0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SKW25N120

SKW25N120

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SKW25N120 - Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode - Infineo...

  • 数据手册
  • 价格&库存
SKW25N120 数据手册
SKW25N120 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 40lower Eoff compared to previous generation • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter G - SMPS • NPT-Technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Pb-free lead plating; RoHS compliant 1 • Qualified according to JEDEC for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW25N120 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 1200V, Tj ≤ 150°C Diode forward current TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Soldering temperature, wavesoldering, 1.6mm (0.063 in.) from case for 10s Tj , Tstg Ts -55...+150 260 °C 2 C E PG-TO-247-3-21 (TO-247AC) VCE 1200V IC 25A Eoff 2.9mJ Tj 150°C Marking K25N120 Package PG-TO-247-3-21 Symbol VCE IC Value 1200 46 25 Unit V A ICpul s IF 84 84 42 25 IFpul s VGE tSC Ptot 80 ±20 10 313 V µs W VGE = 15V, 100V≤VCC ≤1200V, Tj ≤ 150°C 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2_1 Apr 06 Power Semiconductors SKW25N120 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 15 0 0 µ A VCE(sat) V G E = 1 5 V , I C = 25 A T j =2 5 ° C T j =1 5 0 ° C Diode forward voltage VF V G E = 0V , I F = 2 5 A T j =2 5 ° C T j =1 5 0 ° C Gate-emitter threshold voltage Zero gate voltage collector current . Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance Measured 5mm (0.197 in.) from case Short circuit collector current 1) Symbol RthJC RthJCD RthJA Conditions Max. Value 0.4 1.15 40 Unit K/W Symbol Conditions Value min. 1200 typ. max. - Unit V 2.5 - 3.1 3.7 2.0 3.6 4.3 2.5 5 µA 3 1.75 4 VGE(th) ICES I C = 10 0 0 µ A , VCE=VGE V C E =1200V,V G E =0V T j =2 5 ° C T j =1 5 0 ° C - 20 350 1400 100 2600 310 130 300 nC nH A nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E =0V, V G E =20V V C E = 20 V , I C = 25 A V C E = 25 V , V G E = 0V , f = 1 MH z V C C = 96 0 V, I C =2 5 A V G E = 15 V - 2150 260 110 225 13 240 V G E = 15 V , t S C ≤ 10 µ s 10 0 V ≤ V C C ≤ 12 0 0 V, Tj ≤ 150°C - 1) Allowed number of short circuits: 1s 2 Rev. 2_1 Apr 06 Power Semiconductors SKW25N120 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t F Qrr Irrm d i r r /d t T j =2 5 ° C , V R = 8 00 V , I F = 2 5 A, d i F / d t =6 5 0 A/ µ s 1.0 20 470 µC A A/µs 90 ns td(on) tr td(off) tf Eon Eoff Ets T j =2 5 ° C , V C C = 80 0 V, I C = 2 5 A, V G E = 15 /0 V , R G = 22 Ω , 1) L σ =1 8 0n H, 1) C σ = 4 0p F Energy losses include “tail” and diode reverse recovery. 45 40 730 30 2.2 1.5 3.7 60 52 950 39 2.9 2.0 4.9 mJ ns Symbol Conditions Value Min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t F 1) Symbol Conditions Value Min. typ. 50 36 820 42 3.8 2.9 6.7 max. 60 43 990 50 4.6 3.8 8.4 Unit td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 ° C V C C = 80 0 V, I C = 2 5 A, V G E = 15 /0 V , R G = 22 Ω , 1) L σ =1 8 0n H, 1) C σ = 4 0p F Energy losses include “tail” and diode reverse recovery. T j =1 5 0 ° C V R = 8 00 V , I F = 2 5 A, d i F / d t =7 5 0 A/ µ s ns mJ - 280 ns Qrr Irrm d i r r /d t 4.3 32 130 µC A A/µs Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E. Power Semiconductors 3 Rev. 2_1 Apr 06 SKW25N120 100A Ic 100A tp=1µs 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 80A 10A 50µs 200µs 1ms 60A TC=80°C 40A TC=110°C 20A 1A DC 0.1A Ic 0A 10Hz 100Hz 1kHz 10kHz 100kHz 1V 10V 100V 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 22Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 350W 300W 250W 200W 150W 100W 50W 0W 25°C 60A 50A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 40A 30A 20A 10A 50°C 75°C 100°C 125°C 0A 25°C 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) Power Semiconductors 4 Rev. 2_1 Apr 06 SKW25N120 80A 70A 60A 80A 70A 60A IC, COLLECTOR CURRENT 50A 40A 30A 20A 10A 0A 0V 15V 13V 11V 9V 7V IC, COLLECTOR CURRENT V G E =17V V G E =17V 15V 13V 11V 9V 7V 50A 40A 30A 20A 10A 0A 0V 1V 2V 3V 4V 5V 6V 7V 1V 2V 3V 4V 5V 6V 7V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 70A 60A VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 80A 6V 5V IC=50A IC, COLLECTOR CURRENT 50A 40A 30A 20A 10A 0A 3V 4V IC=25A IC=12.5A Tj=+150°C Tj=+25°C Tj=-40°C 3V 2V 1V 4V 5V 6V 7V 8V 9V 10V 11V 0V -50°C 0°C 50°C 100°C 150°C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) Power Semiconductors 5 Rev. 2_1 Apr 06 SKW25N120 1000ns td(off) 1000ns td(off) t, SWITCHING TIMES 100ns tf t, SWITCHING TIMES 100ns tf tr td(on) td(on) tr 10ns 0A 20A 40A 60A 10ns 0Ω 10Ω 20Ω 30Ω 40Ω 50Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 2 2 Ω, dynamic test circuit in Fig.E ) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 25A, dynamic test circuit in Fig.E ) 6V VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 1000ns td(off) 5V max. t, SWITCHING TIMES 4V 100ns td(on) tr tf 10ns -50°C 3V typ. 2V min. 1V 0°C 50°C 100°C 150°C 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 25A, RG = 2 2 Ω, dynamic test circuit in Fig.E ) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA) Power Semiconductors 6 Rev. 2_1 Apr 06 SKW25N120 25mJ *) Eon and Ets include losses due to diode recovery. 10mJ Ets* *) Eon and Ets include losses due to diode recovery. Ets* E, SWITCHING ENERGY LOSSES 15mJ E, SWITCHING ENERGY LOSSES 20mJ 8mJ Eon* 6mJ Eon* 4mJ Eoff 10mJ Eoff 5mJ 2mJ 0mJ 0A 20A 40A 60A 0mJ 0Ω 10Ω 20Ω 30Ω 40Ω 50Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 2 2 Ω, dynamic test circuit in Fig.E ) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 25A, dynamic test circuit in Fig.E ) 8mJ *) Eon and Ets include losses due to diode recovery. 6mJ ZthJC, TRANSIENT THERMAL IMPEDANCE Ets* D=0.5 E, SWITCHING ENERGY LOSSES -1 10 K/W 0.2 0.1 0.05 4mJ Eon* 2mJ Eoff 10 K/W 0.02 0.01 -2 R,(K/W) 0.07417 0.20899 0.08065 0.03681 R1 τ, (s) 0.4990 0.08994 0.00330 0.00038 R2 0mJ -50°C 0°C 50°C 100°C 150°C 10 K/W 1µs -3 single pulseC 1 = τ 1 / R 1 C 2 = τ 2 / R 2 10µs 100µs 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 25A, RG = 2 2 Ω, dynamic test circuit in Fig.E ) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) Power Semiconductors 7 Rev. 2_1 Apr 06 SKW25N120 20V Ciss VGE, GATE-EMITTER VOLTAGE 15V 10V UCE=960V 5V C, CAPACITANCE 1nF Coss 0V 0nC 100nC 200nC 300nC 100pF 0V Crss 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 25A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 30µs 500A tsc, SHORT CIRCUIT WITHSTAND TIME 25µs IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 11V 12V 13V 14V 15V 400A 20µs 300A 15µs 200A 10µs 5µs 100A 0µs 10V 0A 10V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 1200V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (100V≤VCE ≤1200V, TC = 25°C, Tj ≤ 150°C) Power Semiconductors 8 Rev. 2_1 Apr 06 SKW25N120 500ns 5µC 300ns IF=25A Qrr, REVERSE RECOVERY CHARGE 400ns 4µC IF=25A trr, REVERSE RECOVERY TIME 3µC IF=12A 2µC 200ns IF=12A 100ns 1µC 0ns 300A/µs 500A/µs 700A/µs 900A/µs 0µC 300A/µs 500A/µs 700A/µs 900A/µs d i F / d t , DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) d i F / d t , DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) 50A 400A/µs d i r r /d t , DIODE PEAK RATE OF FALL IF=25A 30A OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT 40A 300A/µs IF=12A 200A/µs 20A IF=12A IF=25A 100A/µs 10A 0A 300A/µs 500A/µs 700A/µs 900A/µs 0A/µs 300A/µs 500A/µs 700A/µs 900A/µs d i F / d t , DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 800V, Tj = 150°C, dynamic test circuit in Fig.E ) Power Semiconductors 9 Rev. 2_1 Apr 06 SKW25N120 80A 3.0V IF=50A 2.5V 60A VF, FORWARD VOLTAGE IF, FORWARD CURRENT TJ=150°C 40A 2.0V IF=25A 1.5V TJ=25°C 20A 1.0V IF=12A 0.5V 0A 0V 1V 2V 3V 4V 0.0V 0°C 40°C 80°C 120°C VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 K/W D=0.5 0 0.2 0.1 -1 10 K/W 0.05 R,(K/W) 0.05339 0.40771 0.22473 0.46420 R1 τ, (s) 0.30438 0.09698 0.00521 0.00042 R2 0. 01 single pulse 10 K/W 10µs -2 0. 02 C1 =τ1/ R1 C2 =τ 2/ R2 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) Power Semiconductors 10 Rev. 2_1 Apr 06 SKW25N120 PG-TO247-3-21 Power Semiconductors 11 Rev. 2_1 Apr 06 SKW25N120 i,v diF /dt tr r =tS +tF Qr r =QS +QF IF tS QS tr r tF 10% Ir r m t VR Ir r m QF dir r /dt 90% Ir r m Figure C. Definition of diodes switching characteristics τ1 Tj (t) p(t) r1 r2 τ2 τn rn r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH, and stray capacity Cσ =40pF. Power Semiconductors 12 Rev. 2_1 Apr 06 SKW25N120 Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 5/10/06. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 13 Rev. 2_1 Apr 06
SKW25N120 价格&库存

很抱歉,暂时无法提供与“SKW25N120”相匹配的价格&库存,您可以联系我们找货

免费人工找货