
18A 16A
Tj=+25°C -55°C +150°C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
20A
4.0V
3.5V
IC = 12A
IC, COLLECTOR CURRENT
14A 12A 10A 8A 6A 4A 2A 0A 0V 2V 4V 6V
3.0V
2.5V
IC = 6A
2.0V
1.5V
8V
10V
1.0V
-50°C
0°C
50°C
100°C
150°C
VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V)
Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V)
5
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
t d(off) td(off)
t, SWITCHING TIMES
tf
t, SWITCHING TIMES
100ns
tf 100ns
t d(on)
t d(on)
tr 10ns 0A 3A 6A 9A 12A 15A 10ns 0Ω 50 Ω 100 Ω
tr
150 Ω
IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 50Ω, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 6A, Dynamic test circuit in Figure E)
5.5V
t d(off) 100ns tf
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V - 50°C 0°C 50°C 100°C 150°C typ. max.
t, SWITCHING TIMES
td(on)
tr 10ns 0 °C 50°C 100°C 150°C
min.
Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 6A, RG = 50Ω, Dynamic test circuit in Figure E)
Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.25mA)
6
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
0.8mJ
*) Eon and Ets include losses due to diode recovery.
0.6mJ
*) Eon and Ets include losses due to diode recovery.
E ts *
E ts *
E, SWITCHING ENERGY LOSSES
0.6mJ
E, SWITCHING ENERGY LOSSES
0.4mJ
0.4mJ E on * E off 0.2mJ
E off 0.2mJ E on *
0.0mJ 0A
3A
6A
9A
12A
15A
0.0mJ 0Ω
50 Ω
100 Ω
150 Ω
IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 50Ω, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 6A, Dynamic test circuit in Figure E)
0.4mJ
*) Eon and Ets include losses due to diode recovery.
E ts *
E, SWITCHING ENERGY LOSSES
0.3mJ
0.2mJ
E on *
E off 0.1mJ
0.0mJ 0 °C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 6A, RG = 50Ω, Dynamic test circuit in Figure E)
7
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
25V 1nF C iss
20V
VGE, GATE-EMITTER VOLTAGE
120V 15V
480V
C, CAPACITANCE
100pF
10V
C oss
5V C rss 0V 0 nC 15nC 30nC 45nC 10pF 0V 10V 20V 30V
QGE, GATE CHARGE Figure 16. Typical gate charge (IC = 6A)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 17. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz)
25 µ s
100A
20 µ s
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
11V 12V 13V 14V 15V
tsc, SHORT CIRCUIT WITHSTAND TIME
80A
15 µ s
60A
10 µ s
40A
5µ s
20A
0µ s 1 0V
0A 1 0V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE Figure 18. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C)
VGE, GATE-EMITTER VOLTAGE Figure 19. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C)
8
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
500ns
1000nC
Qrr, REVERSE RECOVERY CHARGE
400ns
800nC
trr, REVERSE RECOVERY TIME
IF = 12A
300ns
IF = 12A
600nC
IF = 6 A IF = 3A
200ns
IF = 6A IF = 3A
400nC
100ns
200nC
0ns 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
0nC 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
d i F / d t , DIODE CURRENT SLOPE Figure 20. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
d i F / d t , DIODE CURRENT SLOPE Figure 21. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
12A
600A/µs
d i r r /d t , DIODE PEAK RATE OF FALL
10A
500A/µs
8A
IF = 12A
OF REVERSE RECOVERY CURRENT
Irr, REVERSE RECOVERY CURRENT
400A/µs
6A
IF = 6A IF = 3A
300A/µs
4A
200A/µs
2A
100A/µs
0A 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
0A/µs 50A/µs
150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
d i F / d t , DIODE CURRENT SLOPE Figure 22. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
diF/dt, DIODE CURRENT SLOPE Figure 23. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
9
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
2.0V 12A
10A
8A 150°C 100°C 4A 25°C 2A -55°C
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
I F = 12A
6A
1.5V
I F = 6A
0A 0 .0V
0.5V
1.0V
1.5V
2.0V
1.0V
-40°C
0°C
40°C
80°C
120°C
VF, FORWARD VOLTAGE Figure 24. Typical diode forward current as a function of forward voltage
Tj, JUNCTION TEMPERATURE Figure 25. Typical diode forward voltage as a function of junction temperature
10 K/W
D=0.5
1
ZthJCD, TRANSIENT THERMAL IMPEDANCE
ZthJCD, TRANSIENT THERMAL IMPEDANCE
D=0.5 0.2 0.1 0.05 0.02 10 K/W 0.01
-1
10 K/W 0.2 0.1 0.05 0.02 10 K/W 0.01 single pulse
C1 =τ1/ R1 C2 =τ 2/ R2
-1
0
SKP06N60
R,(K/W) 0.523 0.550 0.835 1.592
R1
10 K/W
0
SKA06N60
R,(K/W) 2.852 0.654 0.665 0.828
R1
τ, (s) 7.25*10-2 6.44*10-3 7.13*10-4 7.16*10-5
R2
τ, (s) 1.887 4.64*10-2 2.88*10-3 3.83*10-4
R2
single pulse 10 K/W 10µs
-2
C1 =τ1/ R1 C2 =τ 2/ R2
10 K/W 1µs
-2
10µs
100µs
1ms
10ms 100ms
1s
100µs
1ms
10ms 100ms
1s
10s
tp, PULSE WIDTH Figure 26. Diode transient thermal impedance as a function of pulse width (D = tp / T)
tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T)
10
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
10 K/W
1
10 K/W
0
D =0.5 0.2 0.1
ZthJC, TRANSIENT THERMAL IMPEDANCE
ZthJC, TRANSIENT THERMAL IMPEDANCE
D=0.5
0 10 K/W 0.2 0.1
10 K/W 0.02
-1
0.05
0.05
-1 10 K/W 0.02
SKP06N60
R,(K/W) 0.705 0.561 0.583
R1
SKA06N60
R,(K/W) 2.73 0.395 0.353 0.323
R1
10 K/W
-2
0.01
τ, (s) 0.0341 3.74E-3 3.25E-4
R2
0.01 10 K/W
-2
τ, (s) 1.83 2.93*10-2 2.46*10-3 3.45*10-4
R2
single pulse 10 K/W 1 µs
-3
C1 =τ1/ R1 C2 =τ 2/ R2
single pulse 10 K/W 1µs
-3
C1=τ1/R1
C 2=τ2/R2
10µs 100µs
1m s
10m s 100m s
1s
10µs 100µs 1ms 10ms 100ms
1s
10s
tp, PULSE WIDTH Figure 28. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
tp, PULSE WIDTH Figure 29. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
11
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
PG-TO220-3-1
12
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
PG-TO220-3-31 / PG-TO220-3-111
Please refer to mounting instructions
13
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
i,v diF /dt tr r =tS +tF Qr r =QS +QF IF tS QS tr r tF 10% Ir r m t VR
Ir r m
QF
dir r /dt 90% Ir r m
Figure C. Definition of diodes switching characteristics
τ1
Tj (t) p(t)
r1
r2
τ2
τn
rn
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit Leakage inductance Lσ =180nH a n d Stray capacity C σ =250pF.
14
Rev. 2.3
Sep 07
SKP06N60 SKA06N60
Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 9/12/07. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
15
Rev. 2.3
Sep 07