0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SKP10N60A

SKP10N60A

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SKP10N60A - Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode - Infineo...

  • 数据手册
  • 价格&库存
SKP10N60A 数据手册
SKP10N60A SKW10N60A Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability PG-TO-220-3-1 • Very soft, fast recovery anti-parallel EmCon diode • Pb-free lead plating; RoHS compliant • Qualified according to JEDEC1 for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKP10N60A SKW10N60A Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Diode forward current TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s Tj , Tstg Ts 2 C G E PG-TO-247-3 VCE 600V 600V IC 10A 10A VCE(sat) 2.3V 2.3V Tj 150°C 150°C Marking Package K10N60 PG-TO-220-3-1 K10N60 PG-TO-247-3 Symbol VCE IC Value 600 20 10.6 Unit V A ICpuls IF 40 40 21 10 IFpuls VGE tSC Ptot 42 ±20 10 92 -55...+150 260 V µs W °C °C VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient RthJA PG-TO-220-3-1 PG-TO-247-3-21 62 40 RthJCD 2.4 RthJC 1.35 K/W Symbol Conditions Max. Value Unit Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0 V , I C =500 µ A VCE(sat) V G E = 1 5 V, I C =10A T j = 25 ° C T j = 150 ° C Diode forward voltage VF VGE=0V, IF=10A T j = 25 ° C T j = 150 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C =300 µ A, V C E = V G E V C E = 60 0 V, V G E = 0 V T j = 25 ° C T j = 150 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) Symbol Conditions Value min. 600 1.7 1.2 3 Typ. 2 2.3 1.4 1.25 4 6.7 550 62 42 52 7 13 100 max. 2.4 2.8 1.8 1.65 5 Unit V µA 40 1500 100 660 75 51 68 A nC nH nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E = 0 V , V G E =20V V C E =20V, I C =10A V C E =25V, VGE=0V, f =1MHz V C C = 48 0 V, I C =10A V G E =15V P G- TO- 220- 3-1 PG- TO- 247- 3-21 V G E =15V, t S C ≤ 1 0 µ s V C C ≤ 6 0 0V, T j ≤ 1 50 ° C 2) Allowed number of short circuits: 1s. 2 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm dirr/dt T j = 25 ° C , V R = 20 0 V , I F =10A, d i F /d t = 200A/ µ s 220 20 200 310 4.5 180 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j = 25 ° C , V C C = 40 0 V, I C =10A, V G E = 0 /1 5 V, RG=25Ω, L σ 1 ) =1 80nH, C σ 1 ) =55pF Energy losses include “tail” and diode reverse recovery. 28 12 178 24 0.15 0.17 0.320 34 15 214 29 0.173 0.221 0.394 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm dirr/dt T j = 150 ° C V R = 20 0 V , I F =10A, d i F /d t = 200A/ µ s 350 36 314 690 6.3 200 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j = 150 ° C V C C = 40 0 V, I C =10A, V G E = 0 /1 5 V, RG=25Ω L σ 1 ) =1 80nH, C σ 1 ) =55pF Energy losses include “tail” and diode reverse recovery. 28 12 198 26 0.260 0.280 0.540 34 15 238 32 0.299 0.364 0.663 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 50A T C =80°c IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT Ic tp = 5 µs 40A 30A 20A 10A T C =110°c 10A 1 5 µs 5 0 µs 1A 2 0 0 µs 1m s DC 1V 10V 100V 1000V Ic 0 ,1 A 0A 1 0H z 100H z 1kH z 10kH z 100kH z f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 25Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 120W 25A 100W 20A 80W IC, COLLECTOR CURRENT POWER DISSIPATION 15A 60W 10A 40W Ptot, 20W 5A 0W 25°C 50 °C 75°C 100 °C 125°C 0A 2 5 °C 5 0 °C 7 5 °C 1 0 0 °C 1 2 5 °C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 35A 30A 35A 30A IC, COLLECTOR CURRENT 25A V GE=20V 20A 15A 10A 5A 0A 0V 15V 13V 11V 9V 7V 5V IC, COLLECTOR CURRENT 25A V GE=20V 20A 15A 10A 5A 0A 0V 15V 13V 11V 9V 7V 5V 1V 2V 3V 4V 5V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 35A 30A 3 ,5 V T j=+25°C +150°C IC = 2 0 A 3 ,0 V IC, COLLECTOR CURRENT 25A 20A 15A 10A 5A 0A 0V 2 ,5 V IC = 1 0 A 2 ,0 V IC = 5 A 2V 4V 6V 8V 10V 1 ,5 V 0 °C 5 0 °C 1 0 0 °C 1 5 0 °C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A t d (o ff) t, SWITCHING TIMES 100ns t, SWITCHING TIMES 100ns t d (o ff) tf t d (o n ) tr 10ns 0A tf t d (o n ) 10ns 0Ω tr 20Ω 40Ω 60Ω 80Ω 5A 10A 15A 20A 25A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 5 Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 10A, Dynamic test circuit in Figure E) 5,5V VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5,0V 4,5V 4,0V 3,5V 3,0V 2,5V 2,0V 1,5V 1,0V - 50°C 0°C 50°C 100°C 150°C m in. typ. m ax. t d(off) t, SWITCHING TIMES 100ns t d(on) tf tr 50°C 100°C 150°C 10ns 0 °C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 10A, RG = 2 5 Ω, Dynamic test circuit in Figure E) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA) 6 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 1,6m J 1,4m J *) Eon and Ets include losses due to diode recovery. 1 ,0m J *) Eon and Ets include losses due to diode recovery. E ts * E, SWITCHING ENERGY LOSSES 1,2m J 1,0m J 0,8m J 0,6m J 0,4m J 0,2m J 0,0m J 0A E, SWITCHING ENERGY LOSSES E ts * 0 ,8m J E on* E o ff 0 ,6m J E o ff 0 ,4m J E on* 5A 10A 15A 20A 25A 0 ,2m J 0Ω 20 Ω 40Ω 60 Ω 80Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 5 Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 10A, Dynamic test circuit in Figure E) 0,8mJ *) Eon and Ets include losses due to diode recovery. 10 K/W 0 ZthJC, TRANSIENT THERMAL IMPEDANCE D =0.5 0.2 10 K/W -1 E, SWITCHING ENERGY LOSSES 0,6mJ 0.1 0.05 0.02 0,4mJ Ets* 0,2mJ R,(K/W) 0.4287 0.4830 0.4383 R1 τ, (s) 0.0358 -3 4.3*10 -4 3.46*10 R2 -2 10 K/W 0.01 E off E on* C1=τ1/R1 C2=τ2/R2 single pulse 10 K/W 1 µs -3 0,0mJ 0°C 50°C 100°C 150°C 10µs 100µs 1m s 10m s 100m s 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 10A, RG = 2 5 Ω, Dynamic test circuit in Figure E) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 25V 1nF C iss 20V VGE, GATE-EMITTER VOLTAGE 15V 120V 480V C, CAPACITANCE 100pF C o ss C rss 10V 5V 0V 0nC 25nC 50nC 75nC 10pF 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 10A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25µ s 200A 20µ s IC(sc), SHORT CIRCUIT COLLECTOR CURRENT tsc, SHORT CIRCUIT WITHSTAND TIME 150A 15µ s 100A 10µ s 50A 5µ s 0µ s 10V 11V 12V 13V 14V 15V 0A 10V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 500ns 1400nC 1200nC Qrr, REVERSE RECOVERY CHARGE 400ns trr, REVERSE RECOVERY TIME I F = 2 0A 1000nC 300ns I F = 2 0A 800nC IF = 1 0 A 200ns 600nC I F = 1 0A IF = 5 A IF = 5 A 400nC 100ns 200nC 0ns 1 00A / µs 300A / µs 500A/ µs 700A/ µs 900A/ µs 0nC 1 00A / µs 300A / µs 500A / µs 700A / µs 900A / µs d i F /d t , DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) d i F /d t , DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 20A 1 0 00 A / µs 12A IF = 2 0 A IF = 1 0 A IF = 5 A DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT 16A 8 00 A / µs 6 00 A / µs 8A 4 00 A / µs 4A dirr/dt, 2 00 A / µs 0A 1 0 0 A / µs 3 0 0 A / µs 5 0 0 A / µs 7 0 0 A / µs 9 0 0 A / µs 0 A / µs 1 0 0A / µs 3 00 A / µs 50 0A / µs 7 00 A / µs 90 0 A / µs d i F /d t , DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 20A 2.0V I F = 2 0A 15A 150°C 10A 100°C VF, FORWARD VOLTAGE IF, FORWARD CURRENT 1.5V I F = 10A 5A 25°C -55°C 0A 0 .0V 1.0V 0.5V 1.0V 1.5V 2.0V - 40°C 0°C 40°C 80°C 120°C VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJCD, TRANSIENT THERMAL IMPEDANCE D=0.5 10 K/W 0.2 0.1 0.05 10 K/W 0.02 -1 0 R,(K/W) 0.759 0.481 0.609 0.551 0.01 R1 τ, (s) -2 5.53*10 -3 4.28*10 -4 4.83*10 -5 5.77*10 R2 single pulse 10 K/W 1µs -2 C1=τ1/R1 C2=τ2/R2 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A PG-TO220-3-1 11 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A PG-TO247-3 M M MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 5.44 3 19.80 4.17 3.50 5.49 6.04 MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 0.214 3 MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 55 7.5mm 20.31 4.47 3.70 6.00 6.30 0.780 0.164 0.138 0.216 0.238 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 12 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A i,v diF /dt tr r =tS +tF Qr r =QS +QF IF tS QS tr r tF 10% Ir r m t VR Ir r m QF dir r /dt 90% Ir r m Figure C. Definition of diodes switching characteristics τ1 Tj (t) p(t) r1 r2 τ2 τn rn r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH a nd Stray capacity C σ =55pF. Published by Infineon Technologies AG, 13 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 14 Rev. 2.3 Sep 08
SKP10N60A 价格&库存

很抱歉,暂时无法提供与“SKP10N60A”相匹配的价格&库存,您可以联系我们找货

免费人工找货