ISP 742 RI
Smart Power High-Side-Switch for Industrial Applications
Features • Overload protection • Current limitation • Short circuit protection • Thermal shutdown with restart • ESD - Protection Product Summary Overvoltage protection Operating voltage On-state resistance Nominal load current Operating temperature Vbb(AZ) Vbb(on) RON IL(nom) Ta 41 5 ... 34 350 0.4 -30...+85 V V mΩ A °C
• Overvoltage protection (including load dump) • Fast demagnetization of inductive loads • Reverse battery protection with external resistor • Open drain diagnostic output • CMOS compatible input • Loss of GND and loss of Vbb protection • Very low standby current
PG-DSO-8
Application
• All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V and 24 V DC industrial applications • Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions.
Page 1
2006-03-09
ISP 742 RI
Block Diagram
+ Vbb
Voltage source V Logic
Overvoltage protection
Current limit
Gate protection
OUT
Charge pump Level shifter Rectifier
IN ST
Limit for unclamped ind. loads
Temperature sensor Load
ESD
Logic
GND
miniPROFET
Signal GND
Load GND
Pin 1 2 3 4 5 6 7 8
Symbol GND IN OUT ST Vbb Vbb Vbb Vbb
Function Logic ground Input, activates the power switch in case of logic high signal Output to the load Diagnostic feedback Positive power supply voltage Positive power supply voltage Positive power supply voltage Positive power supply voltage
Pin configuration
Top view
GND IN OUT ST 1• 2 3 4 8 7 6 5 Vbb Vbb Vbb Vbb
Page 2
2006-03-09
ISP 742 RI Maximum Ratings at Tj = 25 °C, unless otherwise specified Parameter Supply voltage Supply voltage for full short circuit protection Continuous input voltage Load current (Short - circuit current, see page 5) Current through input pin (DC) Junction temperature Operating temperature Storage temperature Power dissipation 1) Inductive load switch-off energy dissipation 1)2) single pulse, (see page 9) Tj =150 °C, Vbb = 13.5 V, IL = 0.3 A Load dump protection 2) VLoadDump3)= VA + VS RI=2Ω, td=400ms, VIN= low or high, VA=13,5V RL = 45 Ω Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 ESD STM5.1 - 1998 Input pin all other pins Thermal Characteristics Thermal resistance @ min. footprint Thermal resistance @ 6 cm2 cooling area 1) Rth(JA) Rth(JA) 95 70 83 K/W ±1 ±5 60 kV VLoaddump V Symbol Vbb Vbb(SC) VIN IL I IN Tj Ta T stg Ptot EAS Value 40 Vbb -10 ... +16 self limited ±5 150 -30...+85 -40 ... +105 1.5 800 W mJ A mA °C Unit V
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 17) 2not subject to production test, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a 150Ω resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2006-03-09
ISP 742 RI Electrical Characteristics Parameter and Conditions at Tj = -40...+150°C, V bb = 13,5V, unless otherwise specified Load Switching Capabilities and Characteristics On-state resistance T j = 25 °C, I L = 0.3 A, V bb = 9...40 V T j = 150 °C Nominal load current Device on PCB 1)2) T C = 85 °C, T j ≤ 150 °C Turn-on time Turn-off time Slew rate on RL = 47 Ω Slew rate off RL = 47 Ω Operating Parameters Operating voltage Undervoltage shutdown of charge pump Undervoltage restart of charge pump Standby current VIN = 0 V Leakage output current (included in Ibb(off)) Operating current VIN = high IL(off) IGND 12 1.3 mA Vbb(on) Vbb(under) Vbb(u cp) Ibb(off) 5 34 5 5.5 26 µA V 70 to 40% V OUT, -dV/dtoff 2 to 90% V OUT to 10% V OUT 10 to 30% V OUT, ton toff dV/dton 140 170 2 V/µs µs RL = 47 Ω, V IN = 0 to 10 V RL = 47 Ω, V IN = 10 to 0 V IL(nom) RON 0.4 250 450 350 700 A mΩ Symbol min. Values typ. max. Unit
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 17) 2Nominal load current is limited by current limitation (see page 5)
Page 4
2006-03-09
ISP 742 RI Electrical Characteristics Parameter and Conditions at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified Protection Functions1) Initial peak short circuit current limit (pin 5 to 3) Tj = -40 °C, Vbb = 20 V Tj = 25 °C Tj = 150 °C Repetitive short circuit current limit Tj = Tjt (see timing diagrams) Output clamp (inductive load switch off) at VOUT = Vbb - VON(CL), Ibb = 4 mA Overvoltage protection 2) Ibb = 4 mA Thermal overload trip temperature Thermal hysteresis Reverse Battery Reverse battery 3) Drain-source diode voltage (VOUT > Vbb) Tj = 150 °C -Vbb -VON 600 32 V mV T jt ∆Tjt 150 10 °C K Vbb(AZ) 41 I L(SCr) VON(CL) 41 1 47 V I L(SCp) 0.4 1.2 2 A Symbol min. Values typ. max. Unit
1Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation . 2 see also VON(CL) in circuit diagram on page 8 3Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3).
Page 5
2006-03-09
ISP 742 RI Electrical Characteristics Parameter at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified Input and Status feedback Input turn-on threshold voltage Input turn-off threshold voltage Input threshold hysteresis Off state input current VIN = 0.7 V On state input current VIN = 5 V Status output (open drain), Zener limit voltage IST = 1.6 mA Status output (open drain), ST low voltage Tj = -40...+25 °C, IST = 1.6 mA Tj = 150 °C, IST = 1.6 mA Status invalid after input slope 1) Input resistance (see page 8) Diagnostic Characteristics Short circuit detection voltage Open load detection voltage Openload detection current included in standby current Ibb(off) VOUT(SC) VOUT(OL) IL(OL) 2.8 3 5 µA V t d(ST) RI VST(low) 1.5 300 3.5 0.4 0.6 600 5 µs kΩ VST(high) 5.4 6.1 V I IN(on) 1 30 VIN(T+) VIN(T-) ∆V IN(T) I IN(off) 0.8 1 0.3 2.2 30 µA V Symbol min. Values typ. max. Unit
1no delay time after overtemperature switch off and short circuit in on-state
Page 6
2006-03-09
ISP 742 RI
Input level Normal operation Short circuit to GND Short circuit to Vbb (in off-state) Overload Overtemperature Open Load in off-state L H L H L H L H L H L H
Output level L H L L* H H L H ** L L H H
Status L L L H H L L L L H H L
*) Out ="L": VOUT < 2V typ. **) Out ="H": V OUT > 2V typ.
Page 7
2006-03-09
ISP 742 RI Terms
Ibb I IN IN
V Z V ON
Inductive and overvoltage output clamp
+ V bb
Vbb IL PROFET OUT
OUT GND
VON
I ST ST V V bb IN V ST
GND I GND V OUT
R GND
VON clamped to 47V typ.
Input circuit (ESD protection)
R IN I
Overvoltage protection of logic part
ESD- ZD I GND
I
I
The use of ESD zener diodes as voltage clamp at DC conditions is not recommended
Reverse battery protection
± 5V - V bb
VZ1 =6.1V typ., VZ2 =Vbb(AZ) =47V typ.,
R ST
IN ST
RI
Logic OUT
Power Inverse Diode
Status output
RI=3.5 kΩ typ., RGND=150Ω
+5V
GND R GND
Signal GND
RST(ON)
RL
Power GND
ST
RGND=150Ω, RI=3.5kΩ typ., Temperature protection is not active during inverse current
GND
ESDZD
Page 8
2006-03-09
ISP 742 RI Open-load detection
OFF-state diagnostic condition: V OUT > 3V typ.; IN=low
Vbb disconnect with charged inductive load
high
OFF
I L(OL)
IN
Vbb PROFET OUT
ST
Logic unit Open load detection
GND
V OUT
V
Signal GND
bb
GND disconnect Inductive Load switch-off energy dissipation
OUT
E bb E AS
IN
Vbb PROFET
ST GND V bb V IN V ST V GND
IN Vbb PROFET OUT
E Load
=
ST GND ZL
GND disconnect with GND pull up
{
R L
L
EL
ER
IN
Vbb PROFET OUT
Energy stored in load inductance: EL = ½ * L * IL2 While demagnetizing load inductance, the enérgy dissipated in PROFET is EAS = Ebb + EL - ER = VON(CL) * iL(t) dt, with an approximate solution for RL > 0Ω:
ST GND
V bb
VV IN ST
V GND
E AS =
IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL
Page 9
2006-03-09
ISP 742 RI Typ. transient thermal impedance ZthJA=f(tp) @ 6cm 2 heatsink area Parameter: D=tp/T
10
2
Typ. transient thermal impedance Z thJA=f(tp) @ minimal footprint Parameter: D=tp/T
10 2
K/W
D=0.5 D=0.2
K/W
D=0.5 D=0.2
10 1
D=0.1
10 1
D=0.1 D=0.05 D=0.02
D=0.02
Z thJA
ZthJA
D=0.05
10 0
D=0.01 D=0
10 0
D=0.01
D=0
10 -1
jzfigfvifgififvgi
10 -1
10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10
s
10
4
10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10
tp
s
10
4
tp
Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; Vin = high
450
Typ. on-state resistance RON = f(V bb); IL = 0.3A ; V in = high
600
mΩ
mΩ
RON
350
RON
400
150°C
300
300
25°C
250
200
-40°C
200
100
150 -40 -20
0
20
40
60
80 100 120
°C 160
0 0
5
10
15
20
25
30
Tj
Page 10
V Vbb
40
2006-03-09
ISP 742 RI Typ. turn on time ton = f(Tj ); RL = 47Ω
120
Typ. turn off time toff = f(Tj); RL = 47Ω
120
µs
µs
9...32V
t on
32V
toff
80
9V
80
60
13,5V
60
40
40
20
20
0 -40 -20
0
20
40
60
80 100 120
°C 160
0 -40 -20
0
20
40
60
80 100 120
°C 160
Tj
Tj
Typ. slew rate on dV/dton = f(T j) ; RL = 47 Ω
2
Typ. slew rate off dV/dtoff = f(Tj); R L = 47 Ω
2
V/µs
1.6
V/µs
1.6
dV dton
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
13,5V 9V 32V
-dV dtoff
1.4 1.2 1 0.8 0.6
13,5V
32V
0.4 0.2 0 -40 -20
9V
0
20
40
60
80 100 120
°C 160
0
20
40
60
80 100 120
°C 160
Tj
Page 11
Tj
2006-03-09
ISP 742 RI Typ. standby current Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low
14
Typ. leakage current I L(off) = f(Tj) ; Vbb = 32V ; VIN = low
6
µA
µA
I bb(off)
I L(off)
°C 160
10
4
8 3 6 2 4 1
2
0 -40 -20
0
20
40
60
80 100 120
0 -40 -20
0
20
40
60
80 100 120
°C 160
Tj
Tj
Typ. initial peak short circuit current limit IL(SCp) = f(Tj) ; Vbb = 20V
2
Typ. initial short circuit shutdown time toff(SC) = f(Tj,start) ; Vbb = 20V
120
A
ms
1.6
IL(SCp)
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
toff(SC)
80
60
40
20
0
20
40
60
80 100 120
°C 160
0 -40 -20
0
20
40
60
80 100 120
Tj
Page 12
°C Tj
160
2006-03-09
ISP 742 RI Typ. input current IIN(on/off) = f(Tj); Vbb = 13,5V; VIN = low/high VINlow ≤ 0,7V; VINhigh = 5V
12 200
Typ. input current I IN = f(VIN); V bb = 13.5V
µA µA
160 140
150°C
IIN
IIN
8
on
120 100
-40...+25°C
6
off
80 4 60 40 20 0 -40 -20 0 0
2
0
20
40
60
80 100 120
°C 160
1
2
3
4
5
6
Tj
V VIN
8
Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V
2
Typ. input threshold voltage VIN(th) = f(V bb) ; Tj = 25°C
2
on
V
1.6
V
1.6
on
V IN(th)
VIN(th)
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
off
1.4 1.2 1 0.8 0.6 0.4 0.2
off
0
20
40
60
80 100 120
°C 160
0 0
5
10
15
20
25
Tj
35 V Vbb
Page 13
2006-03-09
ISP 742 RI Maximum allowable load inductance for a single switch off L = f(IL); Tjstart =150°C, Vbb=13.5V, RL=0Ω
4000 500
Typ. status delay time td(ST) = f(V bb); T j = 25°C
mH µs
3000
L
2500
t d(ST)
100 200 300 400
300
2000 200
1500
1000 100 500
0 0
mA IL
600
0 0
5
10
15
20
25
35 V Vbb
Maximum allowable inductive switch-off energy, single pulse EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V
1000
mJ
EAS
600
400
200
0 0
100
200
300
400
mA IL
600
Page 14
2006-03-09
ISP 742 RI
Timing diagrams
Figure 1a: Vbb turn on:
IN
Figure 2b: Switching a lamp,
IN
Vbb
ST
I
L
V
OUT
ST t t d = 20µs
IL
Invalid status during td
Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition
IN
Figure 2c: Switching an inductive load
IN
V
OUT
90% t on dV/ dton 10% t dV/ dtoff
ST
off
VOUT
IL
t
IL
ST
Page 15
2006-03-09
ISP 742 RI
Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling
IN
Figure 3b: Short circuit in on-state shut down by overtemperature, restart by cooling
IN
V
OUT
V OUT
O u tp u t s h o rt to G N D
n o rm a l o p e r a t io n
O u tp u t s h o r t to G N D
I
L
I
L (S C p )
I
L (S C r)
I
L
I
L (S C r)
ST t t
d (S T )
ST t
Heating up of the chip may require several milliseconds, depending on external conditions.
Figure 5: Undervoltage restart of charge pump
Figure 4: Overtemperature: Reset if Tj < Tjt
IN
Vo n
ST IL
V b b( u c p ) V b ( u n d er ) b
Vbb
TJ
t
Page 16
2006-03-09
ISP 742 RI
Package and ordering code
all dimensions in mm
Package: PG-DSO-8
Ordering code: SP000221229
Printed circuit board (FR4, 1.5mm thick, one layer 70µm, 6cm2 active heatsink area ) as a reference for max. power dissipation Ptot Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved. nominal load current IL(nom) and thermal resistance R thja
Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 17
2006-03-09