Final data
SPP15N60C3, SPI15N60C3 SPA15N60C3
VDS @ Tjmax RDS(on) ID 650 0.28 15 V Ω A
Cool MOS™ Power Transistor
Feature • New revolutionary high voltage technology • Ultra low gate charge • Periodic avalanche rated • Extreme dv/dt rated • Ultra low effective capacitances • Improved transconductance
P-TO220-3-31 1 2 3
P-TO220-3-31
P-TO262-3-1
P-TO220-3-1
• P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)
Type SPP15N60C3 SPI15N60C3 SPA15N60C3
Package P-TO220-3-1 P-TO262-3-1
Ordering Code Q67040-S4600 Q67040-S4601
Marking 15N60C3 15N60C3 15N60C3
P-TO220-3-31 Q67040-S4603
Maximum Ratings Parameter Continuous drain current
TC = 25 °C TC = 100 °C
Symbol ID 15 9.4 ID puls EAS EAR IAR VGS VGS Ptot Tj , Tstg 45 460 0.8 15 ±20 ±30 156
Value SPP_I SPA
Unit A 151) 9.41) 45 460 0.8 15 ±20 ±30 34 W °C A V A mJ
Pulsed drain current, tp limited by Tjmax Avalanche energy, single pulse
ID=7.5A, VDD=50V
Avalanche energy, repetitive tAR limited by Tjmax2)
ID=15A, VDD=50V
Avalanche current, repetitive tAR limited by Tjmax Gate source voltage static Gate source voltage AC (f >1Hz) Power dissipation, TC = 25°C Operating and storage temperature
-55...+150
Page 1
2003-07-01
Final data Maximum Ratings Parameter Drain Source voltage slope
VDS = 480 V, ID = 15 A, Tj = 125 °C
SPP15N60C3, SPI15N60C3 SPA15N60C3
Symbol dv/dt
Value 50
Unit V/ns
Thermal Characteristics Parameter Thermal resistance, junction - case Thermal resistance, junction - case, FullPAK Thermal resistance, junction - ambient, leaded Thermal resistance, junction - ambient, FullPAK Soldering temperature, 1.6 mm (0.063 in.) from case for 10s 3) Electrical Characteristics, at Tj=25°C unless otherwise specified Parameter Symbol Conditions min. Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA Drain-Source avalanche breakdown voltage Gate threshold voltage Zero gate voltage drain current VGS(th) I DSS
ID=675µA, VGS =VDS VDS=600V, V GS=0V, Tj=25°C Tj=150°C
Symbol min. RthJC RthJC_FP RthJA RthJA_FP Tsold -
Values typ. max. 0.8 3.7 62 80 260
Unit K/W
°C
Values typ. 700 3 0.1 0.25 0.68 1.23 max. 3.9 600 2.1 -
Unit V
V(BR)DS VGS=0V, ID=15A
µA 1 100 100 0.28 nA Ω
Gate-source leakage current
I GSS
VGS=30V, V DS=0V VGS=10V, ID=9.4A Tj=25°C Tj=150°C
Drain-source on-state resistance RDS(on)
Gate input resistance
RG
f=1MHz, open drain
Page 2
2003-07-01
Final data Electrical Characteristics Parameter Transconductance Input capacitance Output capacitance Reverse transfer capacitance energy related Effective output capacitance,5) Co(tr) time related Turn-on delay time Rise time Turn-off delay time Fall time Gate Charge Characteristics Gate to source charge Gate to drain charge Gate charge total Gate plateau voltage Qgs Qgd Qg
VDD=480V, ID=15A
SPP15N60C3, SPI15N60C3 SPA15N60C3
Symbol gfs Ciss Coss Crss
Conditions min.
VDS≥2*ID*R DS(on)max, ID=9.4A VGS=0V, VDS=25V, f=1MHz
Values typ. 11.9 1660 540 40 80 127 10 5 50 5 max. 80 10 -
Unit S pF
Effective output capacitance,4) Co(er)
VGS=0V, VDS=0V to 480V
td(on) tr td(off) tf
VDD=480V, VGS=0/10V, ID=15A, RG =4.3Ω
-
ns
-
7 29 63 5
-
nC
VDD=480V, ID=15A, VGS=0 to 10V
V(plateau) VDD=480V, ID=15A
V
1Limited only by maximum temperature 2Repetitve avalanche causes additional power losses that can be calculated as P =E *f. AR AV 3Soldering temperature for TO-263: 220°C, reflow 4C 5C
o(er) o(tr)
is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Page 3
2003-07-01
Final data Electrical Characteristics Parameter Inverse diode continuous forward current Inverse diode direct current, pulsed Inverse diode forward voltage Reverse recovery time Reverse recovery charge Peak reverse recovery current Peak rate of fall of reverse recovery current Typical Transient Thermal Characteristics Symbol SPP_B Rth1 Rth2 Rth3 Rth4 Rth5 Rth6 0.012 0.023 0.043 0.156 0.178 0.072
Tj P tot ( t) C th1 C th2 C th,n T am b
SPP15N60C3, SPI15N60C3 SPA15N60C3
Symbol IS I SM VSD t rr Q rr I rrm dirr /dt
Conditions min.
TC=25°C
Values typ. 1 460 27 55 1300 max. 15 45 1.2 -
Unit A
VGS =0V, IF=IS VR =480V, IF =IS , diF/dt=100A/µs
-
V ns µC A A/µs
Tj=25°C
Value SPA 0.012 0.023 0.043 0.176 0.371 2.522
R th1
Unit K/W
Symbol Cth1 Cth2 Cth3 Cth4 Cth5 Cth6
R th,n T case
Value SPP_B 0.0002495 0.0009406 0.001298 0.00362 0.009046 0.412 SPA 0.0002495 0.0009406 0.001298 0.00362 0.008025 0.412
Unit Ws/K
E xternal H eatsink
Page 4
2003-07-01
Final data 1 Power dissipation Ptot = f (TC)
170
SPP15N60C3
SPP15N60C3, SPI15N60C3 SPA15N60C3
2 Power dissipation FullPAK Ptot = f (TC)
35
W
W
140 120 25
Ptot
100 80
Ptot
20 15 60 10 40 20 0 0 5 20 40 60 80 100 120
°C
160
0 0
20
40
60
80
100
120
TC
°C 160 Tj
3 Safe operating area ID = f ( VDS ) parameter : D = 0 , TC=25°C
10
2
4 Safe operating area FullPAK ID = f (VDS) parameter: D = 0, TC = 25°C
10 2
A
A
10 1
10 1
ID
10 0
ID
10 0
10 -1
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC
10 -1
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC
10 -2 0 10
10
1
10
2
V VDS
10
3
10 -2 0 10
10
1
10
2
10 V VDS
3
Page 5
2003-07-01
Final data 5 Transient thermal impedance ZthJC = f (tp) parameter: D = tp/T
10 1
SPP15N60C3, SPI15N60C3 SPA15N60C3
6 Transient thermal impedance FullPAK ZthJC = f (tp) parameter: D = tp/t
10 1
K/W
10 0
K/W
10 0
ZthJC
10 -1
ZthJC
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
10 -1
10 -2
10 -2
10 -3
10 -3
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
10 -4 -7 10
10
-6
10
-5
10
-4
10
-3
s tp
10
-1
10 -4 -7 -6 -5 -4 -3 -2 -1 10 10 10 10 10 10 10
1 s 10
tp
7 Typ. output characteristic ID = f (VDS); Tj =25°C parameter: tp = 10 µs, VGS
Vgs = 20V Vgs = 7V A Vgs = 6.5V Vgs = 6V Vgs = 5.5V Vgs = 5V Vgs = 4.5V 40 Vgs = 4V
60
8 Typ. output characteristic ID = f (VDS); Tj =150°C parameter: tp = 10 µs, VGS
30
A
ID
30
ID
20
Vgs = 20V Vgs = 7V Vgs = 6V Vgs = 5.5V Vgs = 5V Vgs = 4.5V Vgs = 4V
15
20
10
10
5
0 0
4
8
12
16
20
V
28
0 0
4
8
12
16
20
V
28
VDS
VDS
Page 6
2003-07-01
Final data 9 Typ. drain-source on resistance RDS(on)=f(ID) parameter: Tj=150°C, VGS
1.8
SPP15N60C3, SPI15N60C3 SPA15N60C3
10 Drain-source on-state resistance RDS(on) = f (Tj) parameter : ID = 9.4 A, VGS = 10 V
1.6
SPP15N60C3
Ω
1.4
RDS(on)
RDS(on)
Vgs = 4V Vgs = 4.5V Vgs = 5V Vgs = 5.5V Vgs = 6V Vgs = 7V Vgs = 20V
Ω
1.2
1
1.2 0.8 1 0.6 0.8
0.4
98% typ
0.6
0.2
0.4 0
5
10
15
20
A
ID
30
0 -60
-20
20
60
100
°C
180
Tj
11 Typ. transfer characteristics ID = f ( VGS ); VDS≥ 2 x ID x RDS(on)max parameter: tp = 10 µs
60
12 Typ. gate charge VGS = f (Q Gate) parameter: ID = 15 A pulsed
16
SPP15N60C3
A
V
25°C
12
VGS
ID
40
150°C
10
0,2 VDS max
0,8 VDS max
30
8
6 20 4 10 2
0 0
2
4
6
V
10
0 0
10
20
30
40
50
60
70
80 nC
100
VGS
QGate
Page 7
2003-07-01
Final data 13 Forward characteristics of body diode IF = f (VSD) parameter: Tj , tp = 10 µs
10 2
SPP15N60C3
SPP15N60C3, SPI15N60C3 SPA15N60C3
14 Avalanche SOA IAR = f (tAR) par.: Tj ≤ 150 °C
15
A
A
IF
IAR
10 1
9
Tj(START)=25°C
6 10
0
Tj(START)=125°C
Tj = 25 °C typ Tj = 150 °C typ Tj = 25 °C (98%) Tj = 150 °C (98%) 10 -1 0 0.4 0.8 1.2 1.6 2 2.4 V 3 0 -3 10 10
-2
3
10
-1
10
0
10
1
10
2
VSD
µs 10 tAR
4
15 Avalanche energy EAS = f (Tj) par.: ID = 7.5 A, VDD = 50 V
0.5
16 Drain-source breakdown voltage V(BR)DSS = f (Tj)
720
SPP15N60C3
V
mJ
V(BR)DSS
680 660 640 620
E AS
0.3
0.2 600 580 560 0 20 540 -60
0.1
40
60
80
100
120
160 °C Tj
-20
20
60
100
°C
180
Tj
Page 8
2003-07-01
Final data 17 Avalanche power losses PAR = f (f ) parameter: EAR =0.8mJ
900
SPP15N60C3, SPI15N60C3 SPA15N60C3
18 Typ. capacitances C = f (VDS) parameter: VGS =0V, f=1 MHz
10 4
W
pF
Ciss
700
10 3
PAR
600
C
500 10 400 300 200 100 04 10
5 6 2
Coss
10 1
Crss
10
Hz f
10
10 0 0
100
200
300
400
V
600
VDS
19 Typ. Coss stored energy Eoss=f(VDS)
15
µJ
E oss
9
6
3
0 0
100
200
300
400
V
600
VDS
Page 9
2003-07-01
Final data
SPP15N60C3, SPI15N60C3 SPA15N60C3
Definition of diodes switching characteristics
Page 10
2003-07-01
Final data P-TO-220-3-1
B 10 ±0.4 3.7 ±0.2 A 1.27±0.13 4.44
SPP15N60C3, SPI15N60C3 SPA15N60C3
15.38 ±0.6
2.8 ±0.2
C
5.23 ±0.9
13.5 ±0.5
3x 0.75 ±0.1 1.17 ±0.22 2x 2.54 0.25
M
0.5 ±0.1 2.51±0.2
ABC
All metal surfaces tin plated, except area of cut. Metal surface min. x=7.25, y=12.3
9.98 ±0.48
0.05
Page 11
2003-07-01
Final data P-TO-262-3-1 (I2-PAK)
10 ±0.2 0...0.3 8.5
1)
1)
SPP15N60C3, SPI15N60C3 SPA15N60C3
A
B 4.4 1.27
1 ±0.3
11.6 ±0.3
2.4
C
4.55 ±0.2
13.5 ±0.5
0...0.15 1.05 3 x 0.75 ±0.1 2 x 2.54
1)
0.5 ±0.1 2.4
0.25
M
ABC
Typical Metal surface min. X = 7.25, Y = 6.9 All metal surfaces tin plated, except area of cut.
P-TO-220-3-31 (FullPAK)
Please refer to mounting instructions (application note AN-TO220-3-31-01)
9.25 ±0.2
7.55
0.05
Page 12
2003-07-01
Final data
Published by Infineon Technologies AG , Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.
SPP15N60C3, SPI15N60C3 SPA15N60C3
Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Page 13
2003-07-01