SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3 Cool MOS™ Power Transistor
Feature • New revolutionary high voltage technology • Ultra low gate charge • Periodic avalanche rated • Extreme dv/dt rated • Ultra low effective capacitances • Improved transconductance
P-TO220-3-31 1 2 3
VDS @ Tjmax RDS(on) ID
P-TO262 P-TO263-3-2
560 0.38 11.6
V Ω A
P-TO220-3-31
P-TO220-3-1
2
1 P-TO220-3-1
23
• P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)
Type
Package
Ordering Code
SPP12N50C3 SPB12N50C3 SPI12N50C3 SPA12N50C3
Maximum Ratings Parameter
P-TO220-3-1 P-TO263-3-2 P-TO262
Q67040-S4579 Q67040-S4641 Q67040-S4578
Marking 12N50C3 12N50C3 12N50C3 12N50C3
P-TO220-3-31 Q67040-S4577
Symbol ID
Value
Unit SPA
SPP_B_I Continuous drain current
TC = 25 °C TC = 100 °C
A 11.6 7 11.6 1) 71) 34.8 340 0.6 11.6 ±20
±30
Pulsed drain current, tp limited by Tjmax Avalanche energy, single pulse
ID=5.5A, VDD =50V
ID puls EAS EAR IAR VGS VGS Ptot
34.8 340 0.6 11.6 ±20
±30
A mJ
Avalanche energy, repetitive tAR limited by Tjmax2)
ID=11.6A, VDD=50V
Avalanche current, repetitive tAR limited by Tjmax
Gate source voltage
A V W
Gate source voltage AC (f >1Hz)
Power dissipation, TC = 25°C
125
33
Operating and storage temperature
T j , Tstg
-55...+150
°C
Rev. 2.1
Page 1
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
Maximum Ratings Parameter Symbol Value Unit
Drain Source voltage slope
V DS = 400 V, ID = 11.6 A, Tj = 125 °C
dv/dt
50
V/ns
Thermal Characteristics Parameter Symbol min. RthJC RthJC_FP RthJA RthJA_FP RthJA Values typ. max. Unit
Thermal resistance, junction - case Thermal resistance, junction - case, FullPAK Thermal resistance, junction - ambient, leaded Thermal resistance, junction - ambient, FullPAK SMD version, device on PCB: @ min. footprint @ 6 cm 2 cooling area 3) Soldering temperature, 1.6 mm (0.063 in.) from case for 10s 4)
-
35 -
1 3.8 62 80 62 260
K/W
Tsold
-
°C
Electrical Characteristics, at T j=25°C unless otherwise specified Parameter Symbol Conditions min. Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS VGS=0V, ID=11.6A breakdown voltage Gate threshold voltage Zero gate voltage drain current VGS(th) I DSS
ID=500µA, VGS=VDS VDS=500V, VGS=0V, Tj=25°C Tj=150°C
Values typ. 600 3 0.1 0.34 0.92 1.4 max. 3.9 500 2.1 -
Unit V
µA 1 100 100 0.38 nA Ω
Gate-source leakage current
I GSS
VGS=20V, VDS=0V VGS=10V, ID=7A Tj=25°C Tj=150°C
Drain-source on-state resistance RDS(on)
Gate input resistance
RG
f=1MHz, open drain
Rev. 2.1
Page 2
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
Electrical Characteristics, at Tj = 25 °C, unless otherwise specified Parameter Characteristics
Transconductance Input capacitance Output capacitance Reverse transfer capacitance
Symbol
Conditions min.
Values typ. 8 1200 400 30 45 92 10 8 45 8 max. -
Unit
g fs Ciss Coss Crss
V DS≥2*I D*RDS(on)max, ID=7A V GS=0V, V DS=25V, f=1MHz
-
S pF
Effective output capacitance,5) Co(er) energy related Effective output capacitance,6) Co(tr) time related
Turn-on delay time Rise time Turn-off delay time Fall time
Gate Charge Characteristics Gate to source charge Gate to drain charge Gate charge total Gate plateau voltage Qgs Qgd Qg
V GS=0V, V DS=0V to 400V
td(on) tr td(off) tf
V DD=380V, V GS=0/10V, ID=11.6A, R G=6.8Ω
-
ns
VDD=400V, ID=11.6A
-
5 26 49 5
-
nC
VDD=400V, ID=11.6A, VGS=0 to 10V
V(plateau) VDD=400V, ID=11.6A
V
1Limited only by maximum temperature 2Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f. 3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 4Soldering temperature for TO-263: 220°C, reflow 5C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS. 6C o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS.
Rev. 2.1
Page 3
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
Electrical Characteristics Parameter Inverse diode continuous forward current Inverse diode direct current, pulsed Inverse diode forward voltage Reverse recovery time Reverse recovery charge Peak reverse recovery current Peak rate of fall of reverse recovery current
Typical Transient Thermal Characteristics Symbol Rth1 Rth2 Rth3 Rth4 Rth5 Rth6 0.015 0.03 0.056 0.197 0.216 0.083
Tj P tot ( t) C th1 C th2 C th,n T am b
Symbol IS ISM VSD trr Qrr Irrm dirr /dt
Conditions min.
TC=25°C
Values typ. 1 380 5.5 38 1100 max. 11.6 34.8 1.2 -
Unit A
VGS=0V, IF=IS VR=400V, IF=IS , diF/dt=100A/µs
-
V ns µC A A/µs
Tj=25°C
Value SPP_B_I SPA 0.15 0.03 0.056 0.194 0.413 2.522
R th1
Unit K/W
Symbol Cth1 Cth2 Cth3 Cth4 Cth5 Cth6
R th,n T case
Value SPP_B_I 0.0001878 0.0007106 0.000988 0.002791 0.007285 0.063 SPA 0.0001878 0.0007106 0.000988 0.002791 0.007401 0.412
Unit Ws/K
E xternal H eatsink
Rev. 2.1
Page 4
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
1 Power dissipation Ptot = f (TC)
140
SPP12N50C3
2 Power dissipation FullPAK Ptot = f (TC)
36
W
W
120 110 100 28
Ptot
90 80 70 60 50 40 30 20 10 0 0 20 40 60 80 100 120
Ptot
°C
24 20 16 12 8 4 0 0
160
20
40
60
80
100
120
°C
160
TC
TC
3 Safe operating area ID = f ( V DS ) parameter : D = 0 , TC =25°C
10
2
4 Safe operating area FullPAK ID = f (VDS) parameter: D = 0, TC = 25°C
10 2
A
A
10 1
10 1
ID
10 0
ID
10 0
10 -1
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC
10 -1
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC
10 -2 0 10
10
1
10
2
V VDS
10
3
10 -2 0 10
10
1
10
2
10 V VDS
3
Rev. 2.1
Page 5
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
5 Transient thermal impedance ZthJC = f (t p) parameter: D = tp/T
10
1
6 Transient thermal impedance FullPAK ZthJC = f (t p) parameter: D = tp/t
10 1
K/W
10 0
K/W
10 0
ZthJC
10 -1
ZthJC
10 -1
10 -2
10 -3
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
10 -2
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
10 -3
10 -4 -7 10
10
-6
10
-5
10
-4
10
-3
s tp
10
-1
10 -4 -7 -6 -5 -4 -3 -2 -1 10 10 10 10 10 10 10
1 s 10
tp
7 Typ. output characteristic ID = f (VDS); Tj=25°C parameter: tp = 10 µs, VGS
40
8 Typ. output characteristic ID = f (VDS); Tj=150°C parameter: tp = 10 µs, VGS
22
A
32 28
20V 10V 8V
7V
A
18 16
6.5V
20V 8V 7.5V 7V
6V
ID
24 20
ID
14 12
5.5V
6V
10 8
5V
16 12 8
5V 5.5V
6 4 2
4.5V 4V
4 0 0
4.5V
5
10
15
V VDS
25
0 0
5
10
15
V VDS
25
Rev. 2.1
Page 6
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
9 Typ. drain-source on resistance RDS(on)=f(ID) parameter: Tj=150°C, VGS
2
10 Drain-source on-state resistance RDS(on) = f (Tj) parameter : ID = 7 A, VGS = 10 V
Ω
2.1
SPP12N50C3
Ω
4V 4.5V 5V 5.5V 6V
1.8 1.6 1.4 1.2
1.4
1.2
RDS(on)
RDS(on)
1.6
1 0.8 0.6 98%
1
0.8
0.6
6.5V 8V 20V
2 4 6 8 10 12 14 16
0.4 0.2
typ
0.4 0
A ID
20
0 -60
-20
20
60
100
°C
180
Tj
11 Typ. transfer characteristics ID= f ( VGS ); VDS≥ 2 x ID x RDS(on)max parameter: tp = 10 µs
40
12 Typ. gate charge
VGS = f (Q Gate) parameter: ID = 11.6 A pulsed
16
SPP12N50C3
A
25°C
V
32 12 28
VGS
ID
24 20 16 12
150°C
10
0,2 VDS max
0,8 VDS max
8
6
4 8 4 0 0 2
1
2
3
4
5
6
7
8
V 10 VGS
0 0
10
20
30
40
50
nC
70
Q Gate
Rev. 2.1
Page 7
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
13 Forward characteristics of body diode IF = f (VSD) parameter: Tj , tp = 10 µs
10
2 SPP12N50C3
14 Avalanche SOA IAR = f (tAR) par.: Tj ≤ 150 °C
11
A
A
9 8
IAR
10 1
IF
7 6 5
T j(START) =25°C
10 0 Tj = 25 °C typ Tj = 150 °C typ Tj = 25 °C (98%) Tj = 150 °C (98%) 10 -1 0 0.4 0.8 1.2 1.6 2 2.4 V 3
4 3 2 1 0 -3 10 10
-2
T j(START) =125°C
10
-1
10
0
10
1
10
2
VSD
4 µs 10 tAR
15 Avalanche energy EAS = f (Tj) par.: ID = 5.5 A, V DD = 50 V
350
16 Drain-source breakdown voltage
V(BR)DSS = f (Tj)
600
SPP12N50C3
V
mJ
V(BR)DSS
°C
570 560 550 540 530
250
EAS
200
150
520 510 500
100
490 480
50
470 460
0 20
40
60
80
100
120
160
450 -60
-20
20
60
100
°C
180
Tj
Tj
Page 8
Rev. 2.1
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
17 Avalanche power losses PAR = f (f ) parameter: E AR=0.6mJ
300
18 Typ. capacitances C = f (VDS) parameter: V GS=0V, f=1 MHz
10 4
pF
Ciss
W
10 3
PAR
200 10 2
150 10 1 100 10 0 50
Crss
C
Coss
04 10
10
5
Hz f
10
6
10 -1 0
100
200
300
V
500
VDS
19 Typ. Coss stored energy Eoss=f(VDS)
6
µJ
Eoss
4
3
2
1
0 0
100
200
300
V
500
VDS
Rev. 2.1
Page 9
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
Definition of diodes switching characteristics
Rev. 2.1
Page 10
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
P-TO-220-3-1
B 10 ±0.4 3.7 ±0.2 A 1.27±0.13 4.44
15.38 ±0.6
2.8 ±0.2
C
5.23 ±0.9
13.5 ±0.5
3x 0.75 ±0.1 1.17 ±0.22 2x 2.54 0.25
M
0.5 ±0.1 2.51±0.2
ABC
All metal surfaces tin plated, except area of cut. Metal surface min. x=7.25, y=12.3
P-TO-263-3-2 (D 2-PAK)
Rev. 2.1
9.98 ±0.48
0.05
Page 11
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
P-TO-262-3-1 (I2-PAK)
10 ±0.2 0...0.3 8.5
1)
1)
A
B 4.4 1.27
1 ±0.3
11.6 ±0.3
2.4
C
4.55 ±0.2
13.5 ±0.5
0...0.15 1.05 3 x 0.75 ±0.1 2 x 2.54
1)
0.5 ±0.1 2.4
0.25
M
ABC
Typical Metal surface min. X = 7.25, Y = 6.9 All metal surfaces tin plated, except area of cut.
P-TO-220-3-31 (FullPAK)
Please refer to mounting instructions (application note AN-TO220-3-31-01)
Rev. 2.1
9.25 ±0.2
7.55
0.05
Page 12
2004-03-29
SPP12N50C3, SPB12N50C3 SPI12N50C3, SPA12N50C3
Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Rev. 2.1
Page 13
2004-03-29