Final data
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
VDS @ Tjmax RDS(on) ID 560 0.19 21 V Ω A
Cool MOS™ Power Transistor
Feature • New revolutionary high voltage technology • Worldwide best RDS(on) in TO 220 • Ultra low gate charge • Periodic avalanche rated • Extreme dv/dt rated • Ultra low effective capacitances • Improved transconductance • P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute) Type SPP21N50C3 SPB21N50C3 SPI21N50C3 SPA21N50C3 Maximum Ratings Parameter Continuous drain current
TC = 25 °C TC = 100 °C
P-TO220-3-31 1 2 3
P-TO220-3-31
P-TO262-3-1
P-TO263-3-2
P-TO220-3-1
Package P-TO220-3-1 P-TO263-3-2 P-TO262-3-1
Ordering Code Q67040-S4565 Q67040-S4566 Q67040-S4564
Marking 21N50C3 21N50C3 21N50C3 21N50C3
P-TO220-3-31 Q67040-S4585
Symbol ID 21 13.1 ID puls EAS EAR IAR VGS VGS Ptot Tj , Tstg 63 690 1 21 ±20 ±30 208
Value SPP_B SPP_B_I SPA
Unit A 211)
13.11) 63 690 1 21 ±20 ±30 34.5 W °C A V A mJ
Pulsed drain current, tp limited by Tjmax Avalanche energy, single pulse
ID=10A, VDD=50V
Avalanche energy, repetitive tAR limited by Tjmax2)
ID=21A, VDD=50V
Avalanche current, repetitive tAR limited by Tjmax Gate source voltage Gate source voltage AC (f >1Hz) Power dissipation, TC = 25°C Operating and storage temperature
-55...+150
Page 1
2003-07-02
Final data Maximum Ratings Parameter Drain Source voltage slope
VDS = 400 V, ID = 21 A, Tj = 125 °C
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
Symbol dv/dt
Value 50
Unit V/ns
Thermal Characteristics Parameter Thermal resistance, junction - case Thermal resistance, junction - case, FullPAK Thermal resistance, junction - ambient, leaded Thermal resistance, junction - ambient, FullPAK SMD version, device on PCB: @ min. footprint @ 6 cm 2 cooling area 3) Soldering temperature, 1.6 mm (0.063 in.) from case for 10s 4) Electrical Characteristics, at Tj=25°C unless otherwise specified Parameter Symbol Conditions min. Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA Drain-Source avalanche breakdown voltage Gate threshold voltage Zero gate voltage drain current VGS(th) I DSS
ID=1000µA, VGS=VDS VDS=500V, V GS=0V, Tj=25°C Tj=150°C
Symbol min. RthJC RthJC_FP RthJA RthJA_FP RthJA Tsold -
Values typ. 35 max. 0.6 3.6 62 80 62 260
Unit K/W
°C
Values typ. 600 3 0.1 0.16 0.54 0.53 max. 3.9 500 2.1 -
Unit V
V(BR)DS VGS=0V, ID=21A
µA 1 100 100 0.19 nA Ω
Gate-source leakage current
I GSS
VGS=20V, V DS=0V VGS=10V, ID=13.1A Tj=25°C Tj=150°C
Drain-source on-state resistance RDS(on)
Gate input resistance
RG
f=1MHz, open drain
Page 2
2003-07-02
Final data Electrical Characteristics Parameter Transconductance Input capacitance Output capacitance Reverse transfer capacitance energy related Effective output capacitance,6) Co(tr) time related Turn-on delay time Rise time Turn-off delay time Fall time Gate Charge Characteristics Gate to source charge Gate to drain charge Gate charge total Gate plateau voltage Qgs Qgd Qg td(on) tr td(off) tf Symbol gfs Ciss Coss Crss
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
Conditions min.
VDS≥2*ID*R DS(on)max, ID=13.1A VGS=0V, VDS=25V, f=1MHz
Values typ. 18 2400 1200 30 87 181 10 5 67 4.5 max. -
Unit S pF
Effective output capacitance,5) Co(er)
VGS=0V, VDS=400V
VDD=380V, VGS=0/10V, ID=21A, RG =3.6Ω
-
ns
VDD=380V, ID=21A
-
10 50 95 5
-
nC
VDD=380V, ID=21A, VGS=0 to 10V
V(plateau) VDD=380V, ID=21A
V
1Limited only by maximum temperature 2Repetitve avalanche causes additional power losses that can be calculated as P =E *f. AR AV 3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 4Soldering temperature for TO-263: 220°C, reflow 5C 6C
o(er) o(tr)
is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Page 3
2003-07-02
Final data Electrical Characteristics Parameter Inverse diode continuous forward current Inverse diode direct current, pulsed Inverse diode forward voltage Reverse recovery time Reverse recovery charge Peak reverse recovery current Peak rate of fall of reverse recovery current Typical Transient Thermal Characteristics Symbol Rth1 Rth2 Rth3 Rth4 Rth5 Rth6 0.00769 0.015 0.029 0.114 0.136 0.059
Tj P tot ( t) C th1 C th2 C th,n
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
Symbol IS I SM VSD t rr Q rr I rrm dirr /dt
Conditions min.
TC=25°C
Values typ. 1 450 9 60 1200 max. 21 63 1.2 -
Unit A
VGS =0V, IF=IS VR =380V, IF =IS , diF/dt=100A/µs
-
V ns µC A A/µs
Tj=25°C
Value SPP_B_I SPA 0.00769 0.015 0.029 0.16 0.319 2.523
R th1
Unit K/W
Symbol Cth1 Cth2 Cth3 Cth4 Cth5 Cth6
R th,n T case
Value SPP_B_I 0.0003763 0.001411 0.001931 0.005297 0.012 0.091 SPA 0.0003763 0.001411 0.001931 0.005297 0.008659 0.412
Unit Ws/K
E xternal H eatsink
T am b
Page 4
2003-07-02
Final data 1 Power dissipation Ptot = f (TC)
240
SPP21N50C3
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
2 Power dissipation FullPAK Ptot = f (TC)
35
W
W
200 180 25
Ptot
140 120 100 80 60 40 20 0 0 20 40 60 80 100 120
Ptot
20 15 10 5
160
°C
160
0 0
20
40
60
80
100
120
TC
°C 160 TC
3 Safe operating area ID = f ( VDS ) parameter : D = 0 , TC=25°C
10
2
4 Safe operating area FullPAK ID = f (VDS) parameter: D = 0, TC = 25°C
10 2
A
A
10 1
10 1
ID
10 0
ID
10 0
10 -1
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC
10 -1
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC
10 -2 0 10
10
1
10
2
V VDS
10
3
10 -2 0 10
10
1
10
2
10 V VDS
3
Page 5
2003-07-02
Final data 5 Transient thermal impedance ZthJC = f (tp) parameter: D = tp/T
10 0
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
6 Transient thermal impedance FullPAK ZthJC = f (tp) parameter: D = tp/t
10 1
K/W
K/W
10 -1
10 0
ZthJC
10 -2
ZthJC
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
10 -1
10 -3
10 -2
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
10 -4 -7 10
10
-6
10
-5
10
-4
10
-3
10
-2
s tp
10
0
10 -3 -6 10
10
-5
10
-4
10
-3
10
-2
10
-1
1 s 10
tp
7 Typ. output characteristic ID = f (VDS); Tj =25°C parameter: tp = 10 µs, VGS
70
8 Typ. output characteristic ID = f (VDS); Tj =150°C parameter: tp = 10 µs, VGS
40
A
Vgs = 20V Vgs = 7V Vgs = 6.5V
Vgs = 6V
A
Vgs = 20V Vgs = 7V Vgs = 6V Vgs = 5.5V
Vgs = 5V
50
30
ID
ID
40
Vgs = 5.5V
25
20
30
Vgs = 5V
15
Vgs = 4.5V
20
Vgs = 4.5V
10
Vgs = 4V
10
Vgs = 4V
5
0 0
5
10
15
V VDS
25
0 0
5
10
15
V VDS
25
Page 6
2003-07-02
Final data 9 Typ. drain-source on resistance RDS(on)=f(ID) parameter: Tj=150°C, VGS
1.5
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
10 Drain-source on-state resistance RDS(on) = f (Tj) parameter : ID = 13.1 A, VGS = 10 V
1.1
SPP21N50C3
Ω
Ω RDS(on)
Vgs = 4V Vgs = 4.5V Vgs = 5V Vgs = 5.5V Vgs = 6V Vgs = 20V
0.9
RDS(on)
0.8 0.7 0.6 0.5 0.4
0.9
0.6
0.3
98%
0.2 0.1 0.3 0 5 10 15 20 25 30
typ
A ID
40
0 -60
-20
20
60
100
°C
180
Tj
11 Typ. transfer characteristics ID = f ( VGS ); VDS≥ 2 x ID x RDS(on)max parameter: tp = 10 µs
70
12 Typ. gate charge VGS = f (Q Gate) parameter: ID = 21 A pulsed
16
SPP21N50C3
A
Tj = 25°C
V
50
12
VGS
ID
Tj = 150°C
10
0,2 VDS max
40 8 30 6 20
0,8 VDS max
4
10
2
0 0
2
4
6
V
10
0 0
20
40
60
80
100
nC
140
VGS
QGate
Page 7
2003-07-02
Final data 13 Forward characteristics of body diode IF = f (VSD) parameter: Tj , tp = 10 µs
10 2
SPP21N50C3
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
14 Avalanche SOA IAR = f (tAR) par.: Tj ≤ 150 °C
20
A
A
IAR
10 1
IF
Tj(Start)=25°C
10
10 0 Tj = 25 °C typ Tj = 150 °C typ Tj = 25 °C (98%) Tj = 150 °C (98%) 10 -1 0 0.4 0.8 1.2 1.6 2 2.4 V 3 0 -3 10 10
-2
5
Tj(Start)=125°C
10
-1
10
0
10
1
10
2
VSD
µs 10 tAR
4
15 Avalanche energy EAS = f (Tj) par.: ID = 10 A, VDD = 50 V
mJ
750
16 Drain-source breakdown voltage V(BR)DSS = f (Tj)
600
SPP21N50C3
V
550
V(BR)DSS
°C
600
570 560 550 540 530 520 510 500 490 480 470 460
EAS
500 450 400 350 300 250 200 150 100 50 0 20 40 60 80 100 120 160
450 -60
-20
20
60
100
°C
180
Tj
Page 8
Tj
2003-07-02
Final data 17 Avalanche power losses PAR = f (f ) parameter: EAR =1mJ
500
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
18 Typ. capacitances C = f (VDS) parameter: VGS =0V, f=1 MHz
10 5
pF W
10 4
Ciss
PAR
300
10 3
C
200
10 2
Coss
100
10 1
Crss
04 10
10
5
Hz f
10
6
10 0 0
100
200
300
V
500
VDS
19 Typ. Coss stored energy Eoss=f(VDS)
10
µJ
E oss
6
4
2
0 0
50 100 150 200 250 300 350 400
V 500 VDS
Page 9
2003-07-02
Final data
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
Definition of diodes switching characteristics
Page 10
2003-07-02
Final data P-TO-220-3-1
B 10 ±0.4 3.7 ±0.2 A 1.27±0.13 4.44
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
15.38 ±0.6
2.8 ±0.2
C
5.23 ±0.9
13.5 ±0.5
3x 0.75 ±0.1 1.17 ±0.22 2x 2.54 0.25
M
0.5 ±0.1 2.51±0.2
ABC
All metal surfaces tin plated, except area of cut. Metal surface min. x=7.25, y=12.3
P-TO-263-3-2 (D2-PAK)
9.98 ±0.48
0.05
Page 11
2003-07-02
Final data P-TO-262-3-1 (I2-PAK)
10 ±0.2 0...0.3 8.5
1)
1)
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
A
B 4.4 1.27
1 ±0.3
11.6 ±0.3
2.4
C
4.55 ±0.2
13.5 ±0.5
0...0.15 1.05 3 x 0.75 ±0.1 2 x 2.54
1)
0.5 ±0.1 2.4
0.25
M
ABC
Typical Metal surface min. X = 7.25, Y = 6.9 All metal surfaces tin plated, except area of cut.
P-TO-220-3-31 (FullPAK)
Please refer to mounting instructions (application note AN-TO220-3-31-01)
9.25 ±0.2
7.55
0.05
Page 12
2003-07-02
Final data
Published by Infineon Technologies AG , Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.
SPP21N50C3, SPB21N50C3 SPI21N50C3, SPA21N50C3
Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Page 13
2003-07-02