0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SKW07N120_08

SKW07N120_08

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SKW07N120_08 - Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode - Infi...

  • 数据手册
  • 价格&库存
SKW07N120_08 数据手册
SKW07N120 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • Lower Eoff compared to previous generation • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter - SMPS • NPT-Technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Qualified according to JEDEC1 for target applications • Pb-free lead plating; RoHS compliant • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW07N120 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 1200V, Tj ≤ 150°C Diode forward current TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Soldering temperature, wavesoldering, 1.6mm (0.063 in.) from case for 10s Tj , Tstg Ts -55...+150 260 °C 2 C G E PG-TO-247-3 VCE 1200V IC 8A Eoff 0.7mJ Tj 150°C Marking K07N120 Package PG-TO-247-3 Symbol VCE IC Value 1200 16.5 7.9 Unit V A ICpuls IF 27 27 13 7 IFpuls VGE tSC Ptot 27 ±20 10 125 V µs W VGE = 15V, 100V ≤ VCC ≤ 1200V, Tj ≤ 150°C 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2_2 Sep 08 Power Semiconductors SKW07N120 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0 V , I C =500 µ A VCE(sat) V G E = 1 5 V, I C = 8 A T j = 25 ° C T j = 150 ° C Diode forward voltage VF VGE=0V, IF=7A T j = 25 ° C T j = 150 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C =350 µ A, V C E = V G E V C E =1200V,V G E =0V T j = 25 ° C T j = 150 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current1) IC(SC) V G E =15V, t S C ≤ 1 0 µ s 1 00 V ≤ V C C ≤ 1 200 V, T j ≤ 1 50 ° C 75 A Ciss Coss Crss QGate LE V C E =25V, VGE=0V, f =1MHz V C C = 96 0 V, I C = 8 A V G E =15V 13 nH 720 90 40 70 870 110 50 90 nC pF IGES gfs V C E =0V, V G E =20V V C E =20V, I C = 8 A 6 100 400 100 nA S 3 2.0 1.75 4 5 µA 2.4 2.5 3.1 3.7 3.6 4.3 1200 V Symbol Conditions Value min. typ. max. Unit RthJA 40 RthJCD 2.5 RthJC 1 K/W Symbol Conditions Max. Value Unit 1) Allowed number of short circuits: 1s. 2 Rev. 2_2 Sep 08 Power Semiconductors SKW07N120 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t F Qrr Irrm dirr/dt T j = 25 ° C , V R = 80 0 V , I F = 8 A , d i F /d t = 400A/ µ s 0.3 9 400 µC A A/µs 60 ns td(on) tr td(off) tf Eon Eoff Ets T j = 25 ° C , V C C = 80 0 V, I C = 8 A , V G E =15V/0V, RG=47Ω, L σ 1 ) =1 80nH, C σ 1 ) =40pF Energy losses include “tail” and diode reverse recovery. 27 29 440 21 0.6 0.4 1.0 35 38 570 27 0.8 0.55 1.35 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j = 150 ° C V C C = 80 0 V, IC=8A, V G E =15V/0V, RG=47Ω, L σ 1 ) =1 80nH, C σ 1 ) =40pF Energy losses include “tail” and diode reverse recovery. T j = 150 ° C V R = 80 0 V , I F = 8 A , d i F /d t = 500A/ µ s 30 26 490 30 1.0 0.7 1.7 36 31 590 36 1.2 0.9 2.1 mJ ns Symbol Conditions Value min. typ. max. Unit Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t F 1) - 170 ns Qrr Irrm dirr/dt 1.1 15 110 µC A A/µs Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E. Power Semiconductors 3 Rev. 2_2 Sep 08 SKW07N120 35A 30A 10A Ic tp=5µs 15µs IC, COLLECTOR CURRENT 20A 15A TC=80°C IC, COLLECTOR CURRENT 25A 50µs 200µs 1A 1ms TC=110°C 10A 5A 0A 10Hz Ic 0.1A DC 100Hz 1kHz 10kHz 100kHz 1V 10V 100V 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 47Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 150W 20A 125W 100W 75W IC, COLLECTOR CURRENT 50°C 75°C 100°C 125°C POWER DISSIPATION 15A 10A 50W Ptot, 5A 25W 0W 2 5°C 0A 25°C 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) Power Semiconductors 4 Rev. 2_2 Sep 08 SKW07N120 25A 25A 20A 20A VGE=17V IC, COLLECTOR CURRENT 15A 10A 15V 13V 11V 9V 7V IC, COLLECTOR CURRENT 15A 10A VGE=17V 15V 13V 11V 9V 7V 5A 5A 0A 0V 1V 2V 3V 4V 5V 6V 7V 0A 0V 1V 2V 3V 4V 5V 6V 7V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 25A 6V IC=16A 5V 20A IC, COLLECTOR CURRENT 4V 15A TJ=+150°C TJ=+25°C 10A TJ=-40°C IC=8A IC=4A 3V 2V 5A 1V 0A 3V 5V 7V 9V 11V 0V -50°C 0°C 50°C 100°C 150°C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) Power Semiconductors 5 Rev. 2_2 Sep 08 SKW07N120 000ns td(off) td(off) t, SWITCHING TIMES tf 100ns t, SWITCHING TIMES 100ns td(on) tr 10ns 0A 5A 10A 15A 20A tf td(on) tr 10ns 0Ω 20Ω 40Ω 60Ω 80Ω 100Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 4 7 Ω, dynamic test circuit in Fig.E ) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 8A, dynamic test circuit in Fig.E ) 6V td(off) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5V t, SWITCHING TIMES 4V max. 100ns 3V typ. 2V min. td(on) tf 10ns -50°C 0°C 50°C 100°C tr 1V 150°C 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 8A, RG = 4 7 Ω, dynamic test circuit in Fig.E ) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA) Power Semiconductors 6 Rev. 2_2 Sep 08 SKW07N120 2.5mJ 5mJ *) Eon and Ets include losses due to diode recovery. Ets* 2.0mJ *) Eon and Ets include losses due to diode recovery. Ets* E, SWITCHING ENERGY LOSSES 4mJ Eon* E, SWITCHING ENERGY LOSSES 1.5mJ Eon* 1.0mJ Eoff 3mJ 2mJ Eoff 1mJ 0.5mJ 0mJ 0A 5A 10A 15A 20A 0.0mJ 0Ω 20Ω 40Ω 60Ω 80Ω 100Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 4 7 Ω, dynamic test circuit in Fig.E ) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 8A, dynamic test circuit in Fig.E ) 2.0mJ *) Eon and Ets include losses due to diode recovery. Ets* 10 K/W 0 1.5mJ ZthJC, TRANSIENT THERMAL IMPEDANCE D=0.5 0.2 10 K/W -1 E, SWITCHING ENERGY LOSSES 0.1 0.05 0.02 R,(K/W) 0.1020 0.40493 0.26391 0.22904 R1 1.0mJ Eon* Eoff 0.5mJ 10 K/W -2 0.01 τ, (s) 0.77957 0.21098 0.01247 0.00092 R2 0.0mJ -50°C single pulse 0°C 50°C 100°C 150°C 10 K/W 1µs -3 C1=τ1/R1 C2=τ2/R2 10µs 100µs 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 8A, RG = 4 7 Ω, dynamic test circuit in Fig.E ) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) Power Semiconductors 7 Rev. 2_2 Sep 08 SKW07N120 20V 1nF VGE, GATE-EMITTER VOLTAGE 15V Ciss 10V UCE=960V C, CAPACITANCE 5V 100pF Coss 0V Crss 0nC 20nC 40nC 60nC 80nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 8A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 0V 10V 20V 30V 30µs 150A tsc, SHORT CIRCUIT WITHSTAND TIME 25µs 20µs IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 11V 12V 13V 14V 15V 100A 15µs 10µs 50A 5µs 0µs 10V 0A 10V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 1200V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (100V ≤ VCE ≤ 1200V, TC = 25°C, Tj ≤ 150°C) Power Semiconductors 8 Rev. 2_2 Sep 08 SKW07N120 350ns 1.50µC 300ns 1.25µC Qrr, REVERSE RECOVERY CHARGE trr, REVERSE RECOVERY TIME 250ns IF=7A IF=7A 1.00µC 200ns 0.75µC IF=3.5A 150ns 0.50µC 100ns IF=3.5A 50ns 0.25µC 0ns 200A/µs 400A/µs 600A/µs 800A/µs 0.00µC 200A/µs 400A/µs 600A/µs 800A/µs d i F /d t , DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) d i F /d t , DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) 25A 300A/µs Irr, REVERSE RECOVERY CURRENT IF=7A DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT 20A IF=3.5A 200A/µs 15A IF=7A 10A IF=3.5A 5A 0A 200A/µs dirr/dt, 100A/µs 400A/µs 600A/µs 800A/µs 0A/µs 200A/µs 400A/µs 600A/µs 800A/µs d i F /d t , DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) Power Semiconductors 9 Rev. 2_2 Sep 08 SKW07N120 3.0V 20A 2.5V IF=14A 15A TJ=150°C VF, FORWARD VOLTAGE IF, FORWARD CURRENT 2.0V IF=7A IF=3.5A 1.5V 10A TJ=25°C 1.0V 5A 0.5V 0A 0V 1V 2V 3V 4V 0.0V 0°C 40°C 80°C 120°C VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJCD, TRANSIENT THERMAL IMPEDANCE D=0.5 10 K/W 0.2 0.1 0.05 -1 0 0. 0 01 .0 2 10 K/W R,(K/W) 0.75885 0.88470 0.85670 R1 τ, (s) 0.09354 0.00543 0.00042 R2 single pulse 10µs 100µs 1ms C1=τ1/R1 C2=τ2/R2 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) Power Semiconductors 10 Rev. 2_2 Sep 08 SKW07N120 PG-TO247-3 M M MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 5.44 3 19.80 4.17 3.50 5.49 6.04 MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 0.214 3 MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 55 7.5mm 20.31 4.47 3.70 6.00 6.30 0.780 0.164 0.138 0.216 0.238 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 Power Semiconductors 11 Rev. 2_2 Sep 08 SKW07N120 i,v diF /dt tr r =tS +tF Qr r =QS +QF IF tS QS tr r tF 10% Ir r m t VR Ir r m QF dir r /dt 90% Ir r m Figure C. Definition of diodes switching characteristics τ1 Tj (t) p(t) r1 r2 τ2 τn rn r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH, and stray capacity Cσ =40pF. Power Semiconductors 12 Rev. 2_2 Sep 08 SKW07N120 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 13 Rev. 2_2 Sep 08
SKW07N120_08 价格&库存

很抱歉,暂时无法提供与“SKW07N120_08”相匹配的价格&库存,您可以联系我们找货

免费人工找货