Final data
SPW16N50C3
VDS @ Tjmax RDS(on) ID 560 0.28 16
P-TO247
Cool MOS™ Power Transistor
Feature • New revolutionary high voltage technology • Ultra low gate charge • Periodic avalanche rated • Extreme dv/dt rated • Ultra low effective capacitances • Improved transconductance
V Ω A
Type SPW16N50C3
Package P-TO247
Ordering Code Q67040-S4584
Marking 16N50C3
Maximum Ratings Parameter Symbol ID Value Unit
Continuous drain current
TC = 25 °C TC = 100 °C
A 16 10
Pulsed drain current, tp limited by Tjmax Avalanche energy, single pulse
I D = 8 , VDD = 50 V
I D puls EAS
48 460 0.64 16 6 ±20
±30
mJ
Avalanche energy, repetitive tAR limited by Tjmax1) EAR
I D = 16 A, VDD = 50 V
Avalanche current, repetitive tAR limited by Tjmax I AR Reverse diode dv/dt dv/dt
IS=16A, VDS=480V, T j=125°C
A V/ns V W °C
2003-06-30
Gate source voltage
VGS VGS Ptot T j , T stg
Page 1
Gate source voltage AC (f >1Hz) Power dissipation, TC = 25°C Operating and storage temperature
160 -55... +150
Final data
SPW16N50C3
Maximum Ratings Parameter Drain Source voltage slope
V DS = 400 V, ID = 16 A, Tj = 125 °C
Symbol dv/dt
Value 50
Unit V/ns
Thermal Characteristics Parameter Thermal resistance, junction - case Thermal resistance, junction - ambient, leaded Soldering temperature, 1.6 mm (0.063 in.) from case for 10s Electrical Characteristics, at Tj=25°C unless otherwise specified Parameter Symbol Conditions min. Drain-source breakdown voltage V(BR)DSS V GS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS V GS=0V, ID=16A breakdown voltage Gate threshold voltage Zero gate voltage drain current 500 2.1 Values typ. 600 3 0.1 0.25 0.68 1.5 max. 3.9 µA 1 100 100 0.28 nA
Ω
Symbol min. RthJC RthJA -
Values typ. max. 0.78 62 260
Unit K/W °C
Tsold
Unit V
VGS(th) I DSS
ID=675µΑ, VGS=VDS V DS=500V, VGS=0V, Tj=25°C, Tj=150°C
Gate-source leakage current
I GSS
V GS=20V, VDS=0V V GS=10V, ID=10A, Tj=25°C Tj=150°C
Drain-source on-state resistance RDS(on)
Gate input resistance
RG
f=1MHz, open Drain
Page 2
2003-06-30
Final data
SPW16N50C3
Electrical Characteristics , at Tj = 25 °C, unless otherwise specified Parameter
Transconductance Input capacitance Output capacitance Reverse transfer capacitance
Symbol g fs Ciss Coss Crss
Conditions min.
V DS≥2*I D*RDS(on)max, ID=10A V GS=0V, V DS=25V, f=1MHz
Values typ. 14 1600 800 30 64 124 10 8 50 8 max. -
Unit S pF
Effective output capacitance, 2) Co(er) energy related Effective output capacitance, 3) Co(tr) time related
Turn-on delay time Rise time Turn-off delay time Fall time
V GS=0V, V DS=0V to 400V
pF
td(on) tr td(off) tf
V DD=380V, V GS=0/10V, ID=16A, RG =4.3Ω
-
ns
Gate Charge Characteristics Gate to source charge Qgs Gate to drain charge Gate charge total Gate plateau voltage Qgd Qg
VDD=380V, ID=16A
-
7 36 66 5
-
nC
VDD=380V, ID=16A, VGS=0 to 10V
V(plateau) VDD=380V, ID=16A
V
1Repetitve avalanche causes additional power losses that can be calculated as P =EAR*f. AV 2C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS. 3C o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS.
Page 3
2003-06-30
Final data
SPW16N50C3
Electrical Characteristics, at Tj = 25 °C, unless otherwise specified Parameter Inverse diode continuous forward current Inverse diode direct current, pulsed Inverse diode forward voltage Reverse recovery time Reverse recovery charge Peak reverse recovery current Peak rate of fall of reverse recovery current VSD trr Qrr Irrm dirr /dt
VGS=0V, IF=IS VR=380V, IF=IS , diF/dt=100A/µs
Symbol IS ISM
Conditions min.
TC=25°C
Values typ. 1 420 7 40 tbd max. 16 48 1.2 -
Unit A
V ns µC A A/µs
Typical Transient Thermal Characteristics Symbol
Thermal resistance R th1 R th2 R th3 R th4 R th5 R th6 0.012 0.023 0.043 0.149 0.17 0.069 K/W
Value typ.
Unit
Symbol
Value typ.
Unit
Thermal capacitance Cth1 Cth2 Cth3 Cth4 Cth5 Cth6 0.0002495 0.0009406 0.001298 0.00362 0.009484 0.077 Ws/K
Tj P tot ( t)
R th1
R th,n
T case
E xternal H eatsink
C th1
C th2
C th,n T am b
Page 4
2003-06-30
Final data
SPW16N50C3
1 Power dissipation
Ptot = f (TC)
170
SPW16N50C3
2 Safe operating area
ID = f ( V DS ) parameter : D = 0 , T C=25°C
10 2
W
140
A
10 1 120
Ptot
100 10 0 80 60 40 20 0 0 10 -2 0 10 10 -1
ID
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC
20
40
60
80
100
120
°C
160
10
1
10
2
TC
10 V VDS
3
3 Transient thermal impedance
ZthJC = f (t p) parameter: D = tp/T
10
1
4 Typ. output characteristic
ID = f (VDS); Tj=25°C parameter: tp = 10 µs, VGS
60
K/W
10 0
A
20V 7V 6.5V
ZthJC
10 -1
ID
40
6V
30 10 -2
5.5V
10
-3
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
20
5V
10
4.5V
10 -4 -7 10
10
-6
10
-5
10
-4
10
-3
s tp
10
-1
0 0
5
10
15
V VDS
25
Page 5
2003-06-30
Final data
SPW16N50C3
5 Typ. output characteristic
ID = f (VDS); Tj=150°C parameter: tp = 10 µs, VGS
35
6 Typ. drain-source on resistance
RDS(on)=f(ID) parameter: Tj=150°C, V GS
2
A
20V 7V 6V
Ω RDS(on)
4V
4.5V
5V
6V
25
ID
20
5V
1.2
8V 20V
15
4.5V
0.8
10
4V
0.4
5
0 0
5
10
15
V VDS
25
0 0
5
10
15
20
A ID
30
7 Drain-source on-state resistance
RDS(on) = f (Tj) parameter : ID = 10 A, VGS = 10 V
1.6
SPW16N50C3
8 Typ. transfer characteristics
ID= f ( VGS ); V DS≥ 2 x ID x RDS(on)max parameter: tp = 10 µs
60
Ω
1.2
A
50
Tj = 25°C
RDS(on)
45 40
ID
1
35 30 25
Tj = 150°C
0.8
0.6 20 0.4 98% typ 0.2 5 0 -60 -20 20 60 100
°C
15 10
180
0 0
1
2
3
4
5
6
7
8
Tj
Page 6
V 10 VGS
2003-06-30
Final data
SPW16N50C3
9 Typ. gate charge
VGS = f (QGate) parameter: ID = 16 A pulsed
16
V
SPW16N50C3
10 Forward characteristics of body diode
IF = f (VSD) parameter: Tj , tp = 10 µs
10 2
SPW16N50C3
A
12
VGS
0.8 VDS max
8
6
IF
10 0 Tj = 25 °C typ Tj = 150 °C typ Tj = 25 °C (98%) Tj = 150 °C (98%) 80 nC 10 -1 0
10
0.2 VDS max
10 1
4
2
0 0
10
20
30
40
50
60
70
100
0.4
0.8
1.2
1.6
2
2.4 V
3
QGate
VSD
11 Avalanche SOA
IAR = f (tAR) par.: Tj ≤ 150 °C
16
12 Avalanche energy
EAS = f (Tj) par.: ID = 8 , V DD = 50 V
0.5
A mJ
12
10
Tj(start) = 25°C
EAS µs 10 tAR
4
IAR
0.3
8 0.2
Tj(start) = 125°C
6
4 0.1 2
0 -3 10
10
-2
10
-1
10
0
10
1
10
2
0 20
40
60
80
100
120
160 °C Tj
Page 7
2003-06-30
Final data
SPW16N50C3
13 Drain-source breakdown voltage
V(BR)DSS = f (Tj)
600
SPW16N50C3
14 Avalanche power losses
PAR = f (f ) parameter: E AR=0.64mJ
450
V
W
V(BR)DSS
570 560
350
PAR
550 540 530 520 510 500 490 480 470 460 450 -60 -20 20 60 100
300 250 200 150 100 50 02 10
°C
180
10
3
10
4
10
5
6 Hz 10
Tj
f
15 Typ. capacitances
C = f (VDS) parameter: V GS=0V, f=1 MHz
10 4
16 Typ. Coss stored energy
Eoss=f(VDS)
9
pF
Ciss
µJ
10 3
7
Eoss
10 2
Coss
6 5 4 3
C
10 1
Crss
2 1
10 0 0
100
200
300
V
500
0 0
100
200
300
V
500
VDS
Page 8
VDS
2003-06-30
Final data
SPW16N50C3
Definition of diodes switching characteristics
Page 9
2003-06-30
Final data
SPW16N50C3
P-TO-247-3-1
15.9 6.35 ø3.61 5.03 2.03
4.37
20.9
9.91
6.17
D
7
D
1.75
1.14 0.243 1.2 2 2.92 5.46
16
0.762 MAX. 2.4 +0.05
General tolerance unless otherwise specified: Leadframe parts: ±0.05 Package parts: ±0.12
41.22
2.97 x 0.127
5˚
5.94
20˚
Page 10
2003-06-30
Final data
Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.
SPW16N50C3
Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Page 11
2003-06-30