Final data
SPD04N60C3 SPU04N60C3
VDS @ Tjmax RDS(on) ID
P-TO251
Cool MOS™ Power Transistor
Feature • New revolutionary high voltage technology • Ultra low gate charge • Periodic avalanche rated • Extreme dv/dt rated • High peak current capability • Improved transconductance
650 0.95 4.5
P-TO252
V Ω A
Type SPD04N60C3 SPU04N60C3
Package P-TO252 P-TO251
Ordering Code Q67040-S4412 -
Marking 04N60C3 04N60C3
Maximum Ratings Parameter Continuous drain current TC = 25 °C TC = 100 °C Pulsed drain current, tp limited by Tjmax Avalanche energy, single pulse I D = 3.4 A, VDD = 50 V Avalanche energy, repetitive tAR limited by Tjmax1) EAR I D = 4.5 A, VDD = 50 V Avalanche current, repetitive tAR limited by Tjmax I AR Gate source voltage static VGS Gate source voltage AC (f >1Hz) Power dissipation, TC = 25°C Operating and storage temperature VGS Ptot T j , T stg 4.5 ±20 ±30 50 -55... +150 W °C A V 0.4 I D puls EAS Symbol ID 4.5 2.8 13.5 130 mJ Value Unit A
Page 1
2003-10-02
Final data Maximum Ratings Parameter Drain Source voltage slope
V DS = 480 V, I D = 4.5 A, Tj = 125 °C
SPD04N60C3 SPU04N60C3
Symbol dv/dt Value 50 Unit V/ns
Thermal Characteristics Parameter Thermal resistance, junction - case Thermal resistance, junction - ambient, leaded SMD version, device on PCB: @ min. footprint @ 6 cm 2 cooling area 2) Soldering temperature, 1.6 mm (0.063 in.) from case for 10s Electrical Characteristics, at Tj=25°C unless otherwise specified Parameter Symbol Conditions min. Drain-source breakdown voltage V(BR)DSS V GS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS V GS=0V, ID=4.5A breakdown voltage Gate threshold voltage Zero gate voltage drain current VGS(th) I DSS
ID=200µΑ, VGS=VDS V DS=600V, VGS=0V, Tj=25°C, Tj=150°C
Symbol min. RthJC RthJA RthJA Tsold -
Values typ. max. 2.5 75 75 50 260
Unit K/W
°C
Values typ. 700 3 0.5 0.85 2.3 0.95 max. 3.9 600 2.1 -
Unit V
µA 1 50 100 0.95 nA Ω
Gate-source leakage current
I GSS
V GS=30V, VDS=0V V GS=10V, ID=2.8A, Tj=25°C Tj=150°C
Drain-source on-state resistance RDS(on)
Gate input resistance
RG
f=1MHz, open Drain
Page 2
2003-10-02
Final data Electrical Characteristics , at Tj = 25 °C, unless otherwise specified Parameter Transconductance Input capacitance Output capacitance Reverse transfer capacitance energy related Effective output capacitance, 4) Co(tr) time related Turn-on delay time Rise time Turn-off delay time Fall time Gate Charge Characteristics Gate to source charge Gate to drain charge Gate charge total Gate plateau voltage Qgs Qgd Qg
V DD=480V, ID=4.5A, V GS=0 to 10V V DD=480V, ID=4.5A
SPD04N60C3 SPU04N60C3
Values min. typ. 4.4 490 160 15 20 35 6 2.5 58.5 9.5 max. 80 14 ns pF S pF Unit
Symbol g fs Ciss Coss Crss
Conditions
V DS≥2*I D*RDS(on)max, ID=2.8A V GS=0V, V DS=25V, f=1MHz
Effective output capacitance, 3) Co(er)
V GS=0V, V DS=0V to 480V
td(on) tr td(off) tf
V DD=380V, V GS=0/10V, ID=4.5A, RG=18Ω
-
-
2.2 8.8 19 5
25 -
nC
V(plateau) V DD=480V, ID=4.5A
V
1Repetitve avalanche causes additional power losses that can be calculated as P =EAR*f. AV 2Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 3C is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V
o(er)
DSS.
4C o(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Page 3
2003-10-02
Final data Electrical Characteristics , at Tj = 25 °C, unless otherwise specified Parameter Inverse diode continuous forward current Inverse diode direct current, pulsed Inverse diode forward voltage Reverse recovery time Reverse recovery charge Peak reverse recovery current Peak rate of fall of reverse recovery current Typical Transient Thermal Characteristics Symbol Thermal resistance Rth1 Rth2 Rth3 Rth4 Rth5 Rth6 0.039 0.074 0.132 0.555 0.529 0.169 K/W Value typ. Thermal capacitance Cth1 Cth2 Cth3 Cth4 Cth5 Cth6 Unit Symbol Value typ. VSD t rr Q rr I rrm di rr/dt
VGS =0V, I F=IS VR =480V, IF=IS , diF/dt=100A/µs
SPD04N60C3 SPU04N60C3
Values min. typ. 1 300 2.6 18 max. 4.5 13.5 1.2 500 900 V ns µC A A/µs A Unit
Symbol IS I SM
Conditions
TC=25°C
Unit
0.00007347 0.0002831 0.0004062 0.001215 0.00276 0.029
Ws/K
Tj P tot ( t)
R th1
R th,n
T case
E xternal H eatsink
C th1
C th2
C th,n T am b
Page 4
2003-10-02
Final data 1 Power dissipation Ptot = f (TC)
55
SPD04N60C3
SPD04N60C3 SPU04N60C3
2 Safe operating area ID = f ( V DS ) parameter : D = 0 , T C=25°C
10 2
W
45 40
A
10 1
Ptot
30 25 20 15 10 5 0 0 20 40 60 80 100 120
ID
10 0
35
10 -1
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC
°C
160
10 -2 0 10
10
1
10
2
TC
10 V VDS
3
3 Transient thermal impedance ZthJC = f (t p) parameter: D = tp/T
10
1
4 Typ. output characteristic ID = f (VDS); Tj=25°C parameter: tp = 10 µs, VGS
16
K/W
A
10 0
12
20V 10V 7V 6.5V
ZthJC
ID
10
6V
10 -1
10 -2
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
8
5.5V
6
4
5V 4.5V 4V
2 10 -3 -7 10
10
-6
10
-5
10
-4
10
-3
s tp
10
-1
0 0
5
10
15
V VDS
25
Page 5
2003-10-02
Final data 5 Typ. output characteristic ID = f (VDS); Tj=150°C parameter: tp = 10 µs, VGS
8.5
SPD04N60C3 SPU04N60C3
6 Typ. drain-source on resistance RDS(on)=f(ID) parameter: Tj=150°C, V GS
10
A
7 6
20V 8V 7V 6.5V
Ω
6V
4.5V 4V 5V
8
RDS(on)
ID
7 6
20V 8V 7V 6.5V 6V
5 4
5.5V
5.5V
5
5V
3 2 1 0 0
4
4.5V
3 2 1 0
4V
5
10
15
V VDS
25
1
2
3
4
5
6
7
A ID
9
7 Drain-source on-state resistance RDS(on) = f (Tj) parameter : ID = 2.8 A, VGS = 10 V
5.5
SPD04N60C3
8 Typ. transfer characteristics ID= f ( VGS ); V DS≥ 2 x ID x RDS(on)max parameter: tp = 10 µs
16
Ω
4.5
A
25°C
RDS(on)
4
12
ID
3.5 3
10
150°C
8 2.5 2 1.5 98% 1 0.5 0 -60 -20 20 60 100
°C
6
4 typ 2
180
0 0
2
4
6
8
10
12
14
16
Tj
Page 6
V 20 VGS
2003-10-02
Final data 9 Typ. gate charge VGS = f (QGate ) parameter: ID = 4.5 A pulsed
16
V
SPD04N60C3
SPD04N60C3 SPU04N60C3
10 Forward characteristics of body diode IF = f (VSD) parameter: Tj , tp = 10 µs
10 2
SPD04N60C3
A
12
VGS
0.8 VDS max
8
6
IF
10 0 Tj = 25 °C typ Tj = 150 °C typ Tj = 25 °C (98%) Tj = 150 °C (98%) 24 nC 10 -1 0
10
0.2 VDS max
10 1
4
2
0 0
4
8
12
16
20
30
0.4
0.8
1.2
1.6
2
2.4 V
3
QGate
VSD
11 Typ. drain current slope di/dt = f(R G), inductive load, Tj = 125°C par.: VDS =380V, VGS=0/+13V, ID=4.5A
2400
12 Typ. switching time t = f (RG ), inductive load, T j=125°C par.: V DS=380V, VGS=0/+13V, ID=4.5 A
500
ns A/µs
400 350 300 250 200 800
di/dt(on)
di/dt
1600
1200
t
td(off) tf td(on) tr
150 100 50 0 0
400
di/dt(off)
0 0
20
40
60
80 100 120 140 160
Ω 200 RG
20
40
60
80
100 120 140 160
Ω 190 RG
Page 7
2003-10-02
Final data 13 Typ. switching time t = f (ID), inductive load, T j=125°C par.: VDS =380V, VGS=0/+13V, RG =18Ω
90
SPD04N60C3 SPU04N60C3
14 Typ. drain source voltage slope dv/dt = f(RG), inductive load, Tj = 125°C par.: V DS=380V, VGS=0/+13V, ID=4.5A
100000
ns
V/ns
80000 70000 60000 50000 40000 30000 20000 10000 0 0
dv/dt(off) dv/dt(on)
70
50 40 30 20 10 0 0
td(off) tf td(on) tr
dv/dt
60
t
0.5
1
1.5
2
2.5
3
3.5
A 4.5 ID
20
40
60
80 100 120 140 160
Ω 200 RG
15 Typ. switching losses E = f (ID), inductive load, Tj=125°C par.: VDS =380V, VGS=0/+13V, RG =18Ω
0.014
16 Typ. switching losses E = f(RG), inductive load, Tj=125°C par.: V DS=380V, VGS=0/+13V, ID=4.5A
0.1
*) Eon includes SDP06S60 diode commutation losses.
mWs
mWs
0.08
*) Eon includes SDP06S60 diode commutation losses.
0.01
0.07
E
E
0.008
Eoff
0.06
Eoff
0.05 0.006
Eon*
0.04 0.03 0.02
Eon*
0.004
0.002 0.01 0 0 0 0
0.5
1
1.5
2
2.5
3
3.5
A 4.5 ID
20
40
60
80 100 120 140 160
Ω 200 RG
Page 8
2003-10-02
Final data 17 Avalanche SOA IAR = f (tAR) par.: Tj ≤ 150 °C
5
SPD04N60C3 SPU04N60C3
18 Avalanche energy EAS = f (Tj) par.: ID = 3.4 A, V DD = 50 V
160
A
4 3.5
mJ Tj(START) =25°C
120
EAS
Tj(START) =125°C
-2 -1 0 1 2 4
IAR
3 2.5 2 1.5
100
80
60
40 1 0.5 0 -3 10 20
10
10
10
10
10
µs 10 tAR
0 20
40
60
80
100
120
°C
160
Tj
19 Drain-source breakdown voltage V(BR)DSS = f (Tj)
720
SPD04N60C3
20 Avalanche power losses PAR = f (f ) parameter: E AR=0.4mJ
200
V
W
V(BR)DSS
680 660 640
150
PAR
125
100 620 75 600 580 560 540 -60 50
25
-20
20
60
100
°C
180
04 10
10
5
Hz f
10
6
Tj
Page 9
2003-10-02
Final data 21 Typ. capacitances C = f (VDS) parameter: V GS=0V, f=1 MHz
10 4 3.5
SPD04N60C3 SPU04N60C3
22 Typ. Coss stored energy Eoss=f(VDS)
pF
µJ
Ciss
10 3
2.5
C
Eoss
2 10
2
1.5
Coss
10 1
1
Crss
0.5
10 0 0
100
200
300
400
V
600
0 0
100
200
300
400
V
600
VDS
VDS
Definition of diodes switching characteristics
Page 10
2003-10-02
Final data P-TO-252-3-1 (D-PAK)
SPD04N60C3 SPU04N60C3
P-TO-251-3-1 (I-PAK)
6.5 +0.15 -0.10 A
1 ±0.1
2.3 +0.05 -0.10 B 0.9 +0.08 -0.04
5.4 ±0.1
C
6.22 -0.2
0.15 max per side
9.3 ±0.4
3 x 0.75 ±0.1 2.28 4.56 0.25
M
0.5 +0.08 -0.04 1.0 ABC
GPT09050
All metal surfaces tin plated, except area of cut.
Page 11
2003-10-02
Final data
Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.
SPD04N60C3 SPU04N60C3
Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Page 12
2003-10-02