SKW20N60
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
• 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode • Pb-free lead plating; RoHS compliant • Qualified according to JEDEC1 for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW20N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Diode forward current TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25°C Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s Operating junction and storage temperature Tj , Tstg -55...+150 °C Ts 260 °C
2
C
G
E
PG-TO-247-3
VCE 600V
IC 20A
VCE(sat) 2.4V
Tj 150°C
Marking K20N60
Package PG-TO-247-3
Symbol VCE IC
Value 600 40 20
Unit V A
ICpuls IF
80 80
40 20 IFpuls VGE tSC Ptot 80 ±20 10 179 V µs W
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
1 2
J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2_2 Sep 08
SKW20N60
Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0 V , I C =500 µ A VCE(sat) V G E = 1 5 V, I C =20A T j = 25 ° C T j = 150 ° C Diode forward voltage VF VGE=0V, IF=20A T j = 25 ° C T j = 150 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C =700 µ A, V C E = V G E V C E = 60 0 V, V G E = 0 V T j = 25 ° C T j = 150 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current1) IC(SC) V G E =15V, t S C ≤ 1 0 µ s V C C ≤ 6 0 0V, T j ≤ 1 50 ° C 200 A Ciss Coss Crss QGate LE V C E =25V, VGE=0V, f =1MHz V C C = 48 0 V, I C =20A V G E =15V 13 nH 1100 107 63 100 1320 128 76 130 nC pF IGES gfs V C E = 0 V , V G E =20V V C E =20V, I C =20A 14 40 2500 100 nA S 1.2 3 1.4 1.25 4 1.8 1.65 5 µA 1.7 2 2.4 2.4 2.9 600 V Symbol Conditions Value min. Typ. max. Unit RthJA 40 RthJCD 1.3 RthJC 0.7 K/W Symbol Conditions Max. Value Unit
1)
Allowed number of short circuits: 1s. 2 Rev. 2_2 Sep 08
SKW20N60
Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm dirr/dt T j = 25 ° C , V R = 20 0 V , I F =20A, d i F /d t = 200A/ µ s 300 30 270 490 5.5 180 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j = 25 ° C , V C C = 40 0 V, I C =20A, V G E = 0 /1 5 V, RG=16Ω, L σ 1 ) = 1 80nH , C σ 1 ) = 9 00p F Energy losses include “tail” and diode reverse recovery. 36 30 225 54 0.44 0.33 0.77 46 36 270 65 0.53 0.43 0.96 mJ ns Symbol Conditions Value min. typ. max. Unit
Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm dirr/dt T j = 150 ° C V R = 20 0 V , I F =20A, d i F /d t = 200A/ µ s 410 45 365 1270 8.5 200 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j = 150 ° C V C C = 40 0 V, I C =20A, V G E = 0 /1 5 V, RG=16Ω, L σ 1 ) = 1 80nH , C σ 1 ) = 9 00p F Energy losses include “tail” and diode reverse recovery. 36 30 250 63 0.67 0.49 1.12 46 36 300 76 0.81 0.64 1.45 mJ ns Symbol Conditions Value min. typ. max. Unit
1)
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2_2 Sep 08
SKW20N60
110A 100A 90A
100A
Ic
tp=4µs 15µs
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
80A 70A 60A 50A 40A 30A 20A 10A 0A 10Hz TC=110°C TC=80°C
10A
50µs
200µs 1A 1ms
Ic
0.1A 1V 10V 100V
DC
100Hz
1kHz
10kHz
100kHz
1000V
f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 16Ω)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C)
200W 180W 160W
50A
40A
120W 100W 80W 60W 40W 20W 0W 25°C 50°C 75°C 100°C 125°C
IC, COLLECTOR CURRENT
POWER DISSIPATION
140W
30A
20A
Ptot,
10A
0A 25°C
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C)
TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C)
4
Rev. 2_2
Sep 08
SKW20N60
60A
60A
50A
50A VGE=20V 15V 13V 11V 9V 7V 5V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
40A
40A
VGE=20V 15V 13V 11V 9V 7V 5V
30A
30A
20A
20A
10A
10A
0A 0V
1V
2V
3V
4V
5V
0A 0V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C)
60A 50A 40A 30A 20A 10A 0A 0V
Tj=+25°C -55°C +150°C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
70A
4.0V
3.5V
IC = 40A
IC, COLLECTOR CURRENT
3.0V
2.5V
IC = 20A
2.0V
1.5V
2V
4V
6V
8V
10V
1.0V
- 50°C
0°C
50°C
100°C
150°C
VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V)
Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V)
5
Rev. 2_2
Sep 08
SKW20N60
td(off)
td(off)
t, SWITCHING TIMES
100ns
tf
t, SWITCHING TIMES
100ns
tf
td(on) tr
td(on) tr
10ns
10A
20A
30A
40A
10ns 0Ω
10Ω
20Ω
30Ω
40Ω
50Ω
60Ω
IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 1 6 Ω, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 20A, Dynamic test circuit in Figure E)
5.5V
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V -50°C 0°C 50°C 100°C 150°C typ. max.
td(off)
t, SWITCHING TIMES
100ns tf tr td(on)
min.
10ns 0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 1 6 Ω, Dynamic test circuit in Figure E)
Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA)
6
Rev. 2_2
Sep 08
SKW20N60
3.0mJ
*) Eon and Ets include losses due to diode recovery.
3.0mJ
Ets*
*) Eon and Ets include losses due to diode recovery.
2.5mJ
2.5mJ
E, SWITCHING ENERGY LOSSES
2.0mJ Eon* 1.5mJ Eoff
E, SWITCHING ENERGY LOSSES
2.0mJ Ets*
1.5mJ
1.0mJ
1.0mJ
Eon* Eoff
0.5mJ
0.5mJ
0.0mJ 0A
10A
20A
30A
40A
50A
0.0mJ 0Ω
10Ω
20Ω
30Ω
40Ω
50Ω
60Ω
IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 1 6 Ω, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 20A, Dynamic test circuit in Figure E)
1.6mJ
ZthJC, TRANSIENT THERMAL IMPEDANCE
1.4mJ
*) Eon and Ets include losses due to diode recovery.
10 K/W D=0.5 0.2 10 K/W 0.1 0.05 0.02 10 K/W 0.01
-2 -1
0
E, SWITCHING ENERGY LOSSES
1.2mJ 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ 0.0mJ 0°C
Ets*
Eon* Eoff
R,(1/W) 0.1882 0.3214 0.1512 0.0392
R1
τ, (s) 0.1137 -2 2.24*10 -4 7.86*10 -5 9.41*10
R2
10 K/W single pulse
-3
C 1= τ1/R 1
C 2= τ2/R 2
50°C
100°C
150°C
10 K/W 1µs
-4
10µs
100µs
1ms
10ms 100ms
1s
Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 1 6 Ω, Dynamic test circuit in Figure E)
tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
7
Rev. 2_2
Sep 08
SKW20N60
25V
Ciss
20V
1nF
VGE, GATE-EMITTER VOLTAGE
15V
120V
480V
C, CAPACITANCE
10V
100pF
Coss
5V
Crss
0V 0nC
25nC
50nC
75nC 100nC 125nC
10pF 0V
10V
20V
30V
QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 20A)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz)
25 µ s
350A
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
300A 250A 200A 150A 100A 50A 0A 10V
tsc, SHORT CIRCUIT WITHSTAND TIME
20 µ s
15 µ s
10 µ s
5µ s
0µ s 1 0V
11V
12V
13V
14V
15V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C)
VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C)
8
Rev. 2_2
Sep 08
SKW20N60
600ns
2500nC
500ns
Qrr, REVERSE RECOVERY CHARGE
2000nC
trr, REVERSE RECOVERY TIME
IF = 40A
1500nC
400ns
IF = 40A
IF = 20A
300ns
IF = 20A IF = 10A
1000nC
200ns
IF = 10A
100ns
500nC
0ns 100A/µs
300A/µs
500A/µs
700A/µs
900A/µs
0nC 100A/µs
300A/µs
500A/µs
700A/µs
900A/µs
d i F /d t , DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
d i F /d t , DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
24A
1 000A/ µs
20A
16A
IF = 40A IF = 20A IF = 10A
DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT
Irr, REVERSE RECOVERY CURRENT
800A/ µs
600A/ µs
12A
400A/ µs
8A
dirr/dt,
4A
200A/ µs
0A 100A/µs
300A/µs
500A/µs
700A/µs
900A/µs
0A/ µs 1 00A/µs
300A/ µs
500A/µs
700A/µs
900A/µs
d i F /d t , DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
9
Rev. 2_2
Sep 08
SKW20N60
40A 35A 30A 25A 20A 100°C 15A 10A 5A 0A 0.0V -55°C 25°C
2.0V
I F = 4 0A VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
150°C
1.5V
I F = 20A
0.5V
1.0V
1.5V
2.0V
1.0V
-40°C
0°C
40°C
80°C
120°C
VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage
Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature
ZthJCD, TRANSIENT THERMAL IMPEDANCE
10 K/W D=0.5 0.2 0.1 10 K/W 0.05 0.02
-1
0
10 K/W
-2
0.01
R,(1/W) 0.358 0.367 0.329 0.216 0.024
R1
τ, (s) -2 9.02*10 -3 9.42*10 -4 9.93*10 -4 1.19*10 -5 1.92*10
R2
single pulse
C1=τ1/R1 C2=τ2/R2
10 K/W 1µs
-3
10µs
100µs
1ms
10ms 100ms
1s
tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T)
10
Rev. 2_2
Sep 08
SKW20N60
PG-TO247-3
M
M
MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 5.44 3 19.80 4.17 3.50 5.49 6.04
MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60
MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 0.214 3
MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102
Z8B00003327 0
0
55 7.5mm
20.31 4.47 3.70 6.00 6.30
0.780 0.164 0.138 0.216 0.238
0.799 0.176 0.146 0.236 0.248
17-12-2007 03
11
Rev. 2_2
Sep 08
SKW20N60
i,v diF /dt tr r =tS +tF Qr r =QS +QF IF tS QS tr r tF 10% Ir r m t VR
Ir r m
QF
dir r /dt 90% Ir r m
Figure C. Definition of diodes switching characteristics
τ1
Tj (t) p(t)
r1
r2
τ2
τn
rn
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit Leakage inductance Lσ =180nH a nd Stray capacity C σ =900pF.
Published by Infineon Technologies AG,
12
Rev. 2_2
Sep 08
SKW20N60
Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.
Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.
Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).
Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
13
Rev. 2_2
Sep 08