32-Bit T C1797
32-Bit Single-Chip Microcontroller
D ata Sheet
V1.1 2009-04
Microcontrollers
Edition 2009-04 Published by Infineon Technologies AG 81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
32-Bit T C1797
32-Bit Single-Chip Microcontroller
D ata Sheet
V1.1 2009-04
Microcontrollers
TC1797
TC1797 Data Sheet Revision History: V1.1, 2009-04 Previous Version: V1.0, 2009-01 Page Page 1-4 Page 1-6 Page 2-23 Page 2-56 Page 5-133 Page 5-137 Page 5-145 Page 5-153 Page 5-154 Page 5-155 Page 5-158 Page 5-180 Page 5-171 Page 5-171 Subjects (major changes since last revision) Typo of TTCAN-related text is deleted from the MultiCAN features. Description is added for the derivatives of TC1797. Text which describes the endurance of PFlash and DFlash is enhanced. Typo of big-endian support is deleted from the EBU section. The spike-filters parameters are included, tSF1, tSF2. The maximum limit for IOZ1 is updated. The temperature sensor measurement time parameter is added. The condition for HWCFG is deleted from hold time from PORST rising edge. The power, pad, reset timing figure is updated. The notes under the PLL and ERAY-PLL sections are updated. The ERAY parameter, accumulated jitter at SYSCLK pin is added. The ERAY timing diagram is corrected, replaced reference of VDD with
VDDP.
Footnote for t12 and t21 for EBU Burst Mode Access Timing section is updated. Footnote 2 is added for t10, footnote 5 is added for t23, t24 t25 and t26 in EBU Burst Mode Access Timing section.
Trademarks TriCore® is a trademark of Infineon Technologies AG. We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com
Data Sheet
V1.1, 2009-04
TC1797
Table of Contents
Table of Contents
1 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.2 2.2.1 2.2.2 2.2.3 2.2.3.1 2.2.3.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.4.4 2.3.4.5 2.3.5 2.3.6 2.3.6.1 2.3.6.2 2.3.6.3 2.3.6.4 2.3.6.5 2.3.7 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.4.1 2.5.4.2 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 About this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Related Documentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Text Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Reserved, Undefined, and Unimplemented Terminology . . . . . . . . . . . . 9 Register Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 System Architecture of the TC1797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 TC1797 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 System Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 CPU Cores of the TC1797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 High-performance 32-bit CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 High-performance 32-bit Peripheral Control Processor . . . . . . . . . . . 17 On-Chip System Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Flexible Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 System Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Features of the Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 External Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 General Purpose I/O Ports and Peripheral I/O Lines . . . . . . . . . . . . . . . 23 Program Memory Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Boot ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Overlay RAM and Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Emulation Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Tuning Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Program and Data Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Data Access Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 On-Chip Peripheral Units of the TC1797 . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Asynchronous/Synchronous Serial Interfaces . . . . . . . . . . . . . . . . . . . . 33 High-Speed Synchronous Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . 35 Micro Second Channel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 FlexRay™ Protocol Controller (E-Ray) . . . . . . . . . . . . . . . . . . . . . . . . . 39 E-Ray Kernel Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Data Sheet
1
V1.1, 2009-04
TC1797
Table of Contents 2.5.5 2.5.6 2.5.7 2.5.7.1 2.5.7.2 2.5.8 2.5.8.1 2.5.8.2 2.5.9 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 3 3.1 3.1.1 3.1.2 4 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 MultiCAN Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Micro Link Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Purpose Timer Array (GPTA) . . . . . . . . . . . . . . . . . . . . . . . . . . Functionality of GPTA0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functionality of LTCA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FADC Short Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Real Time Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tool Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-Test Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FAR Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 45 47 48 50 51 51 53 56 56 57 57 57 58 58 58
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 TC1797 Pin Definition and Functions: P/PG-BGA-416-10 . . . . . . . . . . . . 60 TC1797 P/PG-BGA-416-10 Package Variant Pin Configuration . . . . . . 61 Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . 122 Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog to Digital Converters (ADC0/ADC1/ADC2) . . . . . . . . . . . . . . . Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . . . Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-Ray Phase Locked Loop (E-Ray PLL) . . . . . . . . . . . . . . . . . . . . . . .
2
126 126 126 127 128 129 133 133 137 142 145 145 147 149 149 150 151 153 155 158
Data Sheet
V1.1, 2009-04
TC1797
Table of Contents 5.3.7 BFCLKO Output Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.8 JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.9 DAP Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.10 EBU Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.10.1 EBU Asynchronous Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.10.2 EBU Burst Mode Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.10.3 EBU Arbitration Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.11 Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.11.1 Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.11.2 Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . . . 5.3.11.3 SSC Master/Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.11.4 E-Ray Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.3 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.4 Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 160 162 164 164 171 173 174 174 177 178 180 182 182 183 184 185
Data Sheet
3
V1.1, 2009-04
TC1797
Summary of Features
1
•
Summary of Features
High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Single precision Floating Point Unit (FPU) – 180 or 1501) MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 180 or1501) MHz operation at full temperature range Multiple on-chip memories – 4 or 31) Mbyte Program Flash Memory (PFLASH) with ECC – 64 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 128 Kbyte Data Memory (LDRAM) – 40 Kbyte Code Scratchpad Memory (SPRAM) – Instruction Cache: up to 16 Kbyte (ICACHE, configurable) – Data Cache: up to 4 Kbyte (DCACHE, configurable) – 8 Kbyte Overlay Memory (OVRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 32-bit External Bus Interface Unit (EBU) with – 32-bit demultiplexed / 16-bit multiplexed external bus interface (3.3V, 2.5V) – Support for Burst Flash memory devices – Scalable external bus timing up to 75 MHz Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Local Memory Buses between CPU, EBU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridges (LFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Two High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Two serial Micro Second Bus interface (MSC) for serial port expansion to external power devices
•
•
• •
• •
•
1) Derivative dependent.
Data Sheet
4
V1.1, 2009-04
TC1797
Summary of Features – Two High-Speed Micro Link interface (MLI) for serial inter-processor communication – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer – One FlexRayTM module with 2 channels (E-Ray). – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management 44 analog input lines for ADC – 3 independent kernels (ADC0, ADC1, ADC2) – Analog supply voltage range from 3.3 V to 5 V (single supply) – Performance for 12 bit resolution (@fADCI = 10 MHz) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock (262.5 ns @ fFADC = 80 MHz) – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 221 digital general purpose I/O lines1) (GPIO), 4 input lines Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus) Dedicated Emulation Device chip available (TC1797ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL Core supply voltage of 1.5 V I/O voltage of 3.3 V Full automotive temperature range: -40° to +125°C Package variants: P/PG-BGA-416-10
•
•
• • • •
• • • • • •
1) TC1797 package variant P/PG-BGA-416-10: 86 GPIO´s
Data Sheet
5
V1.1, 2009-04
TC1797
Summary of Features Ordering Information The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies: • • The derivative itself, i.e. its function set, the temperature range, and the supply voltage The package and the type of delivery.
For the available ordering codes for the TC1797 please refer to the “Product Catalog Microcontrollers”, which summarizes all available microcontroller variants. This document describes the derivatives of the device.The Table 1 enumerates these derivatives and summarizes the differences. Table 1 Derivative SAK-TC1797-512F180E SAK-TC1797-384F150E TC1797 Derivative Synopsis Ambient Program Flash Temperature Range TA = -40oC to +125oC 4 MBytes TA = -40oC to +125oC 3 MBytes CPU frequency 180MHz 150MHz
Data Sheet
6
V1.1, 2009-04
TC1797
Introduction
2
Introduction
This Data Sheet describes the Infineon TC1797, a 32-bit microcontroller DSP, based on the Infineon TriCore Architecture.
2.1
About this Document
This document is designed to be read primarily by design engineers and software engineers who need a detailed description of the interactions of the TC1797 functional units, registers, instructions, and exceptions. This TC1797 Data Sheet describes the features of the TC1797 with respect to the TriCore Architecture. Where the TC1797 directly implements TriCore architectural functions, this manual simply refers to those functions as features of the TC1797. In all cases where this manual describes a TC1797 feature without referring to the TriCore Architecture, this means that the TC1797 is a direct implementation of the TriCore Architecture. Where the TC1797 implements a subset of TriCore architectural features, this manual describes the TC1797 implementation, and then describes how it differs from the TriCore Architecture. Such differences between the TC1797 and the TriCore Architecture are documented in the section covering each such subject.
2.1.1
Related Documentations
A complete description of the TriCore architecture is found in the document entitled “TriCore Architecture Manual”. The architecture of the TC1797 is described separately this way because of the configurable nature of the TriCore specification: Different versions of the architecture may contain a different mix of systems components. The TriCore architecture, however, remains constant across all derivative designs in order to preserve compatibility. This Data Sheets together with the “TriCore Architecture Manual” are required to understand the complete TC1797 micro controller functionality.
2.1.2
Text Conventions
This document uses the following text conventions for named components of the TC1797: • • • Functional units of the TC1797 are given in plain UPPER CASE. For example: “The SSC supports full-duplex and half-duplex synchronous communication”. Pins using negative logic are indicated by an overline. For example: “The external reset pin, ESR0, has a dual function.”. Bit fields and bits in registers are in general referenced as “Module_Register name.Bit field” or “Module_Register name.Bit”. For example: “The Current CPU Priority Number bit field CPU_ICR.CCPN is cleared”. Most of the
7 V1.1, 2009-04
Data Sheet
TC1797
Introduction register names contain a module name prefix, separated by an underscore character “_” from the actual register name (for example, “ASC0_CON”, where “ASC0” is the module name prefix, and “CON” is the kernel register name). In chapters describing the kernels of the peripheral modules, the registers are mainly referenced with their kernel register names. The peripheral module implementation sections mainly refer to the actual register names with module prefixes. Variables used to describe sets of processing units or registers appear in mixed upper and lower cases. For example, register name “MSGCFGn” refers to multiple “MSGCFG” registers with variable n. The bounds of the variables are always given where the register expression is first used (for example, “n = 0-31”), and are repeated as needed in the rest of the text. The default radix is decimal. Hexadecimal constants are suffixed with a subscript letter “H”, as in 100H. Binary constants are suffixed with a subscript letter “B”, as in: 111B. When the extent of register fields, groups register bits, or groups of pins are collectively named in the body of the document, they are represented as “NAME[A:B]”, which defines a range for the named group from B to A. Individual bits, signals, or pins are given as “NAME[C]” where the range of the variable C is given in the text. For example: CFG[2:0] and SRPN[0]. Units are abbreviated as follows: – MHz = Megahertz – µs = Microseconds – kBaud, kbit = 1000 characters/bits per second – MBaud, Mbit = 1,000,000 characters/bits per second – Kbyte, KB = 1024 bytes of memory – Mbyte, MB= 1048576 bytes of memory In general, the k prefix scales a unit by 1000 whereas the K prefix scales a unit by 1024. Hence, the Kbyte unit scales the expression preceding it by 1024. The kBaud unit scales the expression preceding it by 1000. The M prefix scales by 1,000,000 or 1048576, and µ scales by .000001. For example, 1 Kbyte is 1024 bytes, 1 Mbyte is 1024 × 1024 bytes, 1 kBaud/kbit are 1000 characters/bits per second, 1 MBaud/Mbit are 1000000 characters/bits per second, and 1 MHz is 1,000,000 Hz. Data format quantities are defined as follows: – Byte = 8-bit quantity – Half-word = 16-bit quantity – Word = 32-bit quantity – Double-word = 64-bit quantity
•
•
•
•
•
Data Sheet
8
V1.1, 2009-04
TC1797
Introduction
2.1.3
Reserved, Undefined, and Unimplemented Terminology
In tables where register bit fields are defined, the following conventions are used to indicate undefined and unimplemented function. Furthermore, types of bits and bit fields are defined using the abbreviations as shown in Table 2. Table 2 Bit Function Terminology Description Register bit fields named 0 indicate unimplemented functions with the following behavior. • Reading these bit fields returns 0. • These bit fields should be written with 0 if the bit field is defined as r or rh. • These bit fields have to be written with 0 if the bit field is defined as rw. These bit fields are reserved. The detailed description of these bit fields can be found in the register descriptions. The bit or bit field can be read and written. As rw, but bit or bit field can be also set or reset by hardware. The bit or bit field can only be read (read-only). The bit or bit field can only be written (write-only). A read to this register will always give a default value back. This bit or bit field can be modified by hardware (read-hardware, typical example: status flags). A read of this bit or bit field give the actual status of this bit or bit field back. Writing to this bit or bit field has no effect to the setting of this bit or bit field. Bits with this attribute are “sticky” in one direction. If their reset value is once overwritten by software, they can be switched again into their reset state only by a reset operation. Software cannot switch this type of bit into its reset state by writing the register. This attribute can be combined to “rws” or “rwhs”. Bits with this attribute are readable only when they are accessed by an instruction fetch. Normal data read operations will return other values.
Function of Bits Unimplemented, Reserved
rw rwh r w rh
s
f
2.1.4
Register Access Modes
Read and write access to registers and memory locations are sometimes restricted. In memory and register access tables, the terms as defined in Table 3 are used.
Data Sheet
9
V1.1, 2009-04
TC1797
Introduction Table 3 Symbol U SV R 32 E PW NC BE nBE Access Terms Description Access Mode: Access permitted in User Mode 0 or 1. Reset Value: Value or bit is not changed by a reset operation. Access permitted in Supervisor Mode. Read-only register. Only 32-bit word accesses are permitted to this register/address range. Endinit-protected register/address. Password-protected register/address. No change, indicated register is not changed. Indicates that an access to this address range generates a Bus Error. Indicates that no Bus Error is generated when accessing this address range, even though it is either an access to an undefined address or the access does not follow the given rules. Indicates that no Error is generated when accessing this address or address range, even though the access is to an undefined address or address range. True for CPU accesses (MTCR/MFCR) to undefined addresses in the CSFR range.
nE
2.1.5
Abbreviations and Acronyms
The following acronyms and terms are used in this document: ADC AGPR ALU ASC BCU BROM CAN CMEM CISC CPS CPU Analog-to-Digital Converter Address General Purpose Register Arithmetic and Logic Unit Asynchronous/Synchronous Serial Controller Bus Control Unit Boot ROM & Test ROM Controller Area Network PCP Code Memory Complex Instruction Set Computing CPU Slave Interface Central Processing Unit
Data Sheet
10
V1.1, 2009-04
TC1797
Introduction CSA CSFR DAP DAS DCACHE DFLASH DGPR DMA DMI EBU EMI FADC FAM FCS FIM FPI FPU GPIO GPR GPTA ICACHE I/O JTAG LBCU LDRAM LFI LMB LTC MLI MMU MSB MSC Context Save Area Core Special Function Register Device Access Port Device Access Server Data Cache Data Flash Memory Data General Purpose Register Direct Memory Access Data Memory Interface External Bus Interface Electro-Magnetic Interference Fast Analog-to-Digital Converter Flash Array Module Flash Command State Machine Flash Interface and Control Module Flexible Peripheral Interconnect (Bus) Floating Point Unit General Purpose Input/Output General Purpose Register General Purpose Timer Array Instruction Cache Input / Output Joint Test Action Group = IEEE1149.1 Local Memory Bus Control Unit Local Data RAM Local Memory-to-FPI Bus Interface Local Memory Bus Local Timer Cell Micro Link Interface Memory Management Unit Most Significant Bit Micro Second Channel
Data Sheet
11
V1.1, 2009-04
TC1797
Introduction NC NMI OCDS OVRAM PCP PMU PLL PCODE PFLASH PMI PMU PRAM RAM RISC SBCU SCU SFR SPB SPRAM SRAM SRN SSC STM WDT Not Connected Non-Maskable Interrupt On-Chip Debug Support Overlay Memory Peripheral Control Processor Program Memory Unit Phase Locked Loop PCP Code Memory Program Flash Memory Program Memory Interface Program Memory Unit PCP Parameter RAM Random Access Memory Reduced Instruction Set Computing System Peripheral Bus Control Unit System Control Unit Special Function Register System Peripheral Bus Scratch-Pad RAM Static Data Memory Service Request Node Synchronous Serial Controller System Timer Watchdog Timer
Data Sheet
12
V1.1, 2009-04
TC1797
Introduction
2.2
System Architecture of the TC1797
The TC1797 combines three powerful technologies within one silicon die, achieving new levels of power, speed, and economy for embedded applications: • • • Reduced Instruction Set Computing (RISC) processor architecture Digital Signal Processing (DSP) operations and addressing modes On-chip memories and peripherals
DSP operations and addressing modes provide the computational power necessary to efficiently analyze complex real-world signals. The RISC load/store architecture provides high computational bandwidth with low system cost. On-chip memory and peripherals are designed to support even the most demanding high-bandwidth real-time embedded control-systems tasks. Additional high-level features of the TC1797 include: • • • • • • • • • Efficient memory organization: instruction and data scratch memories, caches Serial communication interfaces – flexible synchronous and asynchronous modes Peripheral Control Processor – standalone data operations and interrupt servicing DMA Controller – DMA operations and interrupt servicing General-purpose timers High-performance on-chip buses On-chip debugging and emulation facilities Flexible interconnections to external components Flexible power-management
The TC1797 is a high-performance microcontroller with TriCore CPU, program and data memories, buses, bus arbitration, an interrupt controller, a peripheral control processor and a DMA controller and several on-chip peripherals. The TC1797 is designed to meet the needs of the most demanding embedded control systems applications where the competing issues of price/performance, real-time responsiveness, computational power, data bandwidth, and power consumption are key design elements. The TC1797 offers several versatile on-chip peripheral units such as serial controllers, timer units, and Analog-to-Digital converters. Within the TC1797, all these peripheral units are connected to the TriCore CPU/system via the Flexible Peripheral Interconnect (FPI) Bus and the Local Memory Bus (LMB). Several I/O lines on the TC1797 ports are reserved for these peripheral units to communicate with the external world.
Data Sheet
13
V1.1, 2009-04
TC1797
Introduction
2.2.1
TC1797 Block Diagram
Figure 1 shows the block diagram of the TC1797.
Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache SPRAM: Scratch-Pad RAM LDRAM: Local Data RAM OVRAM: Overlay RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP PCODE: Code RAM in PCP
PMI
24 KB SPRAM 32 KB SPRAM 16 KB ICACHE (Configurable) 8 KB ICACHE
FPU TriCore CPU
CPS
DMI
124 KB LDRAM LDRAM 4 KB DCACHE (Configurable) DCACHE
EBU PMU0
2 MB PFlash 64 KB DFlash 8 KB OVRAM 16 KB BROM
Local Memory Bus (LMB)
BCU
M SMIF
PMU1
1 MB PFlash 1 MB PFlash
1) The upper MB of the PMU1 is available only in the 4MByte derivative 1)
1.5V, 3.3V Ext. Supply OCDS L1 Debug
Interface/JTAG
Bridge
DMA
16 channels M/S
MLI0
System Peripheral Bus (SPB)
MLI1 16 KB PRAM
FPI-Bus Interface
Interrupt System PCP2
Core
ASC0
Interrupts
MemCheck
STM
ASC1
System Peripheral Bus
5V (3.3V supported as well) Ext. ADC Supply
32 KB CMEM
SCU ADC0
16 Analog Input Assignment (hardwired/configurable)
E-Ray
(2 Channels)
SBCU
PLL E-RAY PLL
fE-Ray fCPU
Ports
ADC1 ADC2
16
16
GPTA0
SSC0 FADC
GPTA1 SSC1 LTCA2 Ext. Request Unit Multi CAN
(4 Nodes, 128 MO)
MSC 0
(LVDS)
MSC 1
(LVDS)
3.3V Ext. FADC Supply
BlockDiagram TC1797
Figure 1
TC1797 Block Diagram
Data Sheet
14
V1.1, 2009-04
TC1797
Introduction
2.2.2
System Features
The TC1797 has the following features: Package • P/PG-BGA-416-10 package, 1mm pitch
Clock Frequencies for the 180 MHz derivative • • • Maximum CPU clock frequency: 180 MHz1) Maximum PCP clock frequency: 180 MHz2) Maximum system clock frequency: 90 MHz3)
Clock Frequencies for the 150 MHz derivative • • • Maximum CPU clock frequency: 150 MHz1) Maximum PCP clock frequency: 150 MHz2) Maximum system clock frequency: 90 MHz3)
1) For CPU frequencies > 90 MHz, 2:1 mode has to be enabled. CPU 2:1 mode means: fFPI = 0.5 * fCPU 2) For PCP frequencies > 90 MHz, 2:1 mode has to be enabled. PCP 2:1 mode means: fFPI = 0.5 * fPCP 3) CPU 1:1 Mode means: fFPI = fCPU . PCP 1:1 mode means: fFPI = fPCP
Data Sheet
15
V1.1, 2009-04
TC1797
Introduction
2.2.3
CPU Cores of the TC1797
The TC1797 includes a high Performance CPU and a Peripheral Control Processor.
2.2.3.1
High-performance 32-bit CPU
This chapter gives an overview about the TriCore 1 architecture. TriCore (TC1.3.1) Architectural Highlights • • • • • • • • • • • • • Unified RISC MCU/DSP 32-bit architecture with 4 Gbytes unified data, program, and input/output address space Fast automatic context-switching Multiply-accumulate unit Floating point unit Saturating integer arithmetic High-performance on-chip peripheral bus (FPI Bus) Register based design with multiple variable register banks Bit handling Packed data operations Zero overhead loop Precise exceptions Flexible power management
High-efficiency TriCore Instruction Set • • 16/32-bit instructions for reduced code size Data types include: Boolean, array of bits, character, signed and unsigned integer, integer with saturation, signed fraction, double-word integers, and IEEE-754 singleprecision floating point Data formats include: Bit, 8-bit byte, 16-bit half-word, 32-bit word, and 64-bit doubleword data formats Powerful instruction set Flexible and efficient addressing mode for high code density
• • •
Integrated CPU related On-Chip Memories • Instruction memory: 40 KB total. After reset, configured into:1) – 40 Kbyte Scratch-Pad RAM (SPRAM) – 0 Kbyte Instruction Cache (ICACHE) Data memory: 128 KB total. After reset, configured into:1) – 128 Kbyte Local Data RAM (LDRAM)
•
1) Software configurable. Available options are described in the CPU chapter.
Data Sheet
16
V1.1, 2009-04
TC1797
Introduction • – 0 Kbyte Data Cache (DACHE) On-chip SRAMs with parity error detection High-performance 32-bit Peripheral Control Processor
2.2.3.2
The PCP is a flexible Peripheral Control Processor optimized for interrupt handling and thus unloading the CPU. Features • • • • • • • • • • • Data move between any two memory or I/O locations Data move until predefined limit supported Read-Modify-Write capabilities Full computation capabilities including basic MUL/DIV Read/move data and accumulate it to previously read data Read two data values and perform arithmetic or logical operation and store result Bit-handling capabilities (testing, setting, clearing) Flow control instructions (conditional/unconditional jumps, breakpoint) Dedicated Interrupt System PCP SRAMs with parity error detection PCP/FPI clock mode 1:1 and 2:1 available
Integrated PCP related On-Chip Memories • • 32 Kbyte Code Memory (CMEM) 16 Kbyte Parameter Memory (PRAM)
Data Sheet
17
V1.1, 2009-04
TC1797
Introduction
2.3
On-Chip System Units
The TC1797 microcontroller offers several versatile on-chip system peripheral units such as DMA controller, embedded Flash module, interrupt system and ports.
2.3.1
Flexible Interrupt System
The TC1797 includes a programmable interrupt system with the following features: Features • • • • Fast interrupt response Independent interrupt systems for CPU and PCP Each SRN can be mapped to the CPU or PCP interrupt system Flexible interrupt-prioritizing scheme with 255 interrupt priority levels per interrupt system Direct Memory Access Controller
2.3.2
The TC1797 includes a fast and flexible DMA controller with 16 independant DMA channels (two DMA Move Engines). Features • 8 independent DMA channels – 8 DMA channels in the DMA Sub-Block – Up to 16 selectable request inputs per DMA channel – 2-level programmable priority of DMA channels within the DMA Sub-Block – Software and hardware DMA request – Hardware requests by selected on-chip peripherals and external inputs 3-level programmable priority of the DMA Sub-Block at the on chip bus interfaces Buffer capability for move actions on the buses (at least 1 move per bus is buffered) Individually programmable operation modes for each DMA channel – Single Mode: stops and disables DMA channel after a predefined number of DMA transfers – Continuous Mode: DMA channel remains enabled after a predefined number of DMA transfers; DMA transaction can be repeated – Programmable address modification – Two shadow register modes (with / w/o automatic re-set and direct write access). Full 32-bit addressing capability of each DMA channel – 4 Gbyte address range – Data block move supports > 32 Kbyte moves per DMA transaction – Circular buffer addressing mode with flexible circular buffer sizes Programmable data width of DMA transfer/transaction: 8-bit, 16-bit, or 32-bit Register set for each DMA channel
18 V1.1, 2009-04
• • •
•
• •
Data Sheet
TC1797
Introduction – Source and destination address register – Channel control and status register – Transfer count register Flexible interrupt generation (the service request node logic for the MLI channel is also implemented in the DMA module) DMA module is working on SPB frequency, LMB interface on LMB frequency. Dependant on the target/destination address, Read/write requests from the Move Engine are directed to the SPB, LMB, MLI or to the the Cerberus.
• • •
Data Sheet
19
V1.1, 2009-04
TC1797
Introduction
2.3.3
System Timer
The TC1797’s STM is designed for global system timing applications requiring both high precision and long range. Features • • • • • • • • Free-running 56-bit counter All 56 bits can be read synchronously Different 32-bit portions of the 56-bit counter can be read synchronously Flexible interrupt generation based on compare match with partial STM content Driven by maximum 90 MHz (= fSYS, default after reset = fSYS/2) Counting starts automatically after a reset operation STM registers are reset by an application reset if bit ARSTDIS.STMDIS is cleared. If bit ARSTDIS.STMDIS is set, the STM is not reset. STM can be halted in debug/suspend mode
Special STM register semantics provide synchronous views of the entire 56-bit counter, or 32-bit subsets at different levels of resolution. The maximum clock period is 256 × fSTM. At fSTM = 90 MHz, for example, the STM counts 25.39 years before overflowing. Thus, it is capable of continuously timing the entire expected product life time of a system without overflowing. In case of a power-on reset, a watchdog reset, or a software reset, the STM is reset. After one of these reset conditions, the STM is enabled and immediately starts counting up. It is not possible to affect the content of the timer during normal operation of the TC1797. The STM can be optionally disabled for power-saving purposes, or suspended for debugging purposes via its clock control register. In suspend mode of the TC1797 (initiated by writing an appropriate value to STM_CLC register), the STM clock is stopped but all registers are still readable. Due to the 56-bit width of the STM, it is not possible to read its entire content with one instruction. It needs to be read with two load instructions. Since the timer would continue to count between the two load operations, there is a chance that the two values read are not consistent (due to possible overflow from the low part of the timer to the high part between the two read operations). To enable a synchronous and consistent reading of the STM content, a capture register (STM_CAP) is implemented. It latches the content of the high part of the STM each time when one of the registers STM_TIM0 to STM_TIM5 is read. Thus, STM_CAP holds the upper value of the timer at exactly the same time when the lower part is read. The second read operation would then read the content of the STM_CAP to get the complete timer value. The content of the 56-bit System Timer can be compared against the content of two compare values stored in the STM_CMP0 and STM_CMP1 registers. Interrupts can be generated on a compare match of the STM with the STM_CMP0 or STM_CMP1 registers.
Data Sheet 20 V1.1, 2009-04
TC1797
Introduction Figure 2 provides an overview on the STM module. It shows the options for reading parts of STM content.
STM Module
31 23 15 7 0
to DMA etc.
STM_CMP0
Compare Register 0
31 23 15 7 0
STM IRQ0 Interrupt Control STM IRQ1 Enable / Disable Clock Control
55
STM_CMP1
47 39 31
Compare Register1
23 15 7 0
56-bit System Timer
00 H 00 H STM_TIM5
STM_CAP STM_TIM6
fSTM
Address Decoder
STM_TIM4 STM_TIM3
PORST
STM_TIM2 STM_TIM1 STM_TIM0
MCB06185_mod
Figure 2
General Block Diagram of the STM Module Registers
Data Sheet
21
V1.1, 2009-04
TC1797
Introduction
2.3.4
System Control Unit
The following SCU introduction gives an overview about the TC1797 System Control Unit (SCU) For Information about the SCU see chapter 3.
2.3.4.1
Clock Generation Unit
The Clock Generation Unit (CGU) allows a very flexible clock generation for the TC1797. During user program execution the frequency can be programmed for an optimal ratio between performance and power consumption.
2.3.4.2
• • • • • • • • •
Features of the Watchdog Timer
The main features of the WDT are summarized here. 16-bit Watchdog counter Selectable input frequency: fFPI/256 or fFPI/16384 16-bit user-definable reload value for normal Watchdog operation, fixed reload value for Time-Out and Prewarning Modes Incorporation of the ENDINIT bit and monitoring of its modifications Sophisticated Password Access mechanism with fixed and user-definable password fields Access Error Detection: Invalid password (during first access) or invalid guard bits (during second access) trigger the Watchdog reset generation Overflow Error Detection: An overflow of the counter triggers the Watchdog reset generation Watchdog function can be disabled; access protection and ENDINIT monitor function remain enabled Double Reset Detection
2.3.4.3
• • • • • • •
Reset Operation
The following reset request triggers are available: 1 External power-on hardware reset request trigger; PORST, (cold reset) 2 External System Request reset triggers; ESR0 and ESR1,(warm reset) Watchdog Timer (WDT) reset request trigger, (warm reset) Software reset (SW), (warm reset) Debug (OCDS) reset request trigger, (warm reset) Resets via the JTAG interface Trigger sources that do not depend on a clock, such as the PORST. This trigger force the device into an asynchronous reset assertion independently of any clock. The activation of an asynchronous reset is asynchronous to the system clock, whereas its de-assertion is synchronized.
22 V1.1, 2009-04
There are two basic types of reset request triggers:
Data Sheet
TC1797
Introduction • Trigger sources that need a clock in order to be asserted, such as the input signals ESR0, ESR1, the WDT trigger, the parity trigger, or the SW trigger.
2.3.4.4
External Interface
The SCU provides interface pads for system purpose. Various functions are covered by these pins. Due to the different tasks some of the pads can not be shared with other functions but most of them can be shared with other functions. The following functions are covered by the SCU controlled pads: • • • • • Reset request triggers Reset indication Trap request triggers Interrupt request triggers Non SCU module triggers
The first three points are covered by the ESR pads and the last two points by the ERU pads.
2.3.4.5
Die Temperature Measurement
The Die Temperature Sensor (DTS) generates a measurement result that indicates directly the current temperature. The result of the measurement can be read via an DTS register.
2.3.5
General Purpose I/O Ports and Peripheral I/O Lines
The TC1797 includes a flexible Ports structure with the following features: Features • • • • • • • Digital General-Purpose Input/Output (GPIO) port lines Input/output functionality individually programmable for each port line Programmable input characteristics (pull-up, pull-down, no pull device) Programmable output driver strength for EMI minimization (weak, medium, strong) Programmable output characteristics (push-pull, open drain) Programmable alternate output functions Output lines of each port can be updated port-wise or set/reset/toggled bit-wise
2.3.6
Program Memory Unit (PMU)
The devices of the AudoF family contain at least one Program Memory Unit. This is named “PMU0”. Some devices contain additional PMUs which are named “PMU1”, … In the TC1797, the PMU0 contains the following submodules: • • The Flash command and fetch control interface for Program Flash and Data Flash. The Overlay RAM interface with Online Data Acquisition (OLDA) support.
23 V1.1, 2009-04
Data Sheet
TC1797
Introduction • • • • • • • • • • The Boot ROM interface. The Emulation Memory interface. The Local Memory Bus LMB slave interface. 2 Mbyte of Program Flash memory (PFlash) 64 Kbyte of Data Flash memory (DFlash, represents 16 Kbyte EEPROM) 16 Kbyte of Boot ROM (BROM) 8 Kbyte Overlay RAM (OVRAM) The Flash command and fetch control interface but only for Program Flash. The Local Memory Bus LMB slave interface. 2 Mbyte of Program Flash memory (PFlash).
Following memories are controlled by and belong to the PMU0:
In the TC1797 an additional PMU is included with only a subset of PMU0’s submodules:
The following memories are controlled and belong to the PMU1: Because of its independence from PMU0 this second PMU enables additional functionality: Read while Write (RWW), Write while Write (WWW) or concurrent data and instruction accesses, if those are operating on different PMUs.
Data Sheet
24
V1.1, 2009-04
TC1797
Introduction The following figure shows the block diagram of the PMU0:
To/From Local Memory Bus 64 LMB Interface Slave
P MU0
Overlay RAM Interface 64
PMU Control 64
64 ROM Control 64
OVRAM 64
Flash Interface Module 64 DFLASH BROM
Emulation Memory Interface
PFLASH
Emulation Memory (ED chip only )
PMU0_BasicBlockDiag _generic
Figure 3
PMU0 Basic Block Diagram
As described before the PMU1 is reduced to the PFLASH and its controlling submodules.
2.3.6.1
• •
Boot ROM
The internal 16 Kbyte Boot ROM (BROM) is divided into two parts, used for: firmware (Boot ROM), and factory test routines (Test ROM).
The different sections of the firmware in Boot ROM provide startup and boot operations after reset. The TestROM is reserved for special routines, which are used for testing, stressing and qualification of the component.
Data Sheet
25
V1.1, 2009-04
TC1797
Introduction
2.3.6.2
Overlay RAM and Data Acquisition
The overlay memory OVRAM is provided in the PMU especially for redirection of data accesses to program memory to the OVRAM by using the data overlay function. The data overlay functionality itself is controlled in the DMI module. For online data acquisition (OLDA) of application or calibration data a virtual 32 KB memory range is provided which can be accessed without error reporting. Accesses to this OLDA range can also be redirected to an overlay memory.
2.3.6.3
Emulation Memory Interface
In TC1797 Emulation Device, an Emulation Memory (EMEM) is provided, which can fully be used for calibration via program memory or OLDA overlay. The Emulation Memory interface shown in Figure 0-1 is a 64-bit wide memory interface that controls the CPUaccesses to the Emulation Memory in the TC1797 Emulation Device. In the TC1797 production device, the EMEM interface is always disabled.
2.3.6.4
Tuning Protection
Tuning protection is required by the user to absolutely protect control data (e.g. for engine control), serial number and user software, stored in the Flash, from being manipulated, and to safely detect changed or disturbed data. For the internal Flash, these protection requirements are excellently fulfilled in the TC1797 with • • • Flash read and write protection with user-specific protection levels, and with dedicated HW and firmware, supporting the internal Flash read protection, and with the Alternate Boot Mode.
Special tuning protection support is provided for external Flash, which must also be protected.
2.3.6.5
Program and Data Flash
The embedded Flash modules of PMU0 includes 2 Mbyte of Flash memory for code or constant data (called Program Flash) and additionally 64 Kbyte of Flash memory used for emulation of EEPROM data (called Data Flash). The Program Flash is realized as one independent Flash bank, whereas the Data Flash is built of two Flash banks, allowing the following combinations of concurrent Flash operations: • • • Read code or data from Program Flash, while one bank of Data Flash is busy with a program or erase operation. Read data from one bank of Data Flash, while the other bank of Data Flash is busy with a program or erase operation. Program one bank of Data Flash while erasing the other bank of Data Flash, read from Program Flash.
Data Sheet
26
V1.1, 2009-04
TC1797
Introduction In TC1797 the PMU1 contains 2 Mbyte of Program Flash realized as one Flash bank. It does not contain any Data Flash. Since in TC1797 the two PMUs can work in parallel, further combinations of concurrent operations are supported if those are operating on Flash modules in different PMUs, e.g. • • • Read data from Flash1 while accessing code from Flash0. Read code or data from one Flash while the other Flash is busy with program or erase operation. Both Flash modules are concurrently busy with program or erase operation.
Both, the Program Flash and the Data Flash, provide error correction of single-bit errors within a 64-bit read double-word, resulting in an extremely low failure rate. Read accesses to Program Flash are executed in 256-bit width, to Data Flash in 64-bit width (both plus ECC). Single-cycle burst transfers of up to 4 double-words and sequential prefetching with control of prefetch hit are supported for Program Flash. The minimum programming width is the page, including 256 bytes in Program Flash and 128 bytes in Data Flash. Concurrent programming and erasing in Data Flash is performed using an automatic erase suspend and resume function. A basic block diagram of the Flash Module is shown in the following figure.
Control
Flash Command State Machine FCS
Control
FSI
SFRs FSRAM
Microcode
Redundancy Control
Voltage Control
Addr Bus
64
Address
64 WR_DATA 8
Write Bus
Page Write Buffers
256 byte and 128 byte
Program Flash
ECC Block
64
ECC Code 8 64 RD_DATA
PF-Read Buffer
256+32 bit and
Read Bus
DF-Read Buffer
64+8 bit
Bank 0 Data Flash Bank 1
Bank 0
Bank 1
Flash Interface&Control Module FIM PMU
Flash Array Module FAM Flash FSI & Array
Flash_BasicBlockDiagram _generic.vsd
Figure 4
Basic Block Diagram of Flash Module
All Flash operations are controlled simply by transferring command sequences to the Flash which are based on JEDEC standard. This user interface of the embedded Flash is very comfortable, because all operations are controlled with high level commands, such as “Erase Sector”. State transitions, such as termination of command execution, or errors are reported to the user by maskable interrupts. Command sequences are
Data Sheet 27 V1.1, 2009-04
TC1797
Introduction normally written to Flash by the CPU, but may also be issued by the DMA controller (or OCDS). The Flash also features an advanced read/write protection architecture, including a read protection for the whole Flash array (optionally without Data Flash) and separate write protection for all sectors (only Program Flash). Write protected sectors can be made reprogrammable (enabled with passwords), or they can be locked for ever (ROM function). Each sector can be assigned to up to three different users for write protection. The different users are organized hierarchically. Program Flash Features and Functions • • • • 2 Mbyte on-chip Program Flash in PMU0. 2 Mbyte on-chip Program Flash in PMU1. Any use for instruction code or constant data. Double Flash module system approach: – Concurrent read access of code and data. – Read while write (RWW). – Concurrent program/erase in both modules. 256 bit read interface (burst transfer operation). Dynamic correction of single-bit errors during read access. Transfer rate in burst mode: One 64-bit double-word per clock cycle. Sector architecture: – Eight 16 Kbyte, one 128 Kbyte and seven 256 Kbyte sectors. – Each sector separately erasable. – Each sector lockable for protection against erase and program (write protection). One additional configuration sector (not accessible to the user). Optional read protection for whole Flash, with sophisticated read access supervision. Combined with whole Flash write protection — thus supporting protection against Trojan horse programs. Sector specific write protection with support of re-programmability or locked forever. Comfortable password checking for temporary disable of write or read protection. User controlled configuration blocks (UCB) in configuration sector for keywords and for sector-specific lock bits (one block for every user; up to three users). Pad supply voltage (VDDP) also used for program and erase (no VPP pin). Efficient 256 byte page program operation. All Flash operations controlled by CPU per command sequences (unlock sequences) for protection against unintended operation. End-of-busy as well as error reporting with interrupt and bus error trap. Write state machine for automatic program and erase, including verification of operation quality. Support of margin check. Delivery in erased state (read all zeros). Global and sector status information.
28 V1.1, 2009-04
• • • •
• •
• • • • • • • • • • •
Data Sheet
TC1797
Introduction • • • • • Overlay support with SRAM for calibration applications. Configurable wait state selection for different CPU frequencies. Endurance = 1000; minimum 1000 program/erase cycles per physical sector; reduced endurance of 100 per 16 KB sector. Operating lifetime (incl. Retention): 20 years with endurance=1000. For further operating conditions see data sheet section “Flash Memory Parameters”.
Data Flash Features and Functions Note: Only available in PMU0. • • • • • • 64 Kbyte on-chip Flash, configured in two independent Flash banks of equal size. 64 bit read interface. Erase/program one bank while data read access from the other bank. Programming one bank while erasing the other bank using an automatic suspend/resume function. Dynamic correction of single-bit errors during read access. Sector architecture: – Two sectors of equal size. – Each sector separately erasable. 128 byte pages to be written in one step. Operational control per command sequences (unlock sequences, same as those of Program Flash) for protection against unintended operation. End-of-busy as well as error reporting with interrupt and bus error trap. Write state machine for automatic program and erase. Margin check for detection of problematic Flash bits. Endurance = 30000 (can be device dependent); i.e. 30000 program/erase cycles per sector are allowed, with a retention of min. 5 years. Dedicated DFlash status information. Other characteristics: Same as Program Flash.
• • • • • • • •
Data Sheet
29
V1.1, 2009-04
TC1797
Introduction
2.3.7
Data Access Overlay
The data overlay functionality provides the capability to redirect data accesses by the TriCore to program memory (internal Program Flash or external memory) to the Overlay SRAM in the PMU, or to the Emulation Memory in Emulation Device ED, or to the external memory. This functionality makes it possible, for example, to modify the application’s test and calibration parameters (which are typically stored in the program memory) during run time of a program. Note that read and write data accesses from/to program memory are redirected. Attention: As the address translation is implemented in the DMI, it is only effective for data accesses by the TriCore. Instruction fetches by the TriCore or accesses by any other master (including the debug interface) are not affected! Note: The external memory can be used as overlay memory only in Emulation Devices “ED” with an EBU. Generally this feature is not supported in Production Devices “PD”. However, this function is fully described here in this spec. Summary of Features and Functions • • • • • • • • • • 16 overlay ranges (“blocks”) configurable for Program Flash and external memory Support of 8 Kbyte embedded Overlay SRAM (OVRAM) in PMU Support of up to 512 Kbyte overlay/calibration memory in Emulation Device (EMEM) Support of up to 2 MB overlay memory in external memory (EBU space) Support of Online Data Acquisition into range of up to 32 KB and of its overlay Support of different overlay memory selections for every enabled overlay block Sizes of overlay blocks selectable from 16 byte to 2 Kbyte for redirection to OVRAM Sizes of overlay blocks selectable from 1 Kbyte to 128 Kbyte for redirection to EMEM or to external memory All configured overlay ranges can be enabled with only one register write access Programmable flush (invalidate) control for data cache in DMI Development Support
2.4
Overview about the TC1797 development environment: Complete Development Support A variety of software and hardware development tools for the 32-bit microcontroller TC1797 are available from experienced international tool suppliers. The development environment for the Infineon 32-bit microcontroller includes the following tools: • • Embedded Development Environment for TriCore Products The TC1797 On-chip Debug Support (OCDS) provides a JTAG port for communication between external hardware and the system
Data Sheet
30
V1.1, 2009-04
TC1797
Introduction • • • Flexible Peripheral Interconnect Buses (FPI Bus) for on-chip interconnections and its FPI Bus control unit (SBCU) The System Timer (STM) with high-precision, long-range timing capabilities The TC1797 includes a power management system, a watchdog timer as well as reset logic
Data Sheet
31
V1.1, 2009-04
TC1797
Introduction
2.5
On-Chip Peripheral Units of the TC1797
The TC1797 microcontroller offers several versatile on-chip peripheral units such as serial controllers, timer units, and Analog-to-Digital converters. Several I/O lines on the TC1797 ports are reserved for these peripheral units to communicate with the external world.
On-Chip Peripheral Units • • • • • • Two Asynchronous/Synchronous Serial Channels (ASC) with baud-rate generator, parity, framing and overrun error detection Two Synchronous Serial Channels (SSC) with programmable data length and shift direction Two Micro Second Bus Interfaces (MSC) for serial communication One CAN Module with four CAN nodes (MultiCAN) for high-efficiency data handling via FIFO buffering and gateway data transfer Two Micro Link Serial Bus Interfaces (MLI) for serial multiprocessor communication Two General Purpose Timer Arrays (GPTA) with a powerful set of digital signal filtering and timer functionality to accomplish autonomous and complex Input/Output management. One additional Local Timer Cell Array (LCTA). Three Analog-to-Digital Converter Units (ADC) with 8-bit, 10-bit, or 12-bit resolution. One fast Analog-to-Digital Converter Unit (FADC) One FlexRayTM module with 2 channels (E-Ray). One External Bus Interface (EBU)
• • • •
Data Sheet
32
V1.1, 2009-04
TC1797
Introduction
2.5.1
Asynchronous/Synchronous Serial Interfaces
The TC1797 includes two Asynchronous/Synchronous Serial Interfaces, ASC0 and ASC1. Both ASC modules have the same functionality. Figure 5 shows a global view of the Asynchronous/Synchronous Serial Interface (ASC).
Clock Control
fASC
Address Decoder EIR TBIR TIR RIR
RXD ASC Module (Kernel) TXD Port Control
RXD TXD
Interrupt Control
To DMA
MCB05762_mod
Figure 5
General Block Diagram of the ASC Interface TC1797 and other
The ASC provides serial communication between the microcontrollers, microprocessors, or external peripherals.
The ASC supports full-duplex asynchronous communication and half-duplex synchronous communication. In Synchronous Mode, data is transmitted or received synchronous to a shift clock that is generated by the ASC internally. In Asynchronous Mode, 8-bit or 9-bit data transfer, parity generation, and the number of stop bits can be selected. Parity, framing, and overrun error detection are provided to increase the reliability of data transfers. Transmission and reception of data is double-buffered. For multiprocessor communication, a mechanism is included to distinguish address bytes from data bytes. Testing is supported by a loop-back option. A 13-bit baud rate generator provides the ASC with a separate serial clock signal, which can be accurately adjusted by a prescaler implemented as fractional divider.
Data Sheet
33
V1.1, 2009-04
TC1797
Introduction Features • Full-duplex asynchronous operating modes – 8-bit or 9-bit data frames, LSB first – Parity-bit generation/checking – One or two stop bits – Baud rate from 5.625 Mbit/s to 1.34 bit/s (@ 90 MHz module clock) – Multiprocessor mode for automatic address/data byte detection – Loop-back capability Half-duplex 8-bit synchronous operating mode – Baud rate from 11.25 Mbit/s to 915.5 bit/s (@ 90 MHz module clock) Double-buffered transmitter/receiver Interrupt generation – On a transmit buffer empty condition – On a transmit last bit of a frame condition – On a receive buffer full condition – On an error condition (frame, parity, overrun error) Implementation features – Connections to DMA Controller – Connections of receiver input to GPTA (LTC) for baud rate detection and LIN break signal measuring
• • •
•
Data Sheet
34
V1.1, 2009-04
TC1797
Introduction
2.5.2
High-Speed Synchronous Serial Interfaces
The TC1797 includes two High-Speed Synchronous Serial Interfaces, SSC0 and SSC1. Both SSC modules have the same functionality. Figure 6 shows a global view of the Synchronous Serial interface (SSC).
fSSC
Clock Control
Master
MRSTA MRSTB MTSR MTSRA MTSRB MRST SCLKA SCLKB SCLK SLSI[7:1] SLSO[7:0] SLSOANDO[7:0] SLSOANDI[7:0] Enable M/S Select Port Control
fCLC
Slave
MTSR
Address Decoder RIR Interrupt Control TIR EIR
MRST
S SC Module (Kernel)
Slave Master Slave Master
SCLK SLSI[7:1] SLSO[7:0] SLSOANDO[7:0]
DMA Requests
MCB06058_mod
Figure 6
General Block Diagram of the SSC Interface
The SSC supports full-duplex and half-duplex serial synchronous communication up to 45 Mbit/s (@ 90 MHz module clock, Master Mode). The serial clock signal can be generated by the SSC itself (Master Mode) or can be received from an external master (Slave Mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices. Transmission and reception of data are double-buffered. A shift clock generator provides the SSC with a separate serial clock signal. One slave select input is available for slave mode operation. Eight programmable slave select outputs (chip selects) are supported in Master Mode.
Data Sheet
35
V1.1, 2009-04
TC1797
Introduction Features • Master and Slave Mode operation – Full-duplex or half-duplex operation – Automatic pad control possible Flexible data format – Programmable number of data bits: 2 to 16 bits – Programmable shift direction: LSB or MSB shift first – Programmable clock polarity: Idle low or idle high state for the shift clock – Programmable clock/data phase: Data shift with leading or trailing edge of the shift clock Baud rate generation – Master Mode: – Slave Mode: Interrupt generation – On a transmitter empty condition – On a receiver full condition – On an error condition (receive, phase, baud rate, transmit error) Flexible SSC pin configuration Seven slave select inputs SLSI[7:1] in Slave Mode Eight programmable slave select outputs SLSO[7:0] in Master Mode – Automatic SLSO generation with programmable timing – Programmable active level and enable control – Combinable with SLSO output signals from other SSC modules
•
•
•
• • •
Data Sheet
36
V1.1, 2009-04
TC1797
Introduction
2.5.3
Micro Second Channel Interface
The TC1797 includes two Micro Second Channel interfaces, MSC0 and MSC1. Both MSC modules have the same functionality. Each Micro Second Channel (MSC) interface provides serial communication links typically used to connect power switches or other peripheral devices. The serial communication link includes a fast synchronous downstream channel and a slow asynchronous upstream channel. Figure 7 shows a global view of the interface signals of an MSC interface.
fMSC
Clock Control
fCLC
FCLP FCLN Downstream Channel
Address Decoder
SOP SON EN0 EN1 EN2 EN3
Interrupt SR[3:0] Control 4 To DMA ALTINL[15:0] ALTINH[15:0] EMGSTOPMSC
MSC Module (Kernel)
Upstream Channel
16 16
8
SDI[7:0]
MCB06059
Figure 7
General Block Diagram of the MSC Interface
The downstream and upstream channels of the MSC module communicate with the external world via nine I/O lines. Eight output lines are required for the serial communication of the downstream channel (clock, data, and enable signals). One out of eight input lines SDI[7:0] is used as serial data input signal for the upstream channel. The source of the serial data to be transmitted by the downstream channel can be MSC register contents or data that is provided on the ALTINL/ALTINH input lines. These input lines are typically connected with other on-chip peripheral units (for example with a timer unit such as the GPTA). An emergency stop input signal makes it possible to set bits of the serial data stream to dedicated values in an emergency case. Clock control, address decoding, and interrupt service request control are managed outside the MSC module kernel. Service request outputs are able to trigger an interrupt or a DMA request.
Data Sheet 37 V1.1, 2009-04
TC1797
Introduction Features • • Fast synchronous serial interface to connect power switches in particular, or other peripheral devices via serial buses High-speed synchronous serial transmission on downstream channel – Serial output clock frequency: fFCL = fMSC/2 (fMSCmax = 90 MHz) – Fractional clock divider for precise frequency control of serial clock fMSC – Command, data, and passive frame types – Start of serial frame: Software-controlled, timer-controlled, or free-running – Programmable upstream data frame length (16 or 12 bits) – Transmission with or without SEL bit – Flexible chip select generation indicates status during serial frame transmission – Emergency stop without CPU intervention Low-speed asynchronous serial reception on upstream channel – Baud rate: fMSC divided by 4, 8, 16, 32, 64, 128, or 256 (fMSCmax = 90 MHz) – Standard asynchronous serial frames – Parity error checker – 8-to-1 input multiplexer for SDI lines – Built-in spike filter on SDI lines Selectable pin types of downstream channel interface: four LVDS differential output drivers or four digital GPIO pins
•
•
Data Sheet
38
V1.1, 2009-04
TC1797
Introduction
2.5.4
FlexRay™ Protocol Controller (E-Ray)
The E-Ray IP-module performs communication according to the FlexRay™ 1) protocol specification v2.1. With maximum specified clock the bitrate can be programmed to values up to 10 Mbit/s. Additional bus driver (BD) hardware is required for connection to the physical layer.
2.5.4.1
E-Ray Kernel Description
Figure 2.5.4.1 shows a global view of the E-Ray interface.
fSYS fPL L _ER AY
fC L C_ ER AY
Clock Control Address Decoder
fSC L K
Channel A
RXDA TXDA TXENA Port Control RXDB TXDB TXENB
ERAY Module (Kernel)
Channel B
STPW Interrupt Control MT
Stop Watch Trigger Select
External Request Unit
f
MT
External Clock Output
eray_overview.vsd
Figure 8
General Block Diagram of the E-Ray Interface
1) Infineon®, Infineon Technologies®, are trademarks of Infineon Technologies AG. FlexRay™ is a trademark of FlexRay Consortium.
Data Sheet
39
V1.1, 2009-04
TC1797
Introduction The E-Ray module communicates with the external world via three I/O lines each channel. The RXDAx and RXDBx lines are the receive data input signals, TXDA and TXDB lines are the transmit output signals, TXENA and TXENB the transmit enable signals. Clock control, address decoding, and service request control are managed outside the E-Ray module kernel.
2.5.4.2
Overview
For communication on a FlexRay™ network, individual Message Buffers with up to 254 data byte are configurable. The message storage consists of a single-ported Message RAM that holds up to 128 Message Buffers. All functions concerning the handling of messages are implemented in the Message Handler. Those functions are the acceptance filtering, the transfer of messages between the two FlexRay™ Channel Protocol Controllers and the Message RAM, maintaining the transmission schedule as well as providing message status information. The register set of the E-Ray IP-module can be accessed directly by an external Host via the module’s Host interface. These registers are used to control/configure/monitor the FlexRay™ Channel Protocol Controllers, Message Handler, Global Time Unit, System Universal Control, Frame and Symbol Processing, Network Management, Service Request Control, and to access the Message RAM via Input / Output Buffer. The E-Ray IP-module supports the following features: • • • • • • • • Conformance with FlexRay™ protocol specification v2.1 Data rates of up to 10 Mbit/s on each channel Up to 128 Message Buffers configurable 8 Kbyte of Message RAM for storage of e.g. 128 Message Buffers with max. 48 byte data field or up to 30 Message Buffers with 254 byte Data Sections Configuration of Message Buffers with different payload lengths possible One configurable receive FIFO Each Message Buffer can be configured as receive buffer, as transmit buffer or as part of the receive FIFO Host access to Message Buffers via Input and Output Buffer. Input Buffer: Holds message to be transferred to the Message RAM Output Buffer: Holds message read from the Message RAM Filtering for slot counter, cycle counter, and channel Maskable module service requests Network Management supported Four service request lines Automatic delayed read access to Output Command Request Register (OBCR) if a data transfer from Message RAM to Output Shadow Buffer (initiated by a previous write access to the OBCR) is ongoing.
• • • • •
Data Sheet
40
V1.1, 2009-04
TC1797
Introduction • Automatic delayed read access to Input Command Request Register (IBCR) if a data transfer from Input Shadow Buffer to Message RAM to (initiated by a previous write access to the IBCR) is ongoing. Four Input Buffer for building up transmission Frames in parallel. Flag indicating which Input Buffer is currently accessible by the host.
• •
Data Sheet
41
V1.1, 2009-04
TC1797
Introduction
2.5.5
MultiCAN Controller
The MultiCAN module provides four independent CAN nodes, representing four serial communication interfaces. The number of available message objects is 128.
MultiCAN Module Kernel
fCAN
Clock Control
f CLC
Message Object Buffer 128 Objects Linked List Control
CAN Node 3 CAN Node 2 CAN Node 1 CAN Node 0
TXDC3 RXDC3 TXDC2 RXDC2 TXDC1 RXDC1 TXDC0 RXDC0 Port Control
Address Decoder
Interrupt Control
CAN Control
MCA06060_N4
Figure 9
Overview of the MultiCAN Module
The MultiCAN module contains four independently operating CAN nodes with Full-CAN functionality that are able to exchange Data and Remote Frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. All four CAN nodes share a common set of message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to set up a FIFO buffer. The message objects are organized in double-chained linked lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to the message object list of the CAN node, and it transmits only messages belonging to this message object list. A powerful, command-driven list controller performs all message object list operations. The bit timings for the CAN nodes are derived from the module timer clock (fCAN) and are programmable up to a data rate of 1 Mbit/s. External bus transceivers are connected to a CAN node via a pair of receive and transmit pins.
Data Sheet 42 V1.1, 2009-04
TC1797
Introduction Features • • • • • • • Compliant with ISO 11898 CAN functionality according to CAN specification V2.0 B active Dedicated control registers for each CAN node Data transfer rates up to 1 Mbit/s Flexible and powerful message transfer control and error handling capabilities Advanced CAN bus bit timing analysis and baud rate detection for each CAN node via a frame counter Full-CAN functionality: A set of 128 message objects can be individually – Allocated (assigned) to any CAN node – Configured as transmit or receive object – Setup to handle frames with 11-bit or 29-bit identifier – Identified by a timestamp via a frame counter – Configured to remote monitoring mode Advanced Acceptance Filtering – Each message object provides an individual acceptance mask to filter incoming frames. – A message object can be configured to accept standard or extended frames or to accept both standard and extended frames. – Message objects can be grouped into four priority classes for transmission and reception. – The selection of the message to be transmitted first can be based on frame identifier, IDE bit and RTR bit according to CAN arbitration rules, or on its order in the list. Advanced message object functionality – Message objects can be combined to build FIFO message buffers of arbitrary size, limited only by the total number of message objects. – Message objects can be linked to form a gateway that automatically transfers frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways can be defined. Advanced data management – The message objects are organized in double-chained lists. – List reorganizations can be performed at any time, even during full operation of the CAN nodes. – A powerful, command-driven list controller manages the organization of the list structure and ensures consistency of the list. – Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation. – Static allocation commands offer compatibility with MultiCAN applications that are not list-based. Advanced interrupt handling
•
•
•
•
Data Sheet
43
V1.1, 2009-04
TC1797
Introduction – Up to 16 interrupt output lines are available. Interrupt requests can be routed individually to one of the 16 interrupt output lines. – Message post-processing notifications can be combined flexibly into a dedicated register field of 256 notification bits.
Data Sheet
44
V1.1, 2009-04
TC1797
Introduction
2.5.6
Micro Link Serial Bus Interface
This TC1797 contains two Micro Link Serial Bus Interfaces, MLI0 and MLI1. The Micro Link Interface (MLI) is a fast synchronous serial interface to exchange data between microcontrollers or other devices, such as stand-alone peripheral components. Figure 10 shows how two microcontrollers are typically connected together via their MLI interfaces.
Controller 1 CPU
Controller 2 CPU
Peripheral A
Peripheral B
Peripheral C
Peripheral D
Memory System Bus
MLI
MLI System Bus
Memory
MCA06061
Figure 10 Features • • • • • • • • • •
Typical Micro Link Interface Connection
Synchronous serial communication between an MLI transmitter and an MLI receiver Different system clock speeds supported in MLI transmitter and MLI receiver due to full handshake protocol (4 lines between a transmitter and a receiver) Fully transparent read/write access supported (= remote programming) Complete address range of target device available Specific frame protocol to transfer commands, addresses and data Error detection by parity bit 32-bit, 16-bit, or 8-bit data transfers supported Programmable baud rate: fMLI/2 (max. fMLI = fSYS) Address range protection scheme to block unauthorized accesses Multiple receiving devices supported
Data Sheet
45
V1.1, 2009-04
TC1797
Introduction Figure 11 shows a general block diagram of the MLI module.
TREADY[D:A] 4 TVALID[D:A] 4
fSYS
TR[3:0]
Fract. Divider
MLI Transmitter
I/O Control
TDATA TCLK
fMLI
BRKOUT Move Engine
MLI Module RCLK[D:A] MLI Receiver I/O Control 4
Port Control RREADY[D:A] 4
SR[7:0]
RVALID[D:A] RDATA[D:A]
4 4
MCB06062_mod
Figure 11
General Block Diagram of the MLI Modules
The MLI transmitter and MLI receiver communicate with other MLI receivers and MLI transmitters via a four-line serial connection each. Several I/O lines of these connections are available outside the MLI module kernel as a four-line output or input vector with index numbering A, B, C and D. The MLI module internal I/O control blocks define which signal of a vector is actually taken into account and also allow polarity inversions (to adapt to different physical interconnection means)
Data Sheet
46
V1.1, 2009-04
TC1797
Introduction
2.5.7
General Purpose Timer Array (GPTA)
The TC1797 contains the General Purpose Timer Array (GPTA0), plus the additional Local Timer Cell Array (LTCA2). Figure 12 shows a global view of the GPTA modules. The GPTA provides a set of timer, compare, and capture functionalities that can be flexibly combined to form signal measurement and signal generation units. They are optimized for tasks typical of engine, gearbox, and electrical motor control applications, but can also be used to generate simple and complex signal waveforms required for other industrial applications.
GPTA0 Clock Generation Cells FPC0 FPC1 FPC2 FPC3 FPC4 FPC5 PDL1 DCM3 PDL0 DCM1 DCM2 DIGITAL PLL DCM0
fGPTA Clock Distribution Cells
Clock Conn .
GT0 GT1 GTC00 GTC01 GTC02 GTC03 Global Timer Cell Array GTC30 GTC31
Cl ock Bus
Signal Generation Cells LTCA2 LTC00 LTC01 LTC02 LTC03 Local Timer Cell Array LTC62 LTC63 LTC00 LTC01 LTC02 LTC03 Local Timer Cell Array LTC62 LTC63 I/O Line Sharing Block Interrupt Sharing Block
MCB05910_TC1767
I/O Line Sharing Block Interrupt Sharing Block
Figure 12
General Block Diagram of the GPTA Modules in the TC1797
Data Sheet
47
V1.1, 2009-04
TC1797
Introduction
2.5.7.1
Functionality of GPTA0
The General Purpose Timer Array (GPTA0) provides a set of hardware modules required for high-speed digital signal processing: • • • • • • Filter and Prescaler Cells (FPC) support input noise filtering and prescaler operation. Phase Discrimination Logic units (PDL) decode the direction information output by a rotation tracking system. Duty Cycle Measurement Cells (DCM) provide pulse-width measurement capabilities. A Digital Phase Locked Loop unit (PLL) generates a programmable number of GPTA module clock ticks during an input signal’s period. Global Timer units (GT) driven by various clock sources are implemented to operate as a time base for the associated Global Timer Cells. Global Timer Cells (GTC) can be programmed to capture the contents of a Global Timer on an external or internal event. A GTC may also be used to control an external port pin depending on the result of an internal compare operation. GTCs can be logically concatenated to provide a common external port pin with a complex signal waveform. Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may also be logically tied together to drive a common external port pin with a complex signal waveform. LTCs – enabled in Timer Mode or Capture Mode – can be clocked or triggered by various external or internal events. On-chip Trigger and Gating Signals (OTGS) can be configured to provide trigger or gating signals to integrated peripherals.
•
•
Input lines can be shared by an LTC and a GTC to trigger their programmed operation simultaneously. The following list summarizes the specific features of the GPTA units. Clock Generation Unit • Filter and Prescaler Cell (FPC) – Six independent units – Three basic operating modes: Prescaler, Delayed Debounce Filter, Immediate Debounce Filter – Selectable input sources: Port lines, GPTA module clock, FPC output of preceding FPC cell – Selectable input clocks: GPTA module clock, prescaled GPTA module clock, DCM clock, compensated or uncompensated PLL clock. – fGPTA/2 maximum input signal frequency in Filter Modes Phase Discriminator Logic (PDL) – Two independent units – Two operating modes (2- and 3- sensor signals)
48 V1.1, 2009-04
•
Data Sheet
TC1797
Introduction – fGPTA/4 maximum input signal frequency in 2-sensor Mode, fGPTA/6 maximum input signal frequency in 3-sensor Mode Duty Cycle Measurement (DCM) – Four independent units – 0 - 100% margin and time-out handling – fGPTA maximum resolution – fGPTA/2 maximum input signal frequency Digital Phase Locked Loop (PLL) – One unit – Arbitrary multiplication factor between 1 and 65535 – fGPTA maximum resolution – fGPTA/2 maximum input signal frequency Clock Distribution Unit (CDU) – One unit – Provides nine clock output signals: fGPTA, divided fGPTA clocks, FPC1/FPC4 outputs, DCM clock, LTC prescaler clock
•
•
•
Signal Generation Unit • Global Timers (GT) – Two independent units – Two operating modes (Free-Running Timer and Reload Timer) – 24-bit data width – fGPTA maximum resolution – fGPTA/2 maximum input signal frequency Global Timer Cell (GTC) – 32 units related to the Global Timers – Two operating modes (Capture, Compare and Capture after Compare) – 24-bit data width – fGPTA maximum resolution – fGPTA/2 maximum input signal frequency Local Timer Cell (LTC) – 64 independent units – Three basic operating modes (Timer, Capture and Compare) for 63 units – Special compare modes for one unit – 16-bit data width – fGPTA maximum resolution – fGPTA/2 maximum input signal frequency
•
•
Interrupt Sharing Unit • 286 interrupt sources, generating up to 92 service requests
Data Sheet
49
V1.1, 2009-04
TC1797
Introduction On-chip Trigger Unit • 16 on-chip trigger signals
I/O Sharing Unit • Interconnecting inputs and outputs from internal clocks, FPC, GTC, LTC, ports, and MSC interface
2.5.7.2
Functionality of LTCA2
The Local Timer Cell Array (LTCA2) provides a set of hardware modules required for high-speed digital signal processing: • Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may also be logically tied together to drive a common external port pin with a complex signal waveform. LTCs – enabled in Timer Mode or Capture Mode – can be clocked or triggered by various external or internal events.
The following list summarizes the specific features of the LTCA unit. The Local Timer Arrays (LTCA2) provides a set of hardware modules required for highspeed digital signal processing: Signal Generation Unit • Local Timer Cell (LTC) – 32 independent units – Three basic operating modes (Timer, Capture and Compare) for 63 units – Special compare modes for one unit – 16-bit data width – fGPTA maximum resolution – fGPTA/2 maximum input signal frequency
I/O Sharing Unit • Interconnecting inputs and outputs from internal clocks, LTC, ports, and MSC interface
Data Sheet
50
V1.1, 2009-04
TC1797
Introduction
2.5.8
Analog-to-Digital Converters
The TC1797 includes three Analog to Digital Converter modules (ADC0, ADC1, ADC2) and one Fast Analog to Digital Converter (FADC).
2.5.8.1
ADC Block Diagram
The analog to digital converter module (ADC) allows the conversion of analog input values into discrete digital values based on the successive approximation method. This module contains 3 independent kernels (ADC0, ADC1, ADC2) that can operate autonomously or can be synchronized to each other. An ADC kernel is a unit used to convert an analog input signal (done by an analog part) and provides means for triggering conversions, data handling and storage (done by a digital part).
analog part kernel 0 analog inputs AD converter conversion control analog part kernel 1 analog inputs AD converter conversion control analog part kernel 2 analog inputs AD converter conversion control
... ... ...
digital part kernel 0 data (result) handling request control digital part kernel 1 data (result) handling request control digital part kernel 2 data (result) handling request control
ADC_3_kernels
bus interface
Figure 13
ADC Module with three ADC Kernels
Features of the analog part of each ADC kernel:
Data Sheet 51 V1.1, 2009-04
TC1797
Introduction • • • • Input voltage range from 0V to analog supply voltage Analog supply voltage range from 3.3 V to 5 V (single supply) (5V nominal supply voltage, performance degradation accepted for lower voltages) Input multiplexer width of 16 possible analog input channels (not all of them are necessarily available on pins) Performance for 12 bit resolution (@fADCI = 10 MHz): - conversion time about 2µs, TUE1) of ±4 LSB12 @ operating voltage 5 V - conversion time about 2µs, TUE of ±4 LSB12 @ operating voltage 3.3 V VAREF and 1 alternative reference input at channel 0 Programmable sample time (in periods of fADCI) Wide range of accepted analog clock frequencies fADCI Multiplexer test mode (channel 7 input can be connected to ground via a resistor for test purposes during run time by specific control bit) Power saving mechanisms Independent result registers (16 independent registers) 5 conversion request sources (e.g. for external events, auto-scan, programmable sequence, etc.) Synchronization of the ADC kernels for concurrent conversion starts Control an external analog multiplexer, respecting the additional set up time Programmable sampling times for different channels Possibility to cancel running conversions on demand with automatic restart Flexible interrupt generation (possibility of DMA support) Limit checking to reduce interrupt load Programmable data reduction filter by adding conversion results Support of conversion data FIFO Support of suspend and power down modes Individually programmable reference selection for each channel (with exception of dedicated channels always referring to VAREF)
• • • • • • • • • • • • • • • • •
Features of the digital part of each ADC kernel:
1) This value reflects the ADC module capability in an adapted electrical environment, e.g. characterized by “clean” routing of analog and digital signals and separation of analog and digital PCB areas, low noise on analog power supply (< 30mV), low switching activity of digital pins near to the ADC, etc.
Data Sheet
52
V1.1, 2009-04
TC1797
Introduction
2.5.8.2
• • • • • • • • • • • • •
FADC Short Description
General Features Extreme fast conversion, 21 cycles of fFADC clock (262.5 ns @ fFADC = 80 MHz) 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) Successive approximation conversion method Two differential input channels with impedance control available on dedicated pins Two differential input channels with impedance control overlaid with ADC1 inputs Each differential input channel can also be used as single-ended input Offset calibration support for each channel Programmable gain of 1, 2, 4, or 8 for each channel Free-running (Channel Timers) or triggered conversion modes Trigger and gating control for external signals Built-in Channel Timers for internal triggering Channel timer request periods independently selectable for each channel Selectable, programmable digital anti-aliasing and data reduction filter block with four independent filter units
VFAREF VDDAF VDDMF VDDIF VFAGND VSSAF VSSMF Clock Control fFADC fCLC Data Reduction Unit A/D Control
Input Structure
Interrupt Control DMA TS[H:A] GS[H:A]
SRx
A/D Converter Stage
SRx
FAIN0P FAIN0N FAIN1P FAIN1N FAIN2P FAIN2N FAIN3P FAIN3N
input channel 0 input channel 1 input channel 2 input channel 3
Channel Trigger Control
Channel Timers
MCB06065_m4
Figure 14
Block Diagram of the FADC Module with 4 Input Channels
Data Sheet
53
V1.1, 2009-04
TC1797
Introduction As shown in Figure 14, the main FADC functional blocks are: • • • • • • An Input Structure containing the differential inputs and impedance control. An A/D Converter Stage responsible for the analog-to-digital conversion including an input multiplexer to select between the channel amplifiers A Data Reduction Unit containing programmable anti-aliasing and data reduction filters A Channel Trigger Control block determining the trigger and gating conditions for the FADC channels A Channel Timer for each channel to independently trigger the conversions An A/D Control block responsible for the overall FADC functionality
FADC Power Supply and References The FADC module is supplied by the following power supply and reference voltage lines: • • VDDMF / VSSMF: FADC Analog Channel Amplifier Power Supply (3.3 V) VDDIF / VSSMF: FADC Analog Input Stage Power Supply (3.3 - 5 V), the VDDIF supply does not appear as supply pin, because it is internally connected to the VDDM supply of the ADC that is sharing the FADC input pins. VDDAF / VSSAF: FADC Analog Part Power Supply (1.5 V), to be fed in externally VFAREF / VFAGND: FADC Reference Voltage (3.3 V max.) and FADC Reference Ground
• •
Input Structure The input structure of the FADC in the TC1797 contains: • A differential analog input stage for each input channel to select the input impedance (differential or single-ended measurement) and to decouple the FADC input signal from the pins. Input channels 2 and 3 are overlaid with ADC1 input signals (AN28, AN29, AN30, AN31), whereas input channels 0 and 1 are available on dedicated input pins (AN32, AN33, AN34, AN35). A channel amplifier for each input channel with a settling time (about 5µs) when changing the characteristics of an input stage (changing between unused, differential, single-ended N, or single-ended P mode).
•
•
Data Sheet
54
V1.1, 2009-04
TC1797
Introduction
FAIN0P FAIN0N
Analog Input Stages Rp Rn
Channel Amplifier Stages VDDMF
Converter Stage
VSSMF FAIN2P FAIN2N Rp Rn VSSMF FAIN1P FAIN1N Rp Rn VSSMF FAIN3P FAIN3N Rp Rn VSSMF VDDIF
Figure 15
A/D conversion Control control gain
CHNR
VDDMF
VDDMF
A/D
VDDAF VSSAF VDDMF
VSSMF
MCA06432_m4n
FADC Input Structure in TC1797
Data Sheet
55
V1.1, 2009-04
TC1797
Introduction
2.5.9
External Bus Interface
The External Bus Unit (EBU) of the TC1797 controls the accesses from peripheral units to external memories. Features: • • 64-bit internal LMB interface 32-bit demultiplexed / 16-bit multiplexed external bus interface (3.3V, 2.5V) – Support for Intel-style and Motorola-style interface signals – Support for Burst Flash memory devices – Flexibly programmable access parameters – Programmable chip select lines – Little-endian support Examples for memories that has to be supported – Burst Flash: – Spansion: S29CD016, S29CD032 – Spansion: S29CL032J1RFAM010 @3,3V – ST: M58BW016, M58BW032 – ST: M58BW032GB B45ZA3T @3,3V – Flash (for 16 bit muxed mode): – http://www.spansion.com/products/Am29LV160B.html – SRAM (for 16 bit muxed mode): – http://www.idt.com/products/files/10372/71V016saautomotive.pdf – http://213.174.55.51/zmd.biz/pdf/ UL62H1616A.pdf – IDT 71V416YS15BEI Scalable external bus frequency – Derived from LMB frequency (fCPU) divided by 1, 2, 3, or 4 – Maximum 75 MHz1) Data buffering supported – Code prefetch buffer – Read/write buffer
•
•
•
2.6
On-Chip Debug Support (OCDS)
The TC1797 contains resources for different kinds of “debugging”, covering needs from software development to real-time-tuning. These resources are either embedded in specific modules (e.g. breakpoint logic of the TriCore) or part of a central peripheral (known as CERBERUS).
1) Maximum frequency of today available automotive Burst Flash devices.
Data Sheet
56
V1.1, 2009-04
TC1797
Introduction
2.6.1
On-Chip Debug Support
The classic software debug approach (start/stop, single-stepping) is supported by several features labelled “OCDS Level 1”: • • • • • • • • • Run/stop and single-step execution independently for TriCore and PCP. Means to request all kinds of reset without usage of sideband pins. Halt-after-Reset for repeatable debug sessions. Different Boot modes to use application software not yet programmed to the Flash. A total of four hardware breakpoints for the TriCore based on instruction address, data address or combination of both. Unlimited number of software breakpoints (DEBUG instruction) for TriCore and PCP. Debug event generated by access to a specific address via the system bus. Tool access to all SFRs and internal memories independent of the Cores. Two central Break Switches to collect debug events from all modules (TriCore, PCP, DMA, BCU, break input pins) and distribute them selectively to breakable modules (TriCore, PCP, break output pins). Central Suspend Switch to suspend parts of the system (TriCore, PCP, Peripherals) instead if breaking them as reaction to a debug event. Dedicated interrupt resources to handle debug events inside TriCore (breakpoint trap, software interrupt) and Cerberus (can trigger PCP), e.g. for implementing Monitor programs. Access to all OCDS Level 1 resources also for TriCore and PCP themselves for debug tools integrated into the application code. Triggered Transfer of data in response to a debug event; if target is programmed to be a device interface simple variable tracing can be done. In depth performance analysis and profiling support given by the Emulation Device through MCDS Event Counters driven by a variety of trigger signals (e.g. cache hit, wait state, interrupt accepted).
• •
• • •
2.6.2
Real Time Trace
For detailed tracing of the system’s behavior a pin-compatible Emulation Device will be available.1)
2.6.3
Calibration Support
Two main use cases are catered for by resources in addition the OCDS Level 1 infrastructure: Overlay of non-volatile on-chip memory and non-intrusive signaling: • • 8 KB SRAM for Overlay. Can be split into up to 16 blocks which can overlay independent regions of on-chip Data Flash.
1) The OCDS L2 interface of AudoNG is not available.
Data Sheet
57
V1.1, 2009-04
TC1797
Introduction • • • • • • • Changing the configuration is triggered by a single SFR access to maintain consistency. Overlay configuration switch does not require the TriCore to be stopped or suspended. Invalidation of the Data Cache (maintaining write-back data) can be done concurrently with the same SFR. 256 KB additional Overlay RAM on Emulation Device. The 256 KB Trace memory of the Emulation Device can optionally be used for Overlay also. A dedicated trigger SFR with 32 independent status bits is provided to centrally post requests from application code to the host computer. The host is notified automatically when the trigger SFR is updated by the TriCore or PCP. No polling via a system bus is required.
2.6.4
Tool Interfaces
Three options exist for the communication channel between Tools (e.g. Debugger, Calibration Tool) and TC1797: • • • • • • • • Two wire DAP (Device Access Port) protocol for long connections or noisy environments. Four (or five) wire JTAG (IEEE 1149.1) for standardized manufacturing tests. CAN (plus software linked into the application code) for low bandwidth deeply embedded purposes. DAP and JTAG are clocked by the tool. Bit clock up to 40 MHz for JTAG, up to 80 MHz for DAP. Hot attach (i.e. physical disconnect/reconnect of the host connection without reset of the TC1797) for all interfaces. Infineon standard DAS (Device Access Server) implementation for seamless, transparent tool access over any supported interface. Lock mechanism to prevent unauthorized tool access to critical application code.
2.6.5
Self-Test Support
Some manufacturing tests can be invoked by the application (e.g. after power-on) if needed: • • Hardware-accelerated checksum calculation (e.g. for Flash content). RAM tests optimized for the implemented architecture.
2.6.6
FAR Support
To efficiently locate and identify faults after integration of a TC1797 into a system special functions are available: • Boundary Scan (IEEE 1149.1) via JTAG and DAP.
58 V1.1, 2009-04
Data Sheet
TC1797
Introduction • SSCM (Single Scan Chain Mode1)) for structural scan testing of the chip itself.
1) This function requires access to some device pins (e.g. TESTMODE) in addition to those needed for OCDS.
Data Sheet
59
V1.1, 2009-04
TC1797
Pinning
3
Pinning
3.1
TC1797 Pin Definition and Functions: P/PG-BGA-416-10
Figure 16 is showing the TC1797 Logic Symbol for the package variant: P/PG-BGA-416-10.
PORST TESTMODE General Control ESR0 ESR1 TRST TCK / DAP0 OCDS / JTAG Control TDI / BRKIN/ BRKOUT TDO /BRKOUT/ DAP2 / BRKIN TMS / DAP1 XTAL1 XTAL2 16 16 12 8 8 15 6 TC1797 16 8 9 16 16 16 4 79 Alternate Functions: 16 16 16 16 Port 0 Port 1 Port 2 Port 3 GPTA Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 10 Port 11 Port 12 Port 13 Port 14 Port 15 Port 16 EBU EBU GPTA / EBU GPTA / EBU EBU EBU ASC0 / ASC1 / MSC0 / MSC1 / LVDS / MLI0 ASC0 / ASC1 / SSC1 / CAN / E-RAY ERU / ADC-Mux MLI1 / GPTA MSC0 / MSC1 / GPTA E-RAY / GPTA / HWCFG GPTA / MLI0 / ERU / SSC1 GPTA / SSC0 / SSC1
VDDOS C
Oscillator
V DDOS C3 V S SOS C / VSS VDDP F VDDP F3C3 VDDEB U 11 VDDP 13 VDD 3 V DDFL3 VDDS BRA M VS S VSS A F VS S MF V FA GND VFA RE F VDDMF VDDAF
N.C. 9
Digital Circuitry Power Supply
AN[43:0] 3 3
ADC Analog Inputs
FADC Analog Power Supply
VARE Fx VAGNDx VDDM VSS M
ADC0 /ADC1 Analog Power Supply
TC1797 _LogSym_416
Figure 16
TC1797 Logic Symbol for the package variant P/PG-BGA-416-10
Data Sheet
60
V1.1, 2009-04
TC1797
Pinning
3.1.1
TC1797 P/PG-BGA-416-10 Package Variant Pin Configuration
Figure 17 shows the TC1797 pin configuration for the P/PG-BGA-416-10 package variant.
1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF N.C. P2.6 P2.5 P2.4
2
3
4
5
6
7 P0.2 P0.4
8 P0.1
9
10
11
12 P3.1 P3.0 P3.4
13 P5.1 P5.0 P3.2
14 P5.2 P5.3 P5.5
15
16
17
18
19
20 P9.3
21
22
23
24
25
26
P2.9 P2.13 P2.15 P0.14 P0.5 P2.7 P2.10 P2.14 P0.9 P0.6
P0.0 P3.14 P3.5 P3.3
P5.7 P5.12 P5.15 VDDFL3 P9.0 P5.6 P5.13 P5.14 VDDFL3 P9.1 P5.4 P5.9 P5.10 P5.11 P9.6
P9.9 ESR1 ESR0 N.C. PO TEST V DDP RST MODE
VDDP VSS VDD
VSS VDD
P9.13
A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF
P0.3 P3.15 P3.6 P0.7
P9.2 P9.10
P2.8 P2.11 P2.12 P0.12 P0.10 P0.8 P2.3 P2.2 P0.15 P0.13 P0.11 VDDP P6.9 P6.8 P6.5
P3.7 P3.10 P3.9
P9.8 P9.11 N.C. P9.7 P9.12 VDDP
VDDP VSS VDD
VSS VDD
TCK
VSS
VDD
P3.8 P3.12 P3.13 P3.11 VDDP
VSS
VDD
P5.8
P9.4
P9.5
TDO P9.14 TDI
P6.12 P6.11 P6.6 P6.14 P6.10 P6.4 P6.15 P6.13 P6.7 P8.1 P8.4 P8.7 P8.0 VDDFL3 P8.3 P8.5 P8.2 P8.6
VDD
OSC3
TRST TMS
VSS
OSC
VDD
OSC
VDDPF VDDPF3 XTAL XTAL
2 1
VDD VSS VDDP VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS
VDDEBU VDDEBU VDDEBU VDDEBU
P11.3 P12.6 P12.7 P11.0 P11.7 P11.4 P11.1 P11.2
P1.15 P1.14 P1.13 P1.11 P1.10 P1.9 P1.3 P1.2 P1.7 P1.1 P7.1 P7.5 P1.8 P1.6 P1.5 P1.4
VSS
P11. P11.5 P11.6 11 10
VDDEBU P11. P11.9 P11.8
P11. 13 P11. 14 P11. 15 P11. 12
P1.0 P1.12 P7.0 P7.4 P7.3
VDD VSS
P12.1 P12.2 P12.0 P12.3 P12.5 P12.4
VDD
SBRAM
VDD VSS
P7.2
P7.6
VDDEBU P13.1 P13.3 P13.0
P13.6 P13.9 P13.5 P13.2
AN23 P7.7
AN22 AN21 AN19 AN16 AN20 AN17 AN13 VDDM AN18 AN14 AN10 VSSM AN15 AN11 AN12 AN8 AN6 AN0 N.C. 1 AN9 AN4 AN1 AN5 AN3 AN2 AN7
VDD VSS
P13. P13.8 P13.4 13 P14.0 P13. P13.7 12 14 P13. 10 P13. 11 P13. 15
VDDEBU P14.2 P13.
P14.3 P14.6 P14.1
VDD VSS VDD
P4.2 P4.3 P4.4 P4.8 P4.12 P10.5 VDDP
P14.5 P14.4
AN32 AN38 AN42 VAGND1 AN26 AN24 VDDAF
VSS VDDEBU VSS
VDD
N.C. VDDEBU
VSS
P14. P14.9 P14.7 12 P14. 15 P14. 14 P15. 14 24 P14. P14.8 11 P14. 13 P15. 15 25 P14. 10 N.C. 26
AN34 AN40 AN35 VAREF1 AN27 AN25 VAREF2 P4.0
P4.5 P4.11 P4.15 P10.2 VDDP P15.5 P16.1 P15.3 P15.2 P15.1 P16.2 N.C. P4.7 P4.13 P10.4 P10.0 VDDP P15.4 P15.7 P16.3 P15. P15.0 N.C. 11 N.C. P15. 13 23
AN33 AN36 AN41 VAREF0 AN28 AN30 VFAGND VDDMF P4.1 AN37 AN39 AN43 VAGND0 AN29 AN31 VFAREF VSSMF P4.6 2 3 4 5 6 7 8 9 10
P4.9 P4.10 P4.14 P10.3 P10.1 VDDP P16.0 P15.6 11 12 13 14 15 16 17 18
P15. P15. P15.8 P15.9 12 10 19 20 21 22
mca05584_97.vsd
Figure 17
TC1797 Pinning for P/PG-BGA-416-10 Package
Data Sheet
61
V1.1, 2009-04
TC1797
Pinning Table 4 Pin Port 0 A9 P0.0 HWCFG0 OUT56 OUT56 OUT80 A8 P0.1 HWCFG1 OUT57 OUT57 OUT81 A7 P0.2 HWCFG2 OUT58 OUT58 OUT82 B8 P0.3 HWCFG3 OUT59 OUT59 OUT83 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 A1/ PU A1/ PU A1/ PU A1/ PU Port 0 General Purpose I/O Line 0 Hardware Configuration Input 0 OUT56 Line of GPTA0 OUT56 Line of GPTA1 OUT80 Line of LTCA2 Port 0 General Purpose I/O Line 1 Hardware Configuration Input 1 OUT57 Line of GPTA0 OUT57 Line of GPTA1 OUT81 Line of LTCA2 Port 0 General Purpose I/O Line 2 Hardware Configuration Input 2 OUT58 Line of GPTA0 OUT58 Line of GPTA1 OUT82 Line of LTCA2 Port 0 General Purpose I/O Line 3 Hardware Configuration Input 3 OUT59 Line of GPTA0 OUT59 Line of GPTA1 OUT83 Line of LTCA2 Pin Definitions and Functions (BGA-416 Package) Symbol Ctrl. Type Function
Data Sheet
62
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B7 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P0.4 HWCFG4 OUT60 OUT60 OUT84 A6 P0.5 HWCFG5 OUT61 OUT61 OUT85 B6 P0.6 HWCFG6 OUT62 OUT62 OUT86 C8 P0.7 HWCFG7 OUT63 OUT63 OUT87 C7 P0.8 Reserved Reserved Reserved Ctrl. I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 O1 O2 O3 A1/ PU A1/ PU A1/ PU A1/ PU Type Function A1/ PU Port 0 General Purpose I/O Line 4 Hardware Configuration Input 4 OUT60 Line of GPTA0 OUT60 Line of GPTA1 OUT84 Line of LTCA2 Port 0 General Purpose I/O Line 5 Hardware Configuration Input 5 OUT61 Line of GPTA0 OUT61 Line of GPTA1 OUT85 Line of LTCA2 Port 0 General Purpose I/O Line 6 Hardware Configuration Input 6 OUT62 Line of GPTA0 OUT62 Line of GPTA1 OUT86 Line of LTCA2 Port 0 General Purpose I/O Line 7 Hardware Configuration Input 7 OUT63 Line of GPTA0 OUT63 Line of GPTA1 OUT87 Line of LTCA2 Port 0 General Purpose I/O Line 8 -
Data Sheet
63
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B5 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P0.9 RXDA0 Reserved Reserved Reserved C6 P0.10 TXENA Reserved Reserved D6 P0.11 TXENB Reserved Reserved C5 P0.12 TXDB Reserved Reserved D5 P0.13 RXDB0 Reserved Reserved Reserved Ctrl. I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 I/O0 I O1 O2 O3 A1/ PU A2/ PU A2/ PU A2/ PU Type Function A1/ PU Port 0 General Purpose I/O Line 9 E-Ray Channel A Receive Data Input 0 Port 0 General Purpose I/O Line 10 E-Ray Channel A Transmit Data Output enable Port 0 General Purpose I/O Line 11 E-Ray Channel B Transmit Data Output enable Port 0 General Purpose I/O Line 12 E-Ray Channel B Transmit Data Output Port 0 General Purpose I/O Line 13 E-Ray Channel B Receive Data Input 0 -
Data Sheet
64
V1.1, 2009-04
TC1797
Pinning Table 4 Pin A5 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P0.14 TXDA Reserved Reserved D4 P0.15 Reserved Reserved Reserved Port 1 P3 P1.0 REQ0 EXTCLK1 Reserved Reserved P2 P1.1 REQ1 Reserved Reserved Reserved P1 P1.2 REQ2 Reserved Reserved Reserved I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 A1/ PU A1/ PU A2/ PU Port 1 General Purpose I/O Line 0 External trigger Input 0 External Clock Output 1 Port 1 General Purpose I/O Line 1 External trigger Input 1 Port 1 General Purpose I/O Line 2 External trigger Input 2 Ctrl. I/O0 O1 O2 O3 I/O0 O1 O2 O3 A1/ PU Type Function A2/ PU Port 0 General Purpose I/O Line 14 E-Ray Channel A Transmit Data Output Port 0 General Purpose I/O Line 15 -
Data Sheet
65
V1.1, 2009-04
TC1797
Pinning Table 4 Pin N1 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P1.3 REQ3 TREADY0B Reserved Reserved Reserved N4 P1.4 TCLK0 Reserved Reserved M4 P1.5 TREADY0A Reserved Reserved Reserved N3 P1.6 TVALID0A SLSO10 Reserved N2 P1.7 TData0 Reserved Reserved Ctrl. I/O0 I I O1 O2 O3 I/O0 O1 O2 O3 I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 A2/ PU A2/ PU A1/ PU A2/ PU Type Function A1/ PU Port 1 General Purpose I/O Line 3 External trigger Input 3 MLI0 Transmit Channel ready Input B Port 1 General Purpose I/O Line 4 MLI0 Transmit Channel Clock Output Port 1 General Purpose I/O Line 35 MLI0 Transmit Channel ready Input A Port 1 General Purpose I/O Line 6 MLI0 Transmit Channel valid Output A Slave Select Output Line 10 Port 1 General Purpose I/O Line 7 MLI0 Transmit Channel Data Output -
Data Sheet
66
V1.1, 2009-04
TC1797
Pinning Table 4 Pin M3 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P1.8 RCLK0A OUT64 OUT64 OUT88 M2 P1.9 RREADY0A SLSO11 OUT65 M1 P1.10 RVALID0A OUT66 OUT66 OUT90 L4 P1.11 RData0A OUT67 OUT67 OUT91 P4 P1.12 EXTCLK0 OUT68 OUT68 Ctrl. I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 O1 O2 O3 A2/ PU A1/ PU A1/ PU A2/ PU Type Function A1/ PU Port 1 General Purpose I/O Line 8 MLI0 Receive Channel Clock Input A OUT64 Line of GPTA0 OUT64 Line of GPTA1 OUT88 Line of LTCA2 Port 1 General Purpose I/O Line 9 MLI0 Receive Channel ready Output A Slave Select Output Line 11 OUT65 Line of GPTA0 Port 1 General Purpose I/O Line 10 MLI0 Receive Channel valid Input A OUT66 Line of GPTA0 OUT66 Line of GPTA1 OUT90 Line of LTCA2 Port 1 General Purpose I/O Line 11 MLI0 Receive Channel Data Input A OUT67 Line of GPTA0 OUT67 Line of GPTA1 OUT91 Line of LTCA2 Port 1 General Purpose I/O Line 12 External Clock Output 0 OUT68 Line of GPTA0 OUT68 Line of GPTA1
Data Sheet
67
V1.1, 2009-04
TC1797
Pinning Table 4 Pin L3 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P1.13 RCLK0B OUT69 OUT69 OUT93 L2 P1.14 RVALID0B OUT70 OUT70 OUT94 L1 P1.15 RData0B OUT70 OUT70 OUT95 Port 2 D3 P2.2 SLSO02 SLSO12 SLSO02 AND SLSO12 I/O0 O1 O2 O3 A2/ PU Port 2 General Purpose I/O Line 2 Slave Select Output Line 2 Slave Select Output Line 12 Slave Select Output Line 2 AND Slave Select Output Line 12 Ctrl. I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 1 General Purpose I/O Line 13 MLI0 Receive Channel Clock Input B OUT69 Line of GPTA0 OUT69 Line of GPTA1 OUT93 Line of LTCA2 Port 1 General Purpose I/O Line 14 MLI0 Receive Channel valid Input B OUT70 Line of GPTA0 OUT70 Line of GPTA1 OUT94 Line of LTCA2 Port 1 General Purpose I/O Line 15 MLI0 Receive Channel Data Input B OUT71 Line of GPTA0 OUT71 Line of GPTA1 OUT95 Line of LTCA2
Data Sheet
68
V1.1, 2009-04
TC1797
Pinning Table 4 Pin D2 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P2.3 SLSO03 SLSO13 SLSO03 AND SLSO13 D1 P2.4 SLSO04 SLSO14 SLSO04 AND SLSO14 C1 P2.5 SLSO05 SLSO15 SLSO05 AND SLSO15 B1 P2.6 SLSO06 SLSO16 SLSO06 AND SLSO16 Ctrl. I/O0 O1 O2 O3 Type Function A2/ PU Port 2 General Purpose I/O Line 3 Slave Select Output Line 3 Slave Select Output Line 13 Slave Select Output Line 3 AND Slave Select Output Line 13 A2/ PU Port 2 General Purpose I/O Line 4 Slave Select Output Line 4 Slave Select Output Line 14 Slave Select Output Line 4 AND Slave Select Output Line 14 A2/ PU Port 2 General Purpose I/O Line 5 Slave Select Output Line 5 Slave Select Output Line 15 Slave Select Output Line 5 AND Slave Select Output Line 15 A2/ PU Port 2 General Purpose I/O Line 6 Slave Select Output Line 6 Slave Select Output Line 16 Slave Select Output Line 6 AND Slave Select Output Line 16
I/O0 O1 O2 O3
I/O0 O1 O2 O3
I/O0 O1 O2 O3
Data Sheet
69
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B2 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P2.7 SLSO07 SLSO17 SLSO07 AND SLSO17 C2 P2.8 IN0 IN0 IN0 OUT0 OUT0 OUT0 A2 P2.9 IN1 IN1 IN1 OUT1 OUT1 OUT1 Ctrl. I/O0 O1 O2 O3 Type Function A2/ PU Port 2 General Purpose I/O Line 7 Slave Select Output Line 7 Slave Select Output Line 17 Slave Select Output Line 7AND Slave Select Output Line 17 A1/ PU Port 2 General Purpose I/O Line 8 IN0 Line of GPTA0 IN0 Line of GPTA1 IN0 Line of LTCA2 OUT0 Line of GPTA0 OUT0 Line of GPTA1 OUT0 Line of LTCA2 A1/ PU Port 2 General Purpose I/O Line 9 IN1 Line of GPTA0 IN1 Line of GPTA1 IN1 Line of LTCA2 OUT1 Line of GPTA0 OUT1 Line of GPTA1 OUT1 Line of LTCA2
I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3
Data Sheet
70
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B3 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P2.10 IN2 IN2 IN2 OUT2 OUT2 OUT2 C3 P2.11 IN3 IN3 IN3 OUT3 OUT3 OUT3 C4 P2.12 IN4 IN4 IN4 OUT4 OUT4 OUT4 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 2 General Purpose I/O Line 10 IN2 Line of GPTA0 IN2 Line of GPTA1 IN2 Line of LTCA2 OUT2 Line of GPTA0 OUT2 Line of GPTA1 OUT2 Line of LTCA2 Port 2 General Purpose I/O Line 11 IN3 Line of GPTA0 IN3 Line of GPTA1 IN3 Line of LTCA2 OUT3 Line of GPTA0 OUT3 Line of GPTA1 OUT3 Line of LTCA2 Port 2 General Purpose I/O Line 12 IN4 Line of GPTA0 IN4 Line of GPTA1 IN4 Line of LTCA2 OUT4 Line of GPTA0 OUT4 Line of GPTA1 OUT4 Line of LTCA2
Data Sheet
71
V1.1, 2009-04
TC1797
Pinning Table 4 Pin A3 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P2.13 IN5 IN5 IN5 OUT5 OUT5 OUT5 B4 P2.14 IN6 IN6 IN6 OUT6 OUT6 OUT6 A4 P2.15 IN7 IN7 IN7 OUT7 OUT7 OUT7 Port 3 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 2 General Purpose I/O Line 13 IN5 Line of GPTA0 IN5 Line of GPTA1 IN5 Line of LTCA2 OUT5 Line of GPTA0 OUT5 Line of GPTA1 OUT5 Line of LTCA2 Port 2 General Purpose I/O Line 14 IN6 Line of GPTA0 IN6 Line of GPTA1 IN6 Line of LTCA2 OUT6 Line of GPTA0 OUT6 Line of GPTA1 OUT6 Line of LTCA2 Port 2 General Purpose I/O Line 15 IN7 Line of GPTA0 IN7 Line of GPTA1 IN7 Line of LTCA2 OUT7 Line of GPTA0 OUT7 Line of GPTA1 OUT7 Line of LTCA2
Data Sheet
72
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B12 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P3.0 IN8 IN8 IN8 OUT8 OUT8 OUT8 A12 P3.1 IN9 IN9 IN9 OUT9 OUT9 OUT9 C13 P3.2 IN10 IN10 IN10 OUT10 OUT10 OUT10 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 3 General Purpose I/O Line 0 IN8 Line of GPTA0 IN8 Line of GPTA1 IN8 Line of LTCA2 OUT8 Line of GPTA0 OUT8 Line of GPTA1 OUT8 Line of LTCA2 Port 3 General Purpose I/O Line 1 IN9 Line of GPTA0 IN9 Line of GPTA1 IN9 Line of LTCA2 OUT9 Line of GPTA0 OUT9 Line of GPTA1 OUT9 Line of LTCA2 Port 3 General Purpose I/O Line 2 IN10 Line of GPTA0 IN10 Line of GPTA1 IN10 Line of LTCA2 OUT10 Line of GPTA0 OUT10 Line of GPTA1 OUT10 Line of LTCA2
Data Sheet
73
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B11 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P3.3 IN11 IN11 IN11 OUT11 OUT11 OUT11 C12 P3.4 IN12 IN12 IN12 OUT12 OUT12 OUT12 A11 P3.5 IN13 IN13 IN13 OUT13 OUT13 OUT13 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 3 General Purpose I/O Line 3 IN11 Line of GPTA0 IN11 Line of GPTA1 IN11 Line of LTCA2 OUT11 Line of GPTA0 OUT11 Line of GPTA1 OUT11 Line of LTCA2 Port 3 General Purpose I/O Line 4 IN12 Line of GPTA0 IN12 Line of GPTA1 IN12 Line of LTCA2 OUT12 Line of GPTA0 OUT12 Line of GPTA1 OUT12 Line of LTCA2 Port 3 General Purpose I/O Line 5 IN13 Line of GPTA0 IN13 Line of GPTA1 IN13 Line of LTCA2 OUT13 Line of GPTA0 OUT13 Line of GPTA1 OUT13 Line of LTCA2
Data Sheet
74
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B10 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P3.6 IN14 IN14 IN14 OUT14 OUT14 OUT14 C9 P3.7 IN15 IN15 IN15 OUT15 OUT15 OUT15 D10 P3.8 IN16 IN16 IN16 OUT16 OUT16 OUT16 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 3 General Purpose I/O Line 6 IN14 Line of GPTA0 IN14 Line of GPTA1 IN14 Line of LTCA2 OUT14 Line of GPTA0 OUT14 Line of GPTA1 OUT14 Line of LTCA2 Port 3 General Purpose I/O Line 7 IN15 Line of GPTA0 IN15 Line of GPTA1 IN15 Line of LTCA2 OUT15 Line of GPTA0 OUT15 Line of GPTA1 OUT15 Line of LTCA2 Port 3 General Purpose I/O Line 8 IN16 Line of GPTA0 IN16 Line of GPTA1 IN16 Line of LTCA2 OUT16 Line of GPTA0 OUT16 Line of GPTA1 OUT16 Line of LTCA2
Data Sheet
75
V1.1, 2009-04
TC1797
Pinning Table 4 Pin C11 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P3.9 IN17 IN17 IN17 OUT17 OUT17 OUT17 C10 P3.10 IN18 IN18 IN18 OUT18 OUT18 OUT18 D13 P3.11 IN19 IN19 IN19 OUT19 OUT19 OUT19 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 3 General Purpose I/O Line 9 IN17 Line of GPTA0 IN17 Line of GPTA1 IN17 Line of LTCA2 OUT17 Line of GPTA0 OUT17 Line of GPTA1 OUT17 Line of LTCA2 Port 3 General Purpose I/O Line 10 IN18 Line of GPTA0 IN18 Line of GPTA1 IN18 Line of LTCA2 OUT18 Line of GPTA0 OUT18 Line of GPTA1 OUT18 Line of LTCA2 Port 3 General Purpose I/O Line 11 IN19 Line of GPTA0 IN19 Line of GPTA1 IN19 Line of LTCA2 OUT19 Line of GPTA0 OUT19 Line of GPTA1 OUT19 Line of LTCA2
Data Sheet
76
V1.1, 2009-04
TC1797
Pinning Table 4 Pin D11 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P3.12 IN20 IN20 IN20 OUT20 OUT20 OUT20 D12 P3.13 IN21 IN21 IN21 OUT21 OUT21 OUT21 A10 P3.14 IN22 IN22 IN22 OUT22 OUT22 OUT22 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 3 General Purpose I/O Line 12 IN20 Line of GPTA0 IN20 Line of GPTA1 IN20 Line of LTCA2 OUT20 Line of GPTA0 OUT20 Line of GPTA1 OUT20 Line of LTCA2 Port 3 General Purpose I/O Line 13 IN21 Line of GPTA0 IN21 Line of GPTA1 IN21 Line of LTCA2 OUT21 Line of GPTA0 OUT21 Line of GPTA1 OUT21 Line of LTCA2 Port 3 General Purpose I/O Line 14 IN22 Line of GPTA0 IN22 Line of GPTA1 IN22 Line of LTCA2 OUT22 Line of GPTA0 OUT22 Line of GPTA1 OUT22 Line of LTCA2
Data Sheet
77
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B9 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P3.15 IN23 IN23 IN23 OUT23 OUT23 OUT23 Port 4 AD10 P4.0 IN24 IN24 IN24 OUT24 OUT24 OUT24 AE10 P4.1 IN25 IN25 IN25 OUT25 OUT25 OUT25 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A2/ PU A2/ PU Port 4 General Purpose I/O Line 0 IN24 Line of GPTA0 IN24 Line of GPTA1 IN24 Line of LTCA2 OUT24 Line of GPTA0 OUT24 Line of GPTA1 OUT24 Line of LTCA2 Port 4 General Purpose I/O Line 1 IN25 Line of GPTA0 IN25 Line of GPTA1 IN25 Line of LTCA2 OUT25 Line of GPTA0 OUT25 Line of GPTA1 OUT25 Line of LTCA2 Ctrl. I/O0 I I I O1 O2 O3 Type Function A1/ PU Port 3 General Purpose I/O Line 15 IN23 Line of GPTA0 IN23 Line of GPTA1 IN23 Line of LTCA2 OUT23 Line of GPTA0 OUT23 Line of GPTA1 OUT23 Line of LTCA2
Data Sheet
78
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AD11 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P4.2 IN26 IN26 IN26 OUT26 OUT26 OUT26 AE11 P4.3 IN27 IN27 IN27 OUT27 OUT27 OUT27 AC12 P4.4 IN28 IN28 IN28 OUT28 OUT28 OUT28 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A2/ PU A2/ PU Type Function A2/ PU Port 4 General Purpose I/O Line 2 IN26 Line of GPTA0 IN26 Line of GPTA1 IN26 Line of LTCA2 OUT26 Line of GPTA0 OUT26 Line of GPTA1 OUT26 Line of LTCA2 Port 4 General Purpose I/O Line 3 IN27 Line of GPTA0 IN27 Line of GPTA1 IN27 Line of LTCA2 OUT27 Line of GPTA0 OUT27 Line of GPTA1 OUT27 Line of LTCA2 Port 4 General Purpose I/O Line 4 IN28 Line of GPTA0 IN28 Line of GPTA1 IN28 Line of LTCA2 OUT28 Line of GPTA0 OUT28 Line of GPTA1 OUT28 Line of LTCA2
Data Sheet
79
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AD12 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P4.5 IN29 IN29 IN29 OUT29 OUT29 OUT29 AF10 P4.6 IN30 IN30 IN30 OUT30 OUT30 OUT30 AE12 P4.7 IN31 IN31 IN31 OUT31 OUT31 OUT31 Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A2/ PU A2/ PU Type Function A2/ PU Port 4 General Purpose I/O Line 5 IN29 Line of GPTA0 IN29 Line of GPTA1 IN29 Line of LTCA2 OUT29 Line of GPTA0 OUT29 Line of GPTA1 OUT29 Line of LTCA2 Port 4 General Purpose I/O Line 6 IN30 Line of GPTA0 IN30 Line of GPTA1 IN30 Line of LTCA2 OUT30 Line of GPTA0 OUT30 Line of GPTA1 OUT30 Line of LTCA2 Port 4 General Purpose I/O Line 7 IN31 Line of GPTA0 IN31 Line of GPTA1 IN31Line of LTCA2 OUT31 Line of GPTA0 OUT31 Line of GPTA1 OUT31 Line of LTCA2
Data Sheet
80
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AC13 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P4.8 IN32 IN32 OUT32 OUT32 OUT0 AF11 P4.9 IN33 IN33 OUT33 OUT33 OUT1 AF12 P4.10 IN34 IN34 OUT34 OUT34 OUT2 AD13 P4.11 IN35 IN35 OUT35 OUT35 OUT3 Ctrl. I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 A1/ PU A1/ PU A1/ PU Type Function A1/ PU Port 4 General Purpose I/O Line 8 IN32 Line of GPTA0 IN32 Line of GPTA1 OUT32 Line of GPTA0 OUT32 Line of GPTA1 OUT0 Line of LTCA2 Port 4 General Purpose I/O Line 9 IN33 Line of GPTA0 IN33 Line of GPTA1 OUT33 Line of GPTA0 OUT33 Line of GPTA1 OUT1 Line of LTCA2 Port 4 General Purpose I/O Line 10 IN34 Line of GPTA0 IN34 Line of GPTA1 OUT34 Line of GPTA0 OUT34 Line of GPTA1 OUT2 Line of LTCA2 Port 4 General Purpose I/O Line 11 IN35 Line of GPTA0 IN35 Line of GPTA1 OUT35 Line of GPTA0 OUT35 Line of GPTA1 OUT3 Line of LTCA2
Data Sheet
81
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AC14 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P4.12 IN36 IN36 OUT36 OUT36 OUT4 AE13 P4.13 IN37 IN37 OUT37 OUT37 OUT5 AF13 P4.14 IN38 IN38 OUT38 OUT38 OUT6 AD14 P4.15 IN39 IN39 OUT39 OUT39 OUT7 Port 5 Ctrl. I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 A1/ PU A1/ PU A1/ PU Type Function A1/ PU Port 4 General Purpose I/O Line 12 IN36 Line of GPTA0 IN36 Line of GPTA1 OUT36 Line of GPTA0 OUT36 Line of GPTA1 OUT4 Line of LTCA2 Port 4 General Purpose I/O Line 13 IN37 Line of GPTA0 IN37 Line of GPTA1 OUT37 Line of GPTA0 OUT37 Line of GPTA1 OUT5 Line of LTCA2 Port 4 General Purpose I/O Line 14 IN38 Line of GPTA0 IN38 Line of GPTA1 OUT38 Line of GPTA0 OUT38 Line of GPTA1 OUT6 Line of LTCA2 Port 4 General Purpose I/O Line 15 IN39 Line of GPTA0 IN39 Line of GPTA1 OUT39 Line of GPTA0 OUT39 Line of GPTA1 OUT7 Line of LTCA2
Data Sheet
82
V1.1, 2009-04
TC1797
Pinning Table 4 Pin B13 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P5.0 RXD0A RXD0A OUT72 OUT72 A13 P5.1 TXD0 OUT73 OUT73 A14 P5.2 RXD1A RXD1A OUT74 OUT74 B14 P5.3 TXD1 OUT75 OUT75 C15 P5.4 EN00 RREADY0B OUT76 Ctrl. I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 A2/ PU A2/ PU A2/ PU A2/ PU Type Function A2/ PU Port 5 General Purpose I/O Line 0 ASC0 Receiver Input/Output A ASC0 Receiver Input/Output A OUT72 Line of GPTA0 OUT72 Line of GPTA1 Port 5 General Purpose I/O Line 1 ASC0 Transmitter Output A OUT73 Line of GPTA0 OUT73 Line of GPTA1 Port 5 General Purpose I/O Line 2 ASC1 Receiver Input/Output A ASC1 Receiver Input/Output A OUT74 Line of GPTA0 OUT74 Line of GPTA1 Port 5 General Purpose I/O Line 3 ASC1 Transmitter Output A OUT75 Line of GPTA0 OUT75 Line of GPTA1 Port 5 General Purpose I/O Line 4 MSC0 Device Select Output 0 MLI0 Receive Channel ready Output B OUT76 Line of GPTA0
Data Sheet
83
V1.1, 2009-04
TC1797
Pinning Table 4 Pin C14 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P5.5 SDI0 OUT77 OUT77 OUT101 B15 P5.6 EN10 TVALID0B OUT78 A15 P5.7 SDI1 OUT79 OUT79 OUT103 D17 P5.8 SON0 OUT80 OUT80 C16 P5.9 SOP0A OUT81 OUT81 Ctrl. I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 F/ PU F/ PU A2/ PU A2/ PU Type Function A2/ PU Port 5 General Purpose I/O Line 5 MSC0 serial Data Input OUT77 Line of GPTA0 OUT77 Line of GPTA1 OUT101 Line of LTCA2 Port 5 General Purpose I/O Line 6 MSC1 Device Select Output 0 MLI0 Transmit Channel valid Output B OUT78 Line of GPTA0 Port 5 General Purpose I/O Line 7 MSC1 serial Data Input OUT79 Line of GPTA0 OUT79 Line of GPTA1 OUT103 Line of LTCA2 Port 5 General Purpose I/O Line 8 MSC0 Differential Driver serial Data Output Negative OUT80 Line of GPTA0 OUT 80 Line of GPTA1 Port 5 General Purpose I/O Line 9 MSC0 Differential Driver serial Data Output Positive A OUT81 Line of GPTA0 OUT81 Line of GPTA1
Data Sheet
84
V1.1, 2009-04
TC1797
Pinning Table 4 Pin C17 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P5.10 FCLN0 OUT82 OUT82 C18 P5.11 FCLP0A OUT83 OUT83 A16 P5.12 SON1 OUT84 OUT84 B16 P5.13 SOP1A OUT85 OUT85 B17 P5.14 FCLN1 OUT86 OUT86 Ctrl. I/O0 O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 F/ PU F/ PU F/ PU F/ PU Type Function F/ PU Port 5 General Purpose I/O Line 10 MSC0 Differential Driver Clock Output Negative OUT82 Line of GPTA0 OUT82 Line of GPTA1 Port 5 General Purpose I/O Line 11 MSC0 Differential Driver Clock Output Positive A OUT83 Line of GPTA0 OUT83 Line of GPTA1 Port 5 General Purpose I/O Line 12 MSC1 Differential Driver serial Data OutputNegative OUT84 Line of GPTA0 OUT84 Line of GPTA1 Port 5 General Purpose I/O Line 13 MSC1 Differential Driver serial Data Output Positive A OUT85 Line of GPTA0 OUT85 Line of GPTA1 Port 5 General Purpose I/O Line 14 MSC1 Differential Driver Clock Output Negative OUT86 Line of GPTA0 OUT86 Line of GPTA1
Data Sheet
85
V1.1, 2009-04
TC1797
Pinning Table 4 Pin A17 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P5.15 FCLNP1A OUT87 OUT87 Port 6 F3 P6.4 MTSR1 MTSR1 Reserved Reserved G4 P6.5 MRST1 MRST1 Reserved Reserved E3 P6.6 SCLK1 SCLK1 Reserved Reserved I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 A2/ PU A2/ PU A2/ PU Port 6 General Purpose I/O Line 4 SSC1 Slave Receive Input (Slave Mode) SSC1 Master Transmit Output (Master Mode) Port 6 General Purpose I/O Line 5 SSC1 Master Receive Input (Master Mode) SSC1 Slave Transmit Output (Slave Mode) Port 6 General Purpose I/O Line 6 SSC1 Clock Input/Output SSC1 Clock Input/Output Ctrl. I/O0 O1 O2 O3 Type Function F/ PU Port 5 General Purpose I/O Line 15 MSC1 Differential Driver Clock Output Positive A OUT87 Line of GPTA0 OUT87 Line of GPTA1
Data Sheet
86
V1.1, 2009-04
TC1797
Pinning Table 4 Pin G3 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P6.7 SLSI11 Reserved Reserved Reserved F4 P6.8 RXDCAN0 RXD0B Reserved RXD0B Reserved E4 P6.9 TXDCAN0 TXD0 Reserved F2 P6.10 RXDCAN1 RXD1B Reserved RXD1B TXENA Ctrl. I/O0 I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 O1 O2 O3 I/O0 I I O1 O2 O3 A2/ PU A2/ PU A2/ PU Type Function A2/ PU Port 6 General Purpose I/O Line 7 SSC1 Slave Select Input Port 6 General Purpose I/O Line 8 CAN Node 0 Receiver Input 0 CAN Node 3 Receiver Input 1 ASC0 Receiver Input/Output B ASC0 Receiver Input/Output B Port 6 General Purpose I/O Line 9 CAN Node 0 Transmitter Output ASC0 Transmitter Output B Port 6 General Purpose I/O Line 10 CAN Node 1 Receiver Input 0 CAN Node 0 Receiver Input 1 ASC1 Receiver Input/Output B ASC1 Receiver Input/Output B E-Ray Channel A Transmit Data Output enable
Data Sheet
87
V1.1, 2009-04
TC1797
Pinning Table 4 Pin E2 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P6.11 TXDCAN1 TXD1 TXENB E1 P6.12 RXDCAN2 RXDA1 Reserved Reserved Reserved G2 P6.13 TXDCAN2 TXDA Reserved F1 P6.14 RXDCAN3 RXDB1 Reserved Reserved Reserved G1 P6.15 TXDCAN3 TXDB Reserved
Data Sheet
Ctrl. I/O0 O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 O1 O2 O3
Type Function A2/ PU Port 6 General Purpose I/O Line 11 CAN Node 1 Transmitter Output ASC1 Transmitter Output B E-Ray Channel B Transmit Data Output enable A1/ PU Port 6 General Purpose I/O Line 12 CAN Node 2 Receiver Input 0 CAN Node 1 Receiver Input 1 E-Ray Channel A Receive Data Input 1 A2/ PU Port 6 General Purpose I/O Line 13 CAN Node 2 Transmitter Output E-Ray Channel A Transmit Data Output A1/ PU Port 6 General Purpose I/O Line 14 CAN Node 3 Receiver Input 0 CAN Node 2 Receiver Input 1 E-Ray Channel B Receive Data Input 1 A2/ PU Port 6 General Purpose I/O Line 15 CAN Node 3 Transmitter Output E-Ray Channel B Transmit Data Output 88 V1.1, 2009-04
TC1797
Pinning Table 4 Pin Port 7 R3 P7.0 REQ4 AD2EMUX2 Reserved Reserved R2 P7.1 REQ5 AD0EMUX2 Reserved Reserved U4 P7.2 AD0EMUX0 Reserved Reserved U3 P7.3 AD0EMUX1 Reserved Reserved T3 P7.4 REQ6 AD2EMUX0 Reserved Reserved I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 I/O0 I O1 O2 O3 A1/ PU A1/ PU A1/ PU A1/ PU A1/ PU Port 7 General Purpose I/O Line 0 External trigger Input 4 ADC2 external multiplexer Control Output 2 Port 7 General Purpose I/O Line 1 External trigger Input 5 ADC0 external multiplexer Control Output 2 Port 7 General Purpose I/O Line 2 ADC0 external multiplexer Control Output 0 Port 7 General Purpose I/O Line 3 ADC0 external multiplexer Control Output 1 Port 7 General Purpose I/O Line 4 External trigger Input 6 ADC2 external multiplexer Control Output 0 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol Ctrl. Type Function
Data Sheet
89
V1.1, 2009-04
TC1797
Pinning Table 4 Pin T2 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P7.5 REQ7 AD2EMUX1 Reserved Reserved T1 P7.6 AD1EMUX0 Reserved Reserved U2 P7.7 AD1EMUX1 Reserved Reserved Port 8 H2 P8.0 IN40 IN40 OUT40 OUT40 TCLK1 I/O0 I I O1 O2 O3 A2/ PU Port 8 General Purpose I/O Line 0 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MLI1 Transmit Channel Clock Output Ctrl. I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 A1/ PU A1/ PU Type Function A1/ PU Port 7 General Purpose I/O Line 5 External trigger Input 7 ADC2 external multiplexer Control Output 1 Port 7 General Purpose I/O Line 6 ADC1 external multiplexer Control Output 0 Port 7 General Purpose I/O Line 7 ADC1 external multiplexer Control Output 1 -
Data Sheet
90
V1.1, 2009-04
TC1797
Pinning Table 4 Pin H1 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P8.1 IN41 IN41 TREADY1A OUT41 OUT41 Reserved J3 P8.2 IN42 IN42 OUT42 OUT42 TVALID1A J2 P8.3 IN43 IN43 OUT43 OUT43 TData1 J1 P8.4 IN44 IN44 RCLK1A OUT44 OUT44 Reserved
Data Sheet
Ctrl. I/O0 I I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I I O1 O2 O3
Type Function A1/ PU Port 8 General Purpose I/O Line 1 I/O Line of GPTA0 I/O Line of GPTA1 MLI1 Transmit Channel ready Input A I/O Line of GPTA0 I/O Line of GPTA1 A2/ PU Port 8 General Purpose I/O Line 2 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MLI1 Transmit Channel valid Output A A2/ PU Port 8 General Purpose I/O Line 3 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MLI1 Transmit Channel Data Output A A1/ PU Port 8 General Purpose I/O Line 4 I/O Line of GPTA0 I/O Line of GPTA1 MLI1 Receive Channel Clock Input A I/O Line of GPTA0 I/O Line of GPTA1 91 V1.1, 2009-04
TC1797
Pinning Table 4 Pin K2 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P8.5 IN45 IN45 OUT45 OUT45 RREADY1A K3 P8.6 IN46 IN46 RVALID1A OUT46 OUT46 Reserved K1 P8.7 IN47 IN47 RData1A OUT47 OUT47 Reserved Port 9 Ctrl. I/O0 I I O1 O2 O3 I/O0 I I I O1 O2 O3 I/O0 I I I O1 O2 O3 A1/ PU A1/ PU Type Function A2/ PU Port 8 General Purpose I/O Line 5 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MLI1 Receive Channel ready Output A Port 8 General Purpose I/O Line 6 I/O Line of GPTA0 I/O Line of GPTA1 MLI1 Receive Channel valid Input A I/O Line of GPTA0 I/O Line of GPTA1 Port 8 General Purpose I/O Line 7 I/O Line of GPTA0 I/O Line of GPTA1 MLI1 Receive Channel Data Input A I/O Line of GPTA0 I/O Line of GPTA1 -
Data Sheet
92
V1.1, 2009-04
TC1797
Pinning Table 4 Pin A19 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P9.0 IN48 IN48 OUT48 OUT48 EN12 B19 P9.1 IN49 IN49 OUT49 OUT49 EN11 B20 P9.2 IN50 IN50 OUT50 OUT50 SOP1B A20 P9.3 IN51 IN51 OUT51 OUT51 FCLP1B Ctrl. I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 A2/ PU A2/ PU A2/ PU Type Function A2/ PU Port 9 General Purpose I/O Line 0 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MSC1 Device Select Output 2 Port 9 General Purpose I/O Line 1 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MSC1 Device Select Output 1 Port 9 General Purpose I/O Line 2 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MSC1 serial Data Output Port 9 General Purpose I/O Line 3 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MSC1 Clock Output
Data Sheet
93
V1.1, 2009-04
TC1797
Pinning Table 4 Pin D18 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P9.4 IN52 IN52 OUT52 OUT52 EN03 ’D19 P9.5 IN53 IN53 OUT53 OUT53 EN02 C19 P9.6 IN54 IN54 OUT54 OUT54 EN01 D20 P9.7 IN55 IN55 OUT55 OUT55 SOP0B Ctrl. I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 I/O0 I I O1 O2 O3 A2/ PU A2/ PU A2/ PU Type Function A2/ PU Port 9 General Purpose I/O Line 4 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MSC0 Device Select Output 3 Port 9 General Purpose I/O Line 5 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MSC0 Device Select Output 2 Port 9 General Purpose I/O Line 6 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MSC0 Device Select Output 1 Port 9 General Purpose I/O Line 7 I/O Line of GPTA0 I/O Line of GPTA1 I/O Line of GPTA0 I/O Line of GPTA1 MSC0 serial Data Output
Data Sheet
94
V1.1, 2009-04
TC1797
Pinning Table 4 Pin C20 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P9.8 FCLP0B FCLP0B FCLP0B A21 P9.9 Reserved Reserved Reserved B21 P9.10 EMGSTOP Reserved Reserved Reserved C21 P9.11 Reserved Reserved Reserved D21 P9.12 Reserved Reserved Reserved Ctrl. I/O0 O1 O2 O3 I/O0 O1 O2 O3 I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 A1/ PU A1/ PU A1/ PU A1/ PU Type Function A2/ PU Port 9 General Purpose I/O Line 8 MSC0 Clock Output MSC0 Clock Output MSC0 Clock Output Port 9 General Purpose I/O Line 9 Port 9 General Purpose I/O Line 10 Emergency Stop Port 9 General Purpose I/O Line 11 Port 9 General Purpose I/O Line 12 -
Data Sheet
95
V1.1, 2009-04
TC1797
Pinning Table 4 Pin C26 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P9.13 BRKIN Reserved Reserved Reserved BRKOUT D26 P9.14 BRKIN Reserved Reserved Reserved BRKOUT Port 10 AE15 P10.0 MRST0 MRST0 Reserved Reserved AF15 P10.1 MTSR0 MTSR0 Reserved Reserved I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 A2/ PU A2/ PU Port 10 General Purpose I/O Line 0 SSC0 Master Receive Input (Master Mode) SSC0 Slave Transmit Output (Slave Mode) Port 10 General Purpose I/O Line 1 SSC0 Slave Receive Input (Slave Mode) SSC0 Master Transmit Output (Master Mode) Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O A2/ PU Type Function A2/ PU Port 9 General Purpose I/O Line 13 OCDS Break Input OCDS Break Output Port 9 General Purpose I/O Line 14 OCDS Break Input OCDS Break Output
Data Sheet
96
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AD15 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P10.2 SLSI01 Reserved Reserved Reserved AF14 P10.3 SCLK0 SCLK0 Reserved Reserved AE14 P10.4 SLSO00 Reserved Reserved AC15 P10.5 SLSO01 Reserved Reserved Port 11 J26 P11.0 Reserved Reserved Reserved A0 I/O0 O1 O2 O3 O B1/ PU Port 11 General Purpose I/O Line 0 EBU Address Bus Line 0 Ctrl. I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 I/O0 O1 O2 O3 I/O0 O1 O2 O3 A2/ PU A2/ PU A2/ PU Type Function A1/ PU Port 10 General Purpose I/O Line 2 SSC0 Slave Select Input Port 10 General Purpose I/O Line 3 SSC0 Clock Input/Output SSC0 Clock Input/Output Port 10 General Purpose I/O Line 4 SSC0 Slave Select Output Line 0 Port 10 General Purpose I/O Line 5 SSC0 Slave Select Output Line 1 -
Data Sheet
97
V1.1, 2009-04
TC1797
Pinning Table 4 Pin K25 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P11.1 Reserved Reserved Reserved A1 K26 P11.2 Reserved Reserved Reserved A2 J23 P11.3 Reserved Reserved Reserved A3 K24 P11.4 Reserved Reserved Reserved A4 L25 P11.5 Reserved Reserved Reserved A5 Ctrl. I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O B1/ PU B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 11 General Purpose I/O Line 1 EBU Address Bus Line 1 Port 11 General Purpose I/O Line 2 EBU Address Bus Line 2 Port 11 General Purpose I/O Line 3 EBU Address Bus Line 3 Port 11 General Purpose I/O Line 4 EBU Address Bus Line 4 Port 11 General Purpose I/O Line 5 EBU Address Bus Line 5
Data Sheet
98
V1.1, 2009-04
TC1797
Pinning Table 4 Pin L26 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P11.6 Reserved Reserved Reserved A6 K23 P11.7 Reserved Reserved Reserved A7 M26 P11.8 Reserved Reserved Reserved A8 M25 P11.9 Reserved Reserved Reserved A9 M24 P11.10 Reserved Reserved Reserved A10 Ctrl. I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O B1/ PU B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 11 General Purpose I/O Line 6 EBU Address Bus Line 6 Port 11 General Purpose I/O Line 7 EBU Address Bus Line 7 Port 11 General Purpose I/O Line 8 EBU Address Bus Line 8 Port 11 General Purpose I/O Line 9 EBU Address Bus Line 9 Port 11 General Purpose I/O Line 10 EBU Address Bus Line 10
Data Sheet
99
V1.1, 2009-04
TC1797
Pinning Table 4 Pin L24 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P11.11 Reserved Reserved Reserved A11 N26 P11.12 Reserved Reserved Reserved A12 N23 P11.13 Reserved Reserved Reserved A13 N24 P11.14 Reserved Reserved Reserved A14 N25 P11.15 Reserved Reserved Reserved A15 Port 12
Data Sheet 100 V1.1, 2009-04
Ctrl. I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O
Type Function B1/ PU Port 11 General Purpose I/O Line 11 EBU Address Bus Line 11 B1/ PU Port 11 General Purpose I/O Line 12 EBU Address Bus Line 12 B1/ PU Port 11 General Purpose I/O Line 13 EBU Address Bus Line 13 B1/ PU Port 11 General Purpose I/O Line 14 EBU Address Bus Line 14 B1/ PU Port 11 General Purpose I/O Line 15 EBU Address Bus Line 15
TC1797
Pinning Table 4 Pin P26 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P12.0 Reserved Reserved Reserved A16 P24 P12.1 Reserved Reserved Reserved A17 P25 P12.2 Reserved Reserved Reserved A18 R24 P12.3 Reserved Reserved Reserved A19 R26 P12.4 Reserved Reserved Reserved A20 Ctrl. I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O B1/ PU B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 12 General Purpose I/O Line 0 EBU Address Bus Line 16 Port 12 General Purpose I/O Line 1 EBU Address Bus Line 17 Port 12 General Purpose I/O Line 2 EBU Address Bus Line 18 Port 12 General Purpose I/O Line 3 EBU Address Bus Line 19 Port 12 General Purpose I/O Line 4 EBU Address Bus Line 20
Data Sheet
101
V1.1, 2009-04
TC1797
Pinning Table 4 Pin R25 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P12.5 Reserved Reserved Reserved A21 J24 P12.6 Reserved Reserved Reserved A22 J25 P12.7 Reserved Reserved Reserved A23 Port 13 T26 P13.0 AD0 OUT88 OUT88 OUT80 AD0 I/O0 I O1 O2 O3 O B1/ PU Port 13 General Purpose I/O Line 0 EBU Address/Data Bus Line 0 OUT88 Line of GPTA0 OUT88 Line of GPTA1 OUT80 Line of LTCA2 EBU Address/Data Bus Line 0 Ctrl. I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O B1/ PU B1/ PU Type Function B1/ PU Port 12 General Purpose I/O Line 5 EBU Address Bus Line 21 Port 12 General Purpose I/O Line 6 EBU Address Bus Line 22 Port 12 General Purpose I/O Line 7 EBU Address Bus Line 23
Data Sheet
102
V1.1, 2009-04
TC1797
Pinning Table 4 Pin T24 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P13.1 AD1 OUT89 OUT89 OUT81 AD1 U26 P13.2 AD2 OUT90 OUT90 OUT82 AD2 T25 P13.3 AD3 OUT91 OUT91 OUT83 AD3 V26 P13.4 AD4 OUT92 OUT92 OUT84 AD4 Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 13 General Purpose I/O Line 1 EBU Address/Data Bus Line 1 OUT89 Line of GPTA0 OUT89 Line of GPTA1 OUT81 Line of LTCA2 EBU Address/Data Bus Line 1 Port 13 General Purpose I/O Line 2 EBU Address/Data Bus Line 2 OUT90 Line of GPTA0 OUT90 Line of GPTA1 OUT82 Line of LTCA2 EBU Address/Data Bus Line 2 Port 13 General Purpose I/O Line 3 EBU Address/Data Bus Line 3 OUT91 Line of GPTA0 OUT91 Line of GPTA1 OUT83 Line of LTCA2 EBU Address/Data Bus Line 3 Port 13 General Purpose I/O Line 4 EBU Address/Data Bus Line 4 OUT92 Line of GPTA0 OUT92 Line of GPTA1 OUT84 Line of LTCA2 EBU Address/Data Bus Line 4
Data Sheet
103
V1.1, 2009-04
TC1797
Pinning Table 4 Pin U25 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P13.5 AD5 OUT93 OUT93 OUT85 AD5 U23 P13.6 AD6 OUT94 OUT94 OUT86 AD6 W26 P13.7 AD7 OUT95 OUT95 OUT87 AD7 V25 P13.8 AD8 OUT96 OUT96 OUT88 AD8 Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 13 General Purpose I/O Line 5 EBU Address/Data Bus Line 5 OUT93 Line of GPTA0 OUT93 Line of GPTA1 OUT85 Line of LTCA2 EBU Address/Data Bus Line 5 Port 13 General Purpose I/O Line 6 EBU Address/Data Bus Line 6 OUT94 Line of GPTA0 OUT94 Line of GPTA1 OUT86 Line of LTCA2 EBU Address/Data Bus Line 6 Port 13 General Purpose I/O Line 7 EBU Address/Data Bus Line 7 OUT95 Line of GPTA0 OUT95 Line of GPTA1 OUT87 Line of LTCA2 EBU Address/Data Bus Line 7 Port 13 General Purpose I/O Line 8 EBU Address/Data Bus Line 8 OUT96 Line of GPTA0 OUT96 Line of GPTA1 OUT88 Line of LTCA2 EBU Address/Data Bus Line 8
Data Sheet
104
V1.1, 2009-04
TC1797
Pinning Table 4 Pin U24 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P13.9 AD9 OUT97 OUT97 OUT89 AD9 Y26 P13.10 AD10 OUT98 OUT98 OUT90 AD10 AA26 P13.11 AD11 OUT99 OUT99 OUT91 AD11 W25 P13.12 AD12 OUT100 OUT100 OUT92 AD12 Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 13 General Purpose I/O Line 9 EBU Address/Data Bus Line 9 OUT97 Line of GPTA0 OUT97 Line of GPTA1 OUT89 Line of LTCA2 EBU Address/Data Bus Line 9 Port 13 General Purpose I/O Line 10 EBU Address/Data Bus Line 10 OUT98 Line of GPTA0 OUT98 Line of GPTA1 OUT90 Line of LTCA2 EBU Address/Data Bus Line 10 Port 13 General Purpose I/O Line 11 EBU Address/Data Bus Line 11 OUT99 Line of GPTA0 OUT99 Line of GPTA1 OUT91 Line of LTCA2 EBU Address/Data Bus Line 11 Port 13 General Purpose I/O Line 12 EBU Address/Data Bus Line 12 OUT100 Line of GPTA0 OUT100 Line of GPTA1 OUT92 Line of LTCA2 EBU Address/Data Bus Line 12
Data Sheet
105
V1.1, 2009-04
TC1797
Pinning Table 4 Pin V24 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P13.13 AD13 OUT101 OUT101 OUT93 AD13 Y25 P13.14 AD14 OUT102 OUT102 OUT94 AD14 AB26 P13.15 AD15 OUT103 OUT103 OUT95 AD15 Port 14 W24 P14.0 AD16 OUT96 OUT96 OUT96 AD16 I/O0 I O1 O2 O3 O B1/ PU Port 14 General Purpose I/O Line 0 EBU Address/Data Bus Line 16 OUT96 Line of GPTA0 OUT96 Line of GPTA1 OUT96 Line of LTCA2 EBU Address/Data Bus Line 16 Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O B1/ PU B1/ PU Type Function B1/ PU Port 13 General Purpose I/O Line 13 EBU Address/Data Bus Line 13 OUT101 Line of GPTA0 OUT101 Line of GPTA1 OUT93 Line of LTCA2 EBU Address/Data Bus Line 13 Port 13 General Purpose I/O Line 14 EBU Address/Data Bus Line 14 OUT102 Line of GPTA0 OUT102 Line of GPTA1 OUT94 Line of LTCA2 EBU Address/Data Bus Line 14 Port 13 General Purpose I/O Line 15 EBU Address/Data Bus Line 15 OUT103 Line of GPTA0 OUT103 Line of GPTA1 OUT95 Line of LTCA2 EBU Address/Data Bus Line 15
Data Sheet
106
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AA25 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P14.1 AD17 OUT97 OUT97 OUT97 AD17 Y24 P14.2 AD18 OUT98 OUT98 OUT98 AD18 AA23 P14.3 AD19 OUT99 OUT99 OUT99 AD19 AB25 P14.4 AD20 OUT100 OUT100 OUT100 AD20 Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 14 General Purpose I/O Line 1 EBU Address/Data Bus Line 17 OUT97 Line of GPTA0 OUT97 Line of GPTA1 OUT97 Line of LTCA2 EBU Address/Data Bus Line 17 Port 14 General Purpose I/O Line 2 EBU Address/Data Bus Line 18 OUT98 Line of GPTA0 OUT98 Line of GPTA1 OUT98 Line of LTCA2 EBU Address/Data Bus Line 18 Port 14 General Purpose I/O Line 3 EBU Address/Data Bus Line 19 OUT99 Line of GPTA0 OUT99 Line of GPTA1 OUT99 Line of LTCA2 EBU Address/Data Bus Line 19 Port 14 General Purpose I/O Line 4 EBU Address/Data Bus Line 20 OUT100 Line of GPTA0 OUT100 Line of GPTA1 OUT100 Line of LTCA2 EBU Address/Data Bus Line 20
Data Sheet
107
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AB24 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P14.5 AD21 OUT101 OUT101 OUT101 AD21 AA24 P14.6 AD22 OUT102 OUT102 OUT102 AD22 AC26 P14.7 AD23 OUT103 OUT103 OUT103 AD23 AD26 P14.8 AD24 OUT104 OUT104 OUT104 AD24 Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 14 General Purpose I/O Line 5 EBU Address/Data Bus Line 21 OUT101 Line of GPTA0 OUT101 Line of GPTA1 OUT101 Line of LTCA2 EBU Address/Data Bus Line 21 Port 14 General Purpose I/O Line 6 EBU Address/Data Bus Line 22 OUT102 Line of GPTA0 OUT102 Line of GPTA1 OUT102 Line of LTCA2 EBU Address/Data Bus Line 22 Port 14 General Purpose I/O Line 7 EBU Address/Data Bus Line 23 OUT103 Line of GPTA0 OUT103 Line of GPTA1 OUT103 Line of LTCA2 EBU Address/Data Bus Line 23 Port 14 General Purpose I/O Line 8 EBU Address/Data Bus Line 24 OUT104 Line of GPTA0 OUT104 Line of GPTA1 OUT104 Line of LTCA2 EBU Address/Data Bus Line 24
Data Sheet
108
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AC25 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P14.9 AD25 OUT105 OUT105 OUT105 AD25 AE26 P14.10 AD26 OUT106 OUT106 OUT106 AD26 AD25 P14.11 AD27 OUT107 OUT107 OUT107 AD27 AC24 P14.12 AD28 OUT108 OUT108 OUT108 AD28 Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 14 General Purpose I/O Line 9 EBU Address/Data Bus Line 25 OUT105 Line of GPTA0 OUT105 Line of GPTA1 OUT105 Line of LTCA2 EBU Address/Data Bus Line 25 Port 14 General Purpose I/O Line 10 EBU Address/Data Bus Line 26 OUT106 Line of GPTA0 OUT106 Line of GPTA1 OUT106 Line of LTCA2 EBU Address/Data Bus Line 26 Port 14 General Purpose I/O Line 11 EBU Address/Data Bus Line 27 OUT107 Line of GPTA0 OUT107 Line of GPTA1 OUT107 Line of LTCA2 EBU Address/Data Bus Line 27 Port 14 General Purpose I/O Line 12 EBU Address/Data Bus Line 28 OUT108 Line of GPTA0 OUT108 Line of GPTA1 OUT108 Line of LTCA2 EBU Address/Data Bus Line 28
Data Sheet
109
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AE25 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P14.13 AD29 OUT109 OUT109 OUT109 AD29 AE24 P14.14 AD30 OUT110 OUT110 OUT110 AD30 AD24 P14.15 AD31 OUT111 OUT111 OUT111 AD31 Port 15 AE21 P15.0 Reserved Reserved Reserved CS0 I/O0 O1 O2 O3 O B1/ PU Port 15 General Purpose I/O Line 0 Chip Select Output Line 0 Ctrl. I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O I/O0 I O1 O2 O3 O B1/ PU B1/ PU Type Function B1/ PU Port 14 General Purpose I/O Line 13 EBU Address/Data Bus Line 29 OUT109 Line of GPTA0 OUT109 Line of GPTA1 OUT109 Line of LTCA2 EBU Address/Data Bus Line 29 Port 14 General Purpose I/O Line 14 EBU Address/Data Bus Line 30 OUT110 Line of GPTA0 OUT110 Line of GPTA1 OUT110 Line of LTCA2 EBU Address/Data Bus Line 30 Port 14 General Purpose I/O Line 15 EBU Address/Data Bus Line 31 OUT111 Line of GPTA0 OUT111 Line of GPTA1 OUT111 Line of LTCA2 EBU Address/Data Bus Line 31
Data Sheet
110
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AD21 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P15.1 Reserved Reserved Reserved CS1 AD20 P15.2 Reserved Reserved Reserved CS2 AD19 P15.3 Reserved Reserved Reserved CS3 AE17 P15.4 Reserved Reserved Reserved BC0 AD17 P15.5 Reserved Reserved Reserved BC1 Ctrl. I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O B1/ PU B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 15 General Purpose I/O Line 1 Chip Select Output Line 1 Port 15 General Purpose I/O Line 2 Chip Select Output Line 2 Port 15 General Purpose I/O Line 3 Chip Select Output Line 3 Port 15 General Purpose I/O Line 4 Byte Control Line 0 Port 15 General Purpose I/O Line 5 Byte Control Line 1
Data Sheet
111
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AF18 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P15.6 Reserved Reserved Reserved BC2 AE18 P15.7 Reserved Reserved Reserved BC3 AF20 P15.8 Reserved Reserved Reserved RD AF21 P15.9 Reserved Reserved Reserved RD/WR AF22 P15.10 Reserved Reserved Reserved ADV Ctrl. I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O B1/ PU B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 15 General Purpose I/O Line 6 Byte Control Line 2 Port 15 General Purpose I/O Line 7 Byte Control Line 3 Port 15 General Purpose I/O Line 8 Read Control Line Port 15 General Purpose I/O Line 9 Write Control Line Port 15 General Purpose I/O Line 10 Address Valid Output
Data Sheet
112
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AE20 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol P15.11 WAIT Reserved Reserved Reserved AF19 P15.12 Reserved Reserved Reserved MR/W AF23 P15.13 Reserved Reserved Reserved BAA AF24 P15.14 BFCLKI Reserved Reserved Reserved AF25 P15.15 Reserved Reserved Reserved BFCLKO Ctrl. I/O0 I O1 O2 O3 I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 I O1 O2 O3 I/O0 O1 O2 O3 O B2/ PU B1/ PU B1/ PU B1/ PU Type Function B1/ PU Port 15 General Purpose I/O Line 11 Wait Input for inserting Wait-States Port 15 General Purpose I/O Line 12 Motorola-style Read/Write Control Signal Port 15 General Purpose I/O Line 13 Burst Address Advance Output Port 15 General Purpose I/O Line 14 Burst FLASH Clock Input (Clock Feedback). Port 15 General Purpose I/O Line 15 Burst Mode Flash Clock Output (NonDifferential)
Data Sheet
113
V1.1, 2009-04
TC1797
Pinning Table 4 Pin Port 16 AF17 P16.0 HOLD Reserved Reserved Reserved AD18 P16.1 HLDA Reserved Reserved Reserved HLDA AD22 P16.2 Reserved Reserved Reserved BREQ AE19 P16.3 Reserved Reserved Reserved CSCOMB Analog Input Port AE1 AD2 AA4 AN0 AN1 AN2 I I I D D D Analog Input 0 Analog Input 1 Analog Input 2
114 V1.1, 2009-04
Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol Ctrl. Type Function
I/O0 I O1 O2 O3 I/O0 I O1 O2 O3 O I/O0 O1 O2 O3 O I/O0 O1 O2 O3 O
B1/ PU
Port 16 General Purpose I/O Line 0 Hold Request Input -
B1/ PU
Port 16 General Purpose I/O Line 1 Hold Acknowledge Output Hold Acknowledge Output
B1/ PU
Port 16 General Purpose I/O Line 2 Bus Request Output
B1/ PU
Port 16 General Purpose I/O Line 3 Combined Chip Select Output
Data Sheet
TC1797
Pinning Table 4 Pin AB3 AC2 AA3 AD1 AB4 AC1 AB2 Y3 AA2 AB1 W3 Y2 AA1 V4 W2 Y1 V3 W1 V2 V1 U1 AC8 AD8 AC7 AD7 AE6 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 AN24 AN25 AN26 AN27 AN28 Ctrl. I I I I I I I I I I I I I I I I I I I I I I I I I I Type Function D D D D D D D D D D D D D D D D D D D D D D D D D D Analog Input 3 Analog Input 4 Analog Input 5 Analog Input 6 Analog Input 7 Analog Input 8 Analog Input 9 Analog Input 10 Analog Input 11 Analog Input 12 Analog Input 13 Analog Input 14 Analog Input 15 Analog Input 16 Analog Input 17 Analog Input 18 Analog Input 19 Analog Input 20 Analog Input 21 Analog Input 22 Analog Input 23 Analog Input 24 Analog Input 25 Analog Input 26 Analog Input 27 Analog Input 28
115 V1.1, 2009-04
Data Sheet
TC1797
Pinning Table 4 Pin AF6 AE7 AF7 AC3 AE2 AD3 AD5 AE3 AF2 AC4 AF3 AD4 AE4 AC5 AF4 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol AN29 AN30 AN31 AN32 AN33 AN34 AN35 AN36 AN37 AN38 AN39 AN40 AN41 AN42 AN43 Ctrl. I I I I I I I I I I I I I I I Type Function D D D D D D D D D D D D D D D Analog Input 29 Analog Input 30 Analog Input 31 Analog Input 32 Analog Input 33 Analog Input 34 Analog Input 35 Analog Input 36 Analog Input 37 Analog Input 38 Analog Input 39 Analog Input 40 Analog Input 41 Analog Input 42 Analog Input 43
System I/O B22 PORST I Input only/ PD A2 Power-on Reset Input (input pad with input spike-filter) External System Request Reset Input 0 Default configuration during and after reset is open-drain Driver, corresponding to A2 strong Driver, sharp edge. The Driver drives low during power-on reset. External System Request Reset Input 1 JTAG Module Clock Input Device Access Port Line 0
A23
ESR0
I/O
A22 E24
ESR1 TCK DAP0
I/O I I
A2/ PD Input only/ PD
Data Sheet
116
V1.1, 2009-04
TC1797
Pinning Table 4 Pin E25 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol TDI BRKIN BRKOUT B23 TESTMODE Ctrl. I I O I Input only/ PU A2/ PD Input only/ PD Type Function A2/ PU JTAG Module Serial Data Input OCDS Break Input (Alternate Output) OCDS Break Output (Alternate Input) Test Mode Select Input
F24
TMS DAP1
I I/O I
JTAG Module State Machine Control Input Device Access Port Line 1 JTAG Module Reset/Enable Input
F23
TRST
G26 G25 D25
XTAL1 XTAL2 TDO BRKIN BRKOUT DAP2
I O O I O O A2/ PU
Main Oscillator/PLL/Clock Generator Input Main Oscillator/PLL/Clock Generator Output JTAG Module Serial Data Output OCDS Break Input (Alternate Input) OCDS Break Output (Alternate Output) Device Access Port Line 2 Not connected. These pins are reserved for future extension and shall not be connected externally.
A1, AF1, AF26, A24, C22, AC21, AD23, AE22, AE23
N.C.
Power Supply W4 Y4 AE5
VDDM VSSM VAREF0
-
-
ADC Analog Part Power Supply (3.3V - 5V) ADC Analog Part Ground ADC0 Reference Voltage
Data Sheet
117
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AF5 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol Ctrl. Type Function ADC0 Reference Ground ADC2 Reference Ground ADC1 Reference Voltage ADC1 Reference Ground ADC2 Reference Voltage FADC Reference Voltage FADC Reference Ground FADC Analog Part Power Supply (3.3V)1) FADC Analog Part Logic Power Supply (1.5V) FADC Analog Part Ground FADC Analog Part Logic Ground Flash Power Supply (3.3V)
VAGND0 VAGND2 VAREF1 VAGND1 VAREF2 VFAREF VFAGND VDDMF VDDAF VSSMF VSSAF VDDFL3
AD6 AC6 AD9 AF8 AE8 AE9 AC9 AF9
A18, B18, H3 F25
VSSOSC VSS VDDOSC VDDOSC3 VDDPF VDDPF3
-
-
Main Oscillator Ground Digital Ground Main Oscillator Power Supply (1.5V) Main Oscillator Power Supply (3.3V) E-Ray PLL Power Supply (1.5V) E-Ray PLL Power Supply (3.3V)
F26 E26 G23 G24
Data Sheet
118
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AC11, AC20, AB23, V23, P23, E23, D24, C25, B26, D16, D9, H4, R4 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol Ctrl. Type Function Digital Core Power Supply (1.5V)
VDD
AC16, VDDP AD16, AE16, AF16, D22, C23, B24, A25, D14, D7, K4 H23, H24, H25, H26, M23, T23, Y23, AC18, AC22 R1
-
-
Port Power Supply (3.3V)
VDDEBU
-
-
EBU Port Power Supply (2.5V - 3.3V)
VDDE(SB)
-
-
Emulation Stand-by SRAM Power Supply (1.5V) (Emulation device only) Note: This pin is N.C. in a productive device.
Data Sheet
119
V1.1, 2009-04
TC1797
Pinning Table 4 Pin AC10, AC17, AC19, AC23, W23, R23, L23, D23, C24, B25, A26, D15, D8, J4, T4 K10, K11, K12, K13, K14, K15, K16, K17 L10, L11, L12, L13, L14, L15, L16, L17 M10, M11, M12, M13, M14, M15, M16, M17 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol Ctrl. Type Function Digital Ground (outer balls)
VSS
VSS
-
-
Digital Ground (center balls)
VSS
-
-
Digital Ground (center balls cont’d)
VSS
-
-
Digital Ground (center balls cont’d)
Data Sheet
120
V1.1, 2009-04
TC1797
Pinning Table 4 Pin N10, N11, N12, N13, N14, N15, N16, N17 P10, P11, P12, P13, P14, P15, P16, P17 R10, R11, R12, R13, R14, R15, R16, R17 T10, T11, T12, T13, T14, T15, T16, T17 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol Ctrl. Type Function Digital Ground (center balls cont’d)
VSS
VSS
-
-
Digital Ground (center balls cont’d)
VSS
-
-
Digital Ground (center balls cont’d)
VSS
-
-
Digital Ground (center balls cont’d)
Data Sheet
121
V1.1, 2009-04
TC1797
Pinning Table 4 Pin U10, U11, U12, U13, U14, U15, U16, U17 Pin Definitions and Functions (BGA-416 Package) (cont’d) Symbol Ctrl. Type Function Digital Ground (center balls cont’d)
VSS
1) This pin is also connected to the analog power supply for comparator of the ADC module.
Legend for Table 4 Column “Ctrl.”: I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB) O = Output O0 = Output with IOCR bit field selection PCx = 1X00B O1 = Output with IOCR bit field selection PCx = 1X01B (ALT1) O2 = Output with IOCR bit field selection PCx = 1X10B (ALT2) O3 = Output with IOCR bit field selection PCx = 1X11B (ALT3) Column “Type”: A1 = Pad class A1 (LVTTL) A2 = Pad class A2 (LVTTL) F = Pad class F (LVDS/CMOS) D = Pad class D (ADC) PU = with pull-up device connected during reset (PORST = 0) PD = with pull-down device connected during reset (PORST = 0) TR = tri-state during reset (PORST = 0)
3.1.2
Pull-Up/Pull-Down Reset Behavior of the Pins
Table 5 Pins
List of Pull-Up/Pull-Down Reset Behavior of the Pins PORST = 0 Pull-up Pull-down PORST = 1
all GPIOs, TDI, TESTMODE PORST, TRST, TCK, TMS
Data Sheet
122
V1.1, 2009-04
TC1797
Pinning Table 5 Pins ESR0 ESR1 TDO List of Pull-Up/Pull-Down Reset Behavior of the Pins PORST = 0 The open-drain driver is used to drive low.1) Pull-down2) Pull-up High-impedance PORST = 1 Pull-up2)
1) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details. 2) See the SCU_IOCR register description.
Data Sheet
123
V1.1, 2009-04
TC1797
Identification Registers
4
Identification Registers
TC1797 Identification Registers 1) Value 0059 C000H 0059 C000H 0059 C000H 0000 4402H 0000 4402H 002B C051H 0000 6350H 1015 A083H 0015 C007H 000A C006H 001A C004H 0008 C005H 0014 C009H 0044 C003H 0027 C003H 0053 C001H 0055 C001H 0054 C003H 0029 C005H 0029 C005H 000F C005H 000C C006H 002A C005H 001B C001H 0025 C007H 0025 C007H 0028 C003H Address F010 1008H F010 1408H F010 1808H F000 0A08H F000 0B08H F000 4008H F000 0408H F000 0464H F7E0 FF08H F7E1 FE18H F000 3C08H F87F FC08H F800 0008H F001 0008H F010 0408H F800 2008H F800 4008H F7E1 A020H F000 1808H F000 2008H F87F FE08H F87F FF08H F000 2808H F010 C208H F010 C008H F010 C108H F000 0808H Stepping – – – – – – – – – – – – – – – – – – – – – – – – – – –
The Identification Registers uniquely identify a module or the whole device. Table 4-1 Short Name ADC0_ID ADC1_ID ADC2_ID ASC0_ID ASC1_ID CAN_ID CBS_JDPID CBS_JTAGID CPS_ID CPU_ID DMA_ID DMI_ID EBU_ID ERAY_ID FADC_ID FLASH0_ID FLASH1_ID FPU_ID GPTA0_ID GPTA1_ID LBCU_ID LFI_ID LTCA2_ID MCHK_ID MLI0_ID MLI1_ID MSC0_ID
Data Sheet
4-124
V1.1, 2009-04
TC1797
Identification Registers Table 4-1 Short Name MSC1_ID PCP_ID PMI_ID PMU0_ID PMU1_ID SBCU_ID SCU_CHIPID SCU_ID SCU_MANID SCU_RTID SSC0_ID SSC1_ID STM_ID TC1797 Identification Registers (cont’d)1) Value 0028 C003H 0020 C006H 000B C005H 0050 C001H 0051 C001H 0000 6A0CH 0000 9001H 0052 C001H 0000 1820H 0000 0003H 0000 4511H 0000 4511H 0000 C006H Address F000 0908H F004 3F08H F87F FD08H F800 0508H F800 6008H F000 0108H F000 0640H F000 0508H F000 0644H F000 0648H F010 0108H F010 0208H F000 0208H Stepping – – – – – – – – – AC only – – –
1) Valid for all design steps except if explicitely defined.
Data Sheet
4-125
V1.1, 2009-04
TC1797
Electrical Parameters
5
Electrical Parameters
5.1
General Parameters
5.1.1
Parameter Interpretation
The parameters listed in this section partly represent the characteristics of the TC1797 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column “Symbol”: • CC Such parameters indicate Controller Characteristics which are a distinctive feature of the TC1797 and must be regarded for a system design. SR Such parameters indicate System Requirements which must provided by the microcontroller system in which the TC1797 designed in.
•
Data Sheet
126
V1.1, 2009-04
TC1797
Electrical Parameters
5.1.2
Pad Driver and Pad Classes Summary
This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 5.2.1. Table 6 Pad Driver and Pad Classes Overview Sub Class A1 (e.g. GPIO) A2 (e.g. serial I/Os) B1 (e.g. Ext. Bus Interface) B2 (e.g. Bus Clock) F 3.3 V LVDS/ CMOS ADC – Speed Load Grade 6 MHz 40 MHz 40 MHz Leakage1) Termination No Series termination recommended No
Class Power Type Supply A 3.3 V LVTTL I/O, LVTTL outputs LVTTL I/O
100 pF 500 nA 50 pF 6 µA
B
2.375 3.6 V2)
50 pF
6 µA
75 MHz
35 pF
Series termination recommended (for f > 25 MHz) – Parallel termination3), 100 Ω ± 10% see Table 11
50 MHz –
–
DE
5V
–
–
–
1) Values are for TJmax = 150 °C. 2) AC characteristics for EBU pins are valid for 2.5 V ± 5% and 3.3 V ± 5%. 3) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or properly terminated with the differential parallel termination of 100 Ω ± 10%.
Data Sheet
127
V1.1, 2009-04
TC1797
Electrical Parameters
5.1.3
Absolute Maximum Ratings
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (VIN > related VDD or VIN < VSS) the voltage on the related VDD pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Table 7 Parameter Absolute Maximum Rating Parameters Symbol Values Min. Typ. Max. Unit Note / Test Con dition °C °C °C V V V V Under bias – Under bias – – – Whatever is lower Whatever is lower –
TA SR Storage temperature TST SR Junction temperature TJ SR Voltage at 1.5 V power supply VDD pins with respect to VSS1) SR Voltage at 3.3 V power supply VDDEBU pins with respect to VSS2) VDDP SR Voltage at 5 V power supply VDDM SR pins with respect to VSS Voltage on any Class A input VIN SR
Ambient temperature pin and dedicated input pins with respect to VSS Voltage on any Class B input VIN pin with respect to VSS Voltage on any Class D analog input pin with respect to VAGND
-40 -65 -40 – – –
– – – – – –
125 150 150 2.25 3.75 5.5
-0.5 –
VDDP + 0.5
or max. 3.7
SR -0.5 – -0.5 – SR
VDDEBU + 0.5 V
or max. 3.7
VAIN VAREFx
VDDM + 0.5
V
Voltage on any shared Class VAINF -0.5 – D analog input pin with VFAREF SR respect to VSSAF, if the FADC is switched through to the pin. CPU Frequency
VDDM + 0.5
V
–
fCPU
SR –
–
180 150
MHz Derivative dependent
Data Sheet
128
V1.1, 2009-04
TC1797
Electrical Parameters Table 7 Parameter Absolute Maximum Rating Parameters Symbol Values Min. Typ. Max. PCP Frequency E-Ray Sample Frequency Unit Note / Test Con dition MHz Derivative dependent MHz
fPCP fSAMPLE
SR – –
– –
180 150 80
SR
1) Applicable for VDD, VDDOSC, VDDPF, and VDDAF. 2) Applicable for VDDP, VDDEBU, VDDFL3, VDPF3, and VDDMF.
5.1.4
Operating Conditions
The following operating conditions must not be exceeded in order to ensure correct operation of the TC1797. All parameters specified in the following table refer to these operating conditions, unless otherwise noticed. The following operating conditions must not be exceeded in order to ensure correct operation of the TC1797. All parameters specified in the following table refer to these operating conditions, unless otherwise noted. Table 8 Parameter Digital supply voltage
1)
Operating Condition Parameters Symbol Min. Values Typ. Max. – – – – – – – – – 1.582) 3.473) 3.473) 2.625 3.473) 3.473) 1.582) 5.25 – +125 Unit Note / Test Condition V V V V V V V V °C – For Class A pins (3.3 V ± 5%) For Class B (EBU) pins – FADC FADC For Class DE pins, ADC – –
VDD SR 1.42 VDDOSC SR VDDP SR 3.13 VDDOSC3 SR VDDEBU SR 3.13
2.375 3.13 3.13 1.42 4.75
VDDFL3 SR Analog supply voltages VDDMF SR VDDAF SR VDDM SR
Digital ground voltage Ambient temperature under bias
VSS TA
SR 0 SR -40
Data Sheet
129
V1.1, 2009-04
TC1797
Electrical Parameters Table 8 Parameter Operating Condition Parameters Symbol Min. Analog supply voltages – – Values Typ. Max. – – Unit Note / Test Condition – See separate specification Page 137, Page 142
4)
Overload current at class D pins
IOV
-1 – – – SR SR – –
– – – – – – – – –
3 10 5×105 5×104 180 150 180 150 90 +5 20
mA mA
Sum of overload current Σ|IOV| at class D pins Overload coupling KOVAP 5) factor for analog inputs
per single ADC 0 < IOV < 3 mA -1 mA< IOV < 0
KOVAN
CPU & LMB Bus Frequency PCP Frequency FPI Bus Frequency Short circuit current Absolute sum of short circuit currents of a pin group (see Table 9) Inactive device pin current Absolute sum of short circuit currents of the device External load capacitance
fCPU fPCP
MHz Derivative dependent MHz Derivative dependent6) MHz mA mA
6) 7)
fSYS SR – ISC SR -5 Σ|ISC_PG| –
SR IID Σ|ISC_D| SR SR -1 –
See note
– –
1 100
mA mA
All power supply voltages VDDx = 0 See note4)
CL
SR
–
–
–
pF
Depending on pin class. See DC characteristics
1) Digital supply voltages applied to the TC1797 must be static regulated voltages which allow a typical voltage swing of ±5%. 2) Voltage overshoot up to 1.7 V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 µs and the cumulated summary of the pulses does not exceed 1 h. 3) Voltage overshoot to 4 V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 µs and the cumulated summary of the pulses does not exceed 1 h
Data Sheet
130
V1.1, 2009-04
TC1797
Electrical Parameters
4) See additional document “TC1767 Pin Reliability in Overload“ for definition of overload current on digital pins. 5) The overload coupling factor (kA) defines the worst case relation of an overload condition (IOV) at one pin to the resulting leakage current (IleakTOT) into an adjacent pin: IleakTOT = ±kA × |IOV| + IOZ1. Thus under overload conditions an additional error leakage voltage (VAEL) will be induced onto an adjacent analog input pin due to the resistance of the analog input source (RAIN). That means VAEL = RAIN × |IleakTOT|. The definition of adjacent pins is related to their order on the silicon. The Injected leakage current always flows in the opposite direction from the causing overload current. Therefore, the total leakage current must be calculated as an algebraic sum of the both component leakage currents (the own leakage current IOZ1 and the optional injected leakage current). 6) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter parameters. 7) Applicable for digital outputs.
Table 9 Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Pin Groups for Overload / Short-Circuit Current Sum Parameter Pins P4.[7:0] P4.[15:8] P10.[5:0] P15.[0, 1, 7:4, 11, 12] P15.[3:0, 8, 13], P16.3 P15.9, P16.2, P15.10, P15.[15:14] P14.[15:10] P14.[9:8] P14.[7:2] P14.[1:0], P13.[15:14] P13.[13:12] P13.[11:6] P13.[5:2] P13.[1:0], P12[5:4] P12.[3:0] P11.[15:12] P11.[11:8] P11.[7:4] P11.[3:0] P12.[7:6]
Data Sheet
131
V1.1, 2009-04
TC1797
Electrical Parameters Table 9 Group 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 Pin Groups for Overload / Short-Circuit Current Sum Parameter Pins P9.[14:13, 10:9] P9.[12:11, 8:7, 2] P9.[6:5, 3, 1] P9.[0, 4], P5.[10, 11] P5.[15:14, 9:8] P5.[13:12, 6, 4] P5.[7:5, 3, 0] P3.[7:0] P3.[15:8] P0.[7:0] P0.[15:8] P2.[15:9] P2.[8:4] P2.[3:2], P6[9:8] P6[11, 6:4] P6.[15:12, 10, 7] P8.[7:0] P1.[15:13, 11:8, 5] P1.[12, 7, 6, 4, 3] P1.[1:0], P7.0 P7.[5:1] P7.[7:6]
Data Sheet
132
V1.1, 2009-04
TC1797
Electrical Parameters
5.2
DC Parameters
5.2.1
Input/Output Pins
Table 10 Parameter
Input/Output DC-Characteristics (Operating Conditions apply) Symbol Min. Values Typ. Max. – – – 100 85 150 µA µA µA Unit Note / Test Condition
General Parameters Pull-up current1) |IPUH| CC 5 Pull-down current1) |IPDL| CC 10 10
VIN < VIHAmin;
class A1/A2/F/Input pads.
VIN < VIHBmin;
class B1/B2 pads.
VIN >VILAmax;
class A1/A2/F/Input pads. VIN > VILBmax; class B1/B2 pads
Pin capacitance1) (Digital I/O) Input low voltage
CIO
CC
–
–
10
pF
f = 1 MHz TA = 25 °C
– Whatever is lower
Input only Pads (VDDP = 3.13 to 3.47 V = 3.3 V ± 5%)
VILI
SR
-0.3 0.62 × SR VDDP
– –
0.36 ×
V V
Input high voltage VIHI
VDDP VDDP+
0.3 or max. 3.6
Ratio VIL/VIH
CC 0.58
– –
–
– V
– Whatever is lower
Input high voltage VIHJ 0.64 × TRST, TCK SR VDDP
VDDP+
0.3 or max. 3.6
Input hysteresis Input leakage current
HYSI
0.1 × CC VDDP – CC
– –
– ±3000 ±6000
V nA
4)
IOZI
((VDDP/2)-1) < VIN < ((VDDP/2)+1) Otherwise2)
V1.1, 2009-04
Data Sheet
133
TC1797
Electrical Parameters Table 10 Parameter Input/Output DC-Characteristics (cont’d)(Operating Conditions apply) Symbol Min. Spike filter always tSF1 – CC blocked pulse duration Spike filter passthrough pulse duration Values Typ. Max. – 10 ns Unit Note / Test Condition
tSF2
CC
100
–
–
ns
Class A Pads (VDDP = 3.13 to 3.47 V = 3.3V ± 5%) Output low voltage VOLA
3)
– CC
–
0.4
V
IOL = 2 mA for medium and strong driver mode, IOL = 500 µA for weak driver mode IOH = -2 mA for medium
and strong driver mode, IOH = -500 µA for weak driver mode
Output high voltage2) 3)
VOHA
CC
2.4
–
–
V
VDDP - –
0.4
–
V
IOH = -1.4 mA for medium and strong driver mode, IOH = -400 µA for weak driver mode
– Whatever is lower
Input low voltage Class A1/2 pins
VILA
SR
-0.3
– –
0.36 ×
V V
Input high voltage VIHA1 0.62 × Class A1 pins SR VDDP
VDDP VDDP+
0.3 or max. 3.6
Ratio VIL/VIH Class A1 pins
CC 0.58
– –
–
– V
– Whatever is lower
Input high voltage VIHA2 0.60 × Class A2 pins SR VDDP
VDDP+
0.3 or max. 3.6
Ratio VIL/VIH Class A2 pins Input hysteresis
CC 0.6 HYSA 0.1 × CC VDDP
– –
– –
– V
–
4)
Data Sheet
134
V1.1, 2009-04
TC1797
Electrical Parameters Table 10 Parameter Input leakage current Class A2 pins Input leakage current Class A1 pins Input/Output DC-Characteristics (cont’d)(Operating Conditions apply) Symbol Min. Values Typ. Max. – ±3000 ±6000 nA ((VDDP/2)-1) < VIN < ((VDDP/2)+1) Otherwise2) 0 V VDD1.5 - 0.5 V;VDD3.3 > VDD1.5 - 0.5 V, see Figure 25. During power-up and power-down, the voltage difference between the power supply pins of the same voltage (3.3 V, 1.5 V, and 5 V) with different names (for example VDDP, VDDFL3 ...), that are internally connected via diodes, must be lower than 100 mV. On the other hand, all power supply pins with the same name (for example
•
•
Data Sheet
151
V1.1, 2009-04
TC1797
Electrical Parameters all VDDP ), are internally directly connected. It is recommended that the power pins of the same voltage are driven by a single power supply. The PORST signal may be deactivated after all VDD5, VDD3.3, VDD1.5, and VAREF power-supplies and the oscillator have reached stable operation, within the normal operating conditions. At normal power down the PORST signal should be activated within the normal operating range, and then the power supplies may be switched off. Care must be taken that all Flash write or delete sequences have been completed. At power fail the PORST signal must be activated at latest when any 3.3 V or 1.5 V power supply voltage falls 12% below the nominal level. The same limit of 3.3 V-12% applies to the 5 V power supply too. If, under these conditions, the PORST is activated during a Flash write, only the memory row that was the target of the write at the moment of the power loss will contain unreliable content. In order to ensure clean power-down behavior, the PORST signal should be activated as close as possible to the normal operating voltage range. In case of a power-loss at any power-supply, all power supplies must be powereddown, conforming at the same time to the rules number 2 and 4. Although not necessary, it is additionally recommended that all power supplies are powered-up/down together in a controlled way, as tight to each other as possible. Aditionally, regarding the ADC reference voltage VAREF: – VAREF must power-up at the same time or later than VDDM, and – VAREF must power-down eather earlier or at latest to satisfy the condition VAREF < VDDM + 0.5 V. This is required in order to prevent discharge of VAREF filter capacitance through the ESD diodes through the VDDM power supply. In case of discharging the reference capacitance through the ESD diodes, the current must be lower than 5 mA.
•
•
•
• • •
Data Sheet
152
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.4
Power, Pad and Reset Timing
Table 18 Parameter
Power, Pad and Reset Timing Parameters Symbol Min. Values Typ. – – – Max. – 10 – Unit Note / Test Con dition V ms ms – – –
Min. VDDP voltage to ensure defined pad states1) Oscillator start-up time2) Minimum PORST active time after power supplies are stable at operating levels ESR0 pulse width PORST rise time Setup time to PORST rising edge4) Hold time from PORST rising edge Setup time to ESR0 rising edge Hold time from ESR0 rising edge Ports inactive after PORST reset active6)7)
VDDPPA CC 0.6 tOSCS tPOA
CC – SR 10
tHD tPOR tPOS tPOH tHDS tHDH tPIP
CC Program – mable3)5) SR – SR 0 SR 100 SR 0 SR 16 × 1/fSYS5) CC – CC – CC – CC 125 – – – – – – – – –
– 50 – – – – 150
fSYS
ms ns ns ns ns ns
– – –
TESTMODE TRST
–
HWCFG
– – – –
Ports inactive after ESR0 reset tPI active (and for all logic) Power on Reset Boot Time8) Application Reset Boot Time at fCPU=180MHz9)
8 × 1/ ns fSYS 2.5 575 ms µs
tBP tB
1) This parameter is valid under assumption that PORST signal is constantly at low level during the powerup/power-down of the VDDP. 2) tOSCS is defined from the moment when VDDOSC3 = 3.13 V until the oscillations reach an amplitude at XTAL1 of 0,3 × VDDOSC3. This parameter is verified by device characterization. The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended and specified by crystal suppliers. 3) Any ESR0 activation is internally prolonged to SCU_RSTCNTCON.RELSA FPI bus clock (fFPI) cycles.
Data Sheet
153
V1.1, 2009-04
TC1797
Electrical Parameters
4) Applicable for input pins TESTMODE and TRST. 5) fFPI = fCPU/2 6) Not subject to production test, verified by design / characterization. 7) This parameter includes the delay of the analog spike filter in the PORST pad. 8) The duration of the boot-time is defined between the rising edge of the PORST and the moment when the first user instruction has entered the CPU and its processing starts. 9) The duration of the boot time is defined between the following events: 1. Hardware reset: the falling edge of a short ESR0 pulse and the moment when the first user instruction has entered the CPU and its processing starts, if the ESR0 pulse is shorter than SCU_RSTCNTCON.RELSA × TFPI. If the ESR0 pulse is longer than SCU_RSTCNTCON.RELSA × TFPI, only the time beyond should be added to the boot time (ESR0 falling edge to first user instruction). 2. Software reset: the moment of starting the software reset and the moment when the first user instruction has entered the CPU and its processing starts
V D D PPA VDDP
VD D P -12% V D D PPA
VDD tPOA tPOA PORST TRST TESTMODE t hd ESR0 tHDH HWCFG t PIP Pads tPI Pad-state undefined Tri-state or pull device active As programmed t PIP tPI tPI tPI t PIP tPI tHDH tHDH tPOH t hd tPOH
VD D -12%
reset_beh2
Figure 26
Power, Pad and Reset Timing
Data Sheet
154
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.5
Phase Locked Loop (PLL)
Note: All PLL characteristics defined on this and the next page are not subject to production test, but verified by design characterization. Table 19 Parameter PLL Parameters (Operating Conditions apply) Symbol Min. Values Typ. – – – 200 – Max. 7 800 16 320 200 Unit Note / Test Con dition ns – MHz – MHz – MHz – µs –
|Dm| VCO frequency range fVCO VCO input frequency range fREF PLL base frequency1) fPLLBASE PLL lock-in time tL
Accumulated jitter
– 400 8 50 –
1) The CPU base frequency with which the application software starts after PORST is calculated by dividing the limit values by 16 (this is the K2 factor after reset).
Phase Locked Loop Operation When PLL operation is enabled and configured, the PLL clock fVCO (and with it the LMBBus clock fLMB) is constantly adjusted to the selected frequency. The PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or clock source), resulting in an accumulated jitter that is limited. This means that the relative deviation for periods of more than one clock cycle is lower than for a single clock cycle. This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. Two formulas are defined for the (absolute) approximate maximum value of jitter Dm in [ns] dependent on the K2 - factor, the LMB clock frequency fLMB in [MHz], and the number m of consecutive fLMB clock periods. for ( K2 ≤ 100 ) and ( m ≤ ( f LMB [ MHz ] ) ⁄ 2 ) (2)
740 ( 1 – 0, 01 × K2 ) × ( m – 1 ) D m [ ns ] = -------------------------------------------- + 5 × ---------------------------------------------------------------- + 0, 01 × K2 K2 × f 0, 5 × f LMB [ MHz ] LMB [ MHz ] – 1 else 740 D m [ ns ] = -------------------------------------------- + 5 K2 × f LMB [ MHz ]
(3)
Data Sheet
155
V1.1, 2009-04
TC1797
Electrical Parameters With rising number m of clock cycles the maximum jitter increases linearly up to a value of m that is defined by the K2-factor of the PLL. Beyond this value of m the maximum accumulated jitter remains at a constant value. Further, a lower LMB-Bus clock frequency fLMB results in a higher absolute maximum jitter value. Figure 27 gives the jitter curves for several K2 / fLMB combinations.
±10.0 Dm ns ±8.0 ±7.0 ±6.0 fLMB = 180 MHz (K2 = 4)
fLMB = 50 MHz (K2 = 8) fLMB = 100 MHz (K2 = 4)
±4.0
fLMB = 150 MHz (K2 = 4) fLMB = 100 MHz (K2 = 8)
±2.0
fLMB = 50 MHz (K2 = 16)
±1.0
±0.0
0 20 40 60 80 100 120 oo Dm = Max. jitter m = Number of consecutive fLMB periods K2 = K2-divider of PLL
m
TC1797_PLL_JITT_M
Figure 27
Approximated Maximum Accumulated PLL Jitter for Typical LMBBus Clock Frequencies fLMB
Note: The specified PLL jitter values are valid if the capacitive load per output pin does not exceed CL = 20 pF with the maximum driver and sharp edge, except the E-Ray output pins, which can be loaded with CL = 25 pF. In case of applications with many pins with high loads, driver strengths and toggle rates the specified jitter values could be exceeded. Note: The maximum peak-to-peak noise on the pad supply voltage, measured between VDDOSC3 at pin E26 and VSSOSC at pin F25, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. The maximum peak-to peak noise on the pad supply votage, measured between VDDOSC at pin F26 and VSSOSC at pin F25, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise
Data Sheet 156 V1.1, 2009-04
TC1797
Electrical Parameters frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes.
Data Sheet
157
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.6
E-Ray Phase Locked Loop (E-Ray PLL)
Note: All PLL characteristics defined on this and the next page are not subject to production test, but verified by design characterization. Table 20 Parameter PLL Parameters of the System PLL(Operating Conditions apply) Symbol Min. Accumulated jitter at DP_ERAY_I E_Ray module clock input1) Accumulated jitter at SYSCLK pin2) VCO frequency range – – 400 20 140 – Values Typ. – – – – – – Max. 0.5 0.8 500 40 320 200 Unit Note / Test Con dition ns ns – –
DP_ERAY_E
fVCO_ERAY VCO input frequency range fREF_ERAY PLL base frequency3) fPLLBASE_ERAY PLL lock-in time tL_ERAY
MHz – MHz – MHz – µs –
1) Short term jitter and long term jitter for all numbers P of sample clocks (P ≥ 1), with fOSC = 20MHz, K = 6, and fSAMPLE = 80 MHz. 2) Short term jitter and long term jitter for all numbers P of sample clocks (P ≥ 1), with fOSC = 20MHz, K = 6, and fSAMPLE = 80 MHz. 3) The CPU base frequency which is selected after reset is calculated by dividing the limit values by 16 (this is the K factor after reset).
Note: The specified PLL jitter values are valid if the capacitive load per output pin does not exceed CL = 20 pF with the maximum driver and sharp edge, except the E-Ray output pins, which can be loaded with CL = 25 pF. In case of applications with many pins with high loads, driver strengths and toggle rates the specified jitter values could be exceeded. Note: The maximum peak-to-peak noise on the pad supply voltage, measured between VDDPF3 at pin G24 and VSSOSC at pin F25, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. The maximum peak-to peak noise on the pad supply voltage, measured between VDDPF at pin G23 and VSSOSC at pin F25, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes.
Data Sheet 158 V1.1, 2009-04
TC1797
Electrical Parameters
5.3.7
BFCLKO Output Clock Timing
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%,; TA = -40 °C to +125 °C; CL = 35 pF
Table 21 Parameter BFCLK0 Output Clock Timing Parameters1) Symbol Min. BFCLKO clock period BFCLKO high time BFCLKO low time BFCLKO rise time BFCLKO fall time BFCLKO duty cycle t5/(t5 + t6)3) Values Typ. Max. – – – 3 3 55 Unit Note / Test Con dition ns ns ns ns ns % – – – – – –
tBFCLKO CC t5 CC t6 CC t7 CC t8 CC DC
13.332) – 3 3 – – 45 – – – – 50
1) Not subject to production test, verified by design/characterization. 2) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter parameters. 3) The PLL jitter is not included in this parameter. If the BFCLKO frequency is equal to fCPU, the K divider has to be regarded.
tBFCLKO
BFCLKO 0.5 VDDP05
t5
t6
t8
t7
0.9 VDD 0.1 VDD
MCT04883_mod
Figure 28
BFCLKO Output Clock Timing
Data Sheet
159
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.8
JTAG Interface Timing
The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 22 Parameter TCK clock period TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge JTAG Interface Timing Parameters (Operating Conditions apply) Symbol Min. Values Typ. – – – – – – – – – – – – Max. – – – 4 4 – – 13 3 – 14 13.5 25 12 10 – – 6 6 – – 2 – – Unit Note / Test Condition ns ns ns ns ns ns ns ns ns ns ns ns CL = 50 pF CL = 50 pF – – – – – – – CL = 50 pF CL = 20 pF
t 1 SR t 2 SR t 3 SR t 4 SR t 5 SR t 6 SR t 7 SR
TDO valid after TCK falling t8 CC edge1) (propagation delay) t CC 8 TDO hold after TCK falling t18 CC edge1) TDO high imped. to valid from TCK falling edge1)2) TDO valid to high imped. from TCK falling edge1)
t9 CC t10 CC
1) The falling edge on TCK is used to generate the TDO timing. 2) The setup time for TDO is given implicitly by the TCK cycle time.
Data Sheet
160
V1.1, 2009-04
TC1797
Electrical Parameters
t1
0.9 VD D P 0.5 VD D P
t5 t2 t3
t4
0.1 VD D P
MC_ JTAG_ TCK
Figure 29
Test Clock Timing (TCK)
TCK
t6
TMS
t7
t6
TDI
t7
t9
TDO
t8
t10
t 18
MC_JTAG
Figure 30
JTAG Timing
Data Sheet
161
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.9
DAP Interface Timing
The following parameters are applicable for communication through the DAP debug interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 23 Parameter DAP0 clock period DAP0 high time DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge DAP1 hold after DAP0 rising edge DAP1 valid per DAP0 clock period1) DAP Interface Timing Parameters (Operating Conditions apply) Symbol Min. Values Typ. – – – – – – – – – Max. – – – 2 2 – – – – 12.5 4 4 – – 6 6 8 10 Unit Note / Test Condition ns ns ns ns ns ns ns ns ns – – – – – – – 80 MHz, CL = 20 pF 40 MHz, CL = 50 pF
t11 SR t12 SR t13 SR t14 SR t15 SR t16 SR t17 SR t19 SR t19 SR
1) The Host has to find a suitable sampling point by analyzing the sync telegram response.
t11
0.9 VD D P 0.5 VD D P
t1 5 t1 2 t1 3
t14
0.1 VD D P
MC_DAP0
Figure 31
Test Clock Timing (DAP0)
Data Sheet
162
V1.1, 2009-04
TC1797
Electrical Parameters
DAP0
t1 6
DAP1
t1 7
MC_ DAP1_RX
Figure 32
DAP Timing Host to Device
t1 1
DAP1
t1 9
MC_ DAP1_TX
Figure 33
DAP Timing Device to Host
Data Sheet
163
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.10
EBU Timings
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins; TA = -40 °C to +125 °C; CL = 35 pF for address/data; CL = 40pF for the control lines.
5.3.10.1 EBU Asynchronous Timings
For each timing, the accumulated PLL jitter of the programed duration in number of clock periods must be added separately. Operating conditions apply and CL = 35 pF. Table 24 Parameter Pulse width deviation from the ideal programmed width due to the A2 pad asymmetry, strong driver mode, rise delay - fall delay. CL = 35 pF. Common timing parameters for all asynchronous timings1) Symbol Limit Values Unit Edge Setting min max 1.5 1 ns sharp medium -2
ta
CC -1
AD(31:0) output delay to ADV rising edge, t13 AD(31:0) output delay multiplexed t14 read / write
CC -5.5 CC -5.5
2 2
– –
1) Not subject to production test, verified by design/characterization.
Data Sheet
164
V1.1, 2009-04
TC1797
Electrical Parameters Read Timings
Table 25 Parameter
Asynchronous read timings, multiplexed and demultiplexed1) Symbol to RD rising edge, t0 deviation from the ideal t 1 programmed value. Limit Values min max 2.5 2.5 2.5 4.5 2.5 – – – – 1.5 ns Unit
A(23:0) output delay A(23:0) output delay CS rising edge ADV rising edge BC rising edge WAIT input setup WAIT input hold Data input setup Data input hold MR / W output delay
CC -2.5 CC -2.5 CC -2 CC -1.5 CC -2.5 SR 12 SR 0 SR 12 SR 0 CC -2.5
t2 t3 t4 t5 t6 t7 t8 t9
1) Not subject to production test, verified by design/characterization.
Data Sheet
165
V1.1, 2009-04
TC1797
Electrical Parameters Multiplexed Read Timing
EBU STATE
Control Bitfield: Duration Limits in EBU_CLK Cycles
Address Phase
ADDRC 1...15
Address Hold Phase (opt.)
AHOLDC 0...15
Command Delay Phase
CMDDELAY 0...7
Command Phase
RDWAIT 1...31
Recovery Phase (opt.)
RDRECOVC 0...15
New Addr. Phase
ADDRC 1...15
A[23:0]
Valid Address
pv + t0 pv + ta pv + t1
Next Addr.
t2
CS[3:0] CSCOMB pv + ta ADV pv + RD pv + BC[3:0] pv +
t3
ta
ta
pv +
ta
t4
pv + WAIT pv +
t5
t6
t13
pv +
t14
t7
t8
Data In
AD[31:0]
Address Out
MR/W
pv +
t9
new_MuxRD_Async_10.vsd
pv = programmed value, TEBU_CLK * sum (correponding bitfield values)
Figure 34
Data Sheet
Multiplexed Read Access
166 V1.1, 2009-04
TC1797
Electrical Parameters Demultiplexed Read Timing
EBU STATE
Control Bitfield: Duration Limits in EBU_CLK Cycles
Address Phase
ADDRC 1...15
Address Hold Phase (opt.)
AHOLDC 0...15
Command Phase
RDWAIT 1...31
Recovery Phase (opt.)
RDRECOVC 0...15
New Addr. Phase
ADDRC 1...15
A[23:0]
Valid Address
pv +
Next Addr. pv + t1
t0
pv +
CS[3:0] CSCOMB pv + ADV
ta
t2
ta
pv + t3
pv + RD pv + BC[3:0] pv + WAIT
ta
ta
pv + ta
t4
t5
t6
t7
AD[31:0]
t8
Data In
MR/W pv = programmed value, TEBU_CLK * sum (correponding bitfield values)
pv +
t9
new_DemuxRD_Async_10.vsd
Figure 35
Data Sheet
Demultiplexed Read Access
167 V1.1, 2009-04
TC1797
Electrical Parameters Write Timings
Table 26 Parameter
Asynchronous write timings, multiplexed and demultiplexed1) Symbol Limit Values min max 2.5 2.5 2 4.5 2 – – 2 2 1.5 ns Unit
A(23:0) output delay to RD/WR rising edge, A(23:0) output delay deviation from the ideal programmed value. CS rising edge ADV rising edge BC rising edge WAIT input setup WAIT input hold Data output delay Data output delay MR / W output delay
t30 t31 t32 t33 t34 t35 t36 t37 t38 t39
CC -2.5 CC -2.5 CC -2 CC -2 CC -2.5 SR 12 SR 0 CC -5.5 CC -5.5 CC -2.5
1) Not subject to production test, verified by design/characterization.
Data Sheet
168
V1.1, 2009-04
TC1797
Electrical Parameters Multiplexed Write Timing
EBU STATE
Control Bitfield: Duration Limits in EBU_CLK Cycles
Address Phase
ADDRC 1...15
Address Hold Phase (opt.)
AHOLDC 0...15
Command Phase
RDWAIT 1...31
Data Hold Phase
DATAC 0...15
Recovery Phase (opt.)
RDRECOVC 0...15
New Addr. Phase
ADDRC 1...15
A[23:0]
Valid Address pv + t30 pv + t31 pv + t32
Next Addr.
CS[3:0] CSCOMB pv + ta ADV
pv +
ta
pv + t33
pv + RD/WR pv + BC[3:0]
ta
ta
pv +
ta t34
t35
WAIT
t36
pv +
t13
t14
t37
pv + t38 Data Out
AD[31:0]
Address Out
MR/W
pv + t39
pv = programmed value, TEBU_CLK * sum (correponding bitfield values)
new_MuxWR_Async_10.vsd
Figure 36
Multiplexed Write Access
Data Sheet
169
V1.1, 2009-04
TC1797
Electrical Parameters Demultiplexed Write Timing
EBU STATE
Control Bitfield: Duration Limits in EBU_CLK Cycles
Address Phase
ADDRC 1...15
Address Hold Phase (opt.)
AHOLDC 0...15
Command Phase
RDWAIT 1...31
Data Hold Phase
DATAC 0...15
Recovery Phase (opt.)
RDRECOVC 0...15
New Addr. Phase
ADDRC 1...15
A[23:0]
Valid Address pv + t30 pv + t31 pv + t32
Next Addr.
CS[3:0] CSCOMB pv + ta ADV
pv +
ta
pv + t33
pv + RD/WR pv + BC[3:0]
ta
ta
pv +
ta t34
t35
WAIT
t36 t37
pv + t38 Data Out
AD[31:0]
MR/W
pv + t39
pv = programmed value, TEBU_CLK * sum (correponding bitfield values)
new_DemuxWR_Async_10.vsd
Figure 37
Demultiplexed Write Access
Data Sheet
170
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.10.2 EBU Burst Mode Access Timing
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins; TA = -40 °C to +125 °C; CL = 35 pF;
Table 27 Parameter EBU Burst Mode Read / Write Access Timing Parameters1) Symbol Min. Output delay from BFCLKO active edge2) Values Typ. – – – – – – – – – Max. 2 2 1.5 2 1.5 – – – – ns ns ns ns ns ns ns ns ns Unit Note / Test Con dition – – – – – – – – –
t10
CC CC
-2 -2
RD and RD/WR active/inactive t12 after BFCLKO active edge3) CSx output delay from BFCLKO active edge3) ADV active/inactive after BFCLKO active edge4) BAA active/inactive after BFCLKO active edge4) Data setup to BFCLKI rising edge5) Data hold from BFCLKI rising edge5) WAIT setup (low or high) to BFCLKI rising edge5) WAIT hold (low or high) from BFCLKI rising edge5)
t21 t22 t22a t23 t24 t25 t26
CC -2.5 CC -2 CC -2.5 SR 3 SR 0 SR 3 SR 0
1) Not subject to production test, verified by design/characterization. 2) This is a default parameter which are applicable to all timings which are not explicitly covered by the other parameters. 3) An active edge can be rising or falling edge, depending on the settings of bits BFCON.EBSE / ECSE and clock divider ratio. Negative minimum values for these parameters mean that the last data read during a burst may be corrupted. However, with clock feedback enabled, this value is oversampling not required for the LMB transaction and will be discarded. 4) This parameter is valid for BUSCONx.EBSE = 1 and BUSAPx.EXTCLK = 00B. For BUSCONx.EBSE = 1 and other values of BUSAPx.EXTCLK, ADV and BAA will be delayed by 1 / 2 of the LMB bus clock period TCPU = 1 / fCPU. For BUSCONx. EBSE = 0 and BUSAPx.EXTCLK = 11B, add 2 LMB clock periods. For BUSCONx. EBSE = 0 and other values of BUSAPx.EXTCLK add 1 LMB clock period.
Data Sheet
171
V1.1, 2009-04
TC1797
Electrical Parameters
5) If the clock feedback is not enabled, the input signals are latched using the internal clock in the same way as at asynchronous access. So t5, t6, t7 and t8 from the asynchronous timings apply.
Address Phase(s) BFCLKI BFCLKO
1)
Command Phase(s)
Burst Phase(s)
Burst Phase(s)
Recovery Phase(s)
Next Addr. Phase(s)
t10
A[23:0] Burst Start Address
t10
Next Addr.
t22
ADV
t22
t22
t21
CS[3:0] CSCOMB
t21
t21
t12
RD RD/WR
t12
t22a
BAA
t22a
t24 t23
D[31:0] (32-Bit) Data (Addr+0)
t24 t23
Data (Addr+4)
D[15:0] (16-Bit)
Data (Addr+0)
Data (Addr+2)
t25
WAIT
1)
t26
Output delays are always referenced to BCLKO. The reference clock for input characteristics depends on bit EBU_BFCON.FDBKEN. EBU_BFCON.FDBKEN = 0: BFCLKO is the input reference clock. EBU_BFCON.FDBKEN = 1: BFCLKI is the input reference clock (EBU clock feedback enabled).
BurstRDWR_4.vsd
Figure 38
EBU Burst Mode Read / Write Access Timing
Data Sheet
172
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.10.3 EBU Arbitration Signal Timing
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins; TA = -40°C to +125 °C; CL = 35 pF;
Table 28 Parameter EBU Arbitration Signal Timing Parameters1) Symbol Min. Output delay from BFCLKO rising edge Data setup to BFCLKO falling edge Data hold from BFCLKO falling edge Values Typ. – – – Max. 3 – – Unit Note / Test Con dition ns ns ns – – –
t27 t28 t29
CC – SR 11 SR 2
1) Not subject to production test, verified by design/characterization.
BFCLKO
t27
HLDA Output
t27
t27
BREQ Output
t27
BFCLKO
t28
HOLD Input HLDA Input
t28 t29 t29
EBUArb_1
Figure 39
EBU Arbitration Signal Timing
Data Sheet
173
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.11
Peripheral Timings
Note: Peripheral timing parameters are not subject to production test. They are verified by design/characterization.
5.3.11.1 Micro Link Interface (MLI) Timing
MLI Transmitter Timing
t13 t10 t12
TCLKx
t14
t11 t15 t15
TDATAx TVALIDx
t16
TREADYx
t17
MLI Receiver Timing
t23 t20 t22
RCLKx
t24
t21 t25 t26
RDATAx RVALIDx
t27
RREADYx
t27
MLI_Tmg_2.vsd
Figure 40
MLI Interface Timing
Data Sheet
174
V1.1, 2009-04
TC1797
Electrical Parameters Note: The generation of RREADYx is in the input clock domain of the receiver. The reception of TREADYx is asynchronous to TCLKx. Table 29 Parameter MLI Timings (Operating Conditions apply), CL = 50 pF Symbol Min. MLI Transmitter Timing TCLK clock period TCLK high time TCLK low time TCLK rise time TCLK fall time TDATA/TVALID output delay time TREADY setup time to TCLK rising edge TREADY hold time from TCLK rising edge MLI Receiver Timing RCLK clock period RCLK high time RCLK low time RCLK rise time RCLK fall time RDATA/RVALID setup time to RCLK falling edge Values Typ. Max. Unit Note / Test Co ndition ns
1) 2)3) 2)3)
t10 t11 t12 t13 t14 t15 t16 t17
CC 2 × TMLI
CC
–
–
0.45 × t10 0.5 × t10 0.55 × t10 ns – – – – –
4) 4)
CC 0.45 × t10 0.5 × t10 0.55 × t10 ns CC – CC – CC -3 SR 18 SR 0 ns ns ns ns ns
– – – – –
4.4 – –
t20 t21 t22 t23
R
SR 1 × TMLI SR – SR – S S S S C – – 4.2 2.2 0
– 0.5 × t2 0 – – – – –
– – 4 4 – – 16
ns ns ns ns ns ns ns ns
1) 5)6) 5)6)
0.5 × t20 –
7)
t24
R
7)
t25
R
– – –
RDATA/RVALID hold time t26 from RCLK rising edge R RREADY output delay time t27 C
1) TMLImin. = TSYS = 1/fSYS. When fSYS = 90 MHz, t10 = 22.22 ns and t20 = 11.11 ns. 2) The following formula is valid: t11 + t12 = t10
Data Sheet
175
V1.1, 2009-04
TC1797
Electrical Parameters
3) The min./max. TCLK low/high times t11/t12 include the PLL jitter of fSYS. Fractional divider settings must be regarded additionally to t11 / t12. 4) For high-speed MLI interface, strong driver sharp or medium edge selection (class A2 pad) is recommended for TCLK. 5) The following formula is valid: t21 + t22 = t20 6) The min. and max. value of is parameter can be adjusted by considering the other receiver timing parameters. 7) The RCLK max. input rise/fall times are best case parameters for fSYS = 90 MHz. For reduction of EMI, slower input signal rise/fall times can be used for longer RCLK clock periods.
Data Sheet
176
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.11.2 Micro Second Channel (MSC) Interface Timing
Table 30 Parameter
MSC Interface Timing (Operating Conditions apply), CL = 50 pF Symbol Min. Values Typ. Max. – 10 – 100 100 ns ns ns ns ns Unit Note / Test Con dition – – – – –
FCLP clock period1)2) SOP/ENx outputs delay from FCLP rising edge SDI bit time SDI rise time SDI fall time
t40 t45 t46 t48 t49
CC 2 × TMSC3) – CC -10 CC 8 × TMSC SR SR
1) FCLP signal rise/fall times are the same as the A2 Pads rise/fall times. 2) FCLP signal high and low can be minimum 1 × TMSC. 3) TMSCmin = TSYS = 1 / fSYS. When fSYS = 90 MHz, t40 = 22,2ns
t40
FCLP 0.9 VDDP 0.1 VDDP
t45
SOP EN
t45
t48
SDI
t49
0.9 VDDP 0.1 VDDP
t46
t46
MSC_Tmg_1.vsd
Figure 41
MSC Interface Timing
Note: The data at SOP should be sampled with the falling edge of FCLP in the target device.
Data Sheet
177
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.11.3 SSC Master/Slave Mode Timing
Table 31 Parameter
SSC Master/Slave Mode Timing (Operating Conditions apply), CL = 50 pF Symbol Min. Values Typ. Max. Unit Note / Test Con dition ns ns ns ns
1)2)3)
Master Mode Timing SCLK clock period MTSR/SLSOx delay from SCLK rising edge MRST setup to SCLK falling edge MRST hold from SCLK falling edge Slave Mode Timing SCLK clock period SCLK duty cycle MTSR setup to SCLK latching edge MTSR hold from SCLK latching edge SLSI setup to first SCLK shift edge SLSI hold from last SCLK latching edge MRST delay from SCLK shift edge
t50 t51 t52 t53
CC 2 × TSSC
CC
– – – –
– 8 – –
0
–
3)
SR 13 SR 0
3)
t54 SR 4 × TSSC t55/t54 SR 45 t56 SR TSSC + 5 t57 t58 t59 t60
SR TSSC + 5 SR TSSC + 5 SR 7 CC 0 CC –
– – – – – – – –
– 55 – – – – 15 12
ns % ns ns ns ns ns ns
1)3)
–
3)4)
3)4)
3)
– – –
SLSI to valid data on MRST t61
1) SCLK signal rise/fall times are the same as the A2 Pads rise/fall times. 2) SCLK signal high and low times can be minimum 1 × TSSC. 3) TSSCmin = TSYS = 1/fSYS. When fSYS = 90 MHz, t50 = 22.2 ns. 4) Fractional divider switched off, SSC internal baud rate generation used.
Data Sheet
178
V1.1, 2009-04
TC1797
Electrical Parameters
t50
SCLK1)2)
t51
MTSR1)
t51
t52
MRST1)
t53
Data valid
t51
SLSOx2)
1) This timing is based on the following setup: CON.PH = CON.PO = 0. 2) The transition at SLSOx is based on the following setup: SSOTC.TRAIL = 0 and the first SCLK high pulse is in the first one of a transmission. SSC_TmgMM
Figure 42
SSC Master Mode Timing
t54
SCLK1)
First shift SCLK edge First latching SCLK edge Last latching SCLK edge
t55
t56
t55 t57
t56
t57
MTSR1)
Data valid
Data valid
t60
MRST1)
t60
t61
SLSI
t59 t58
1) This timing is based on the following setup: CON.PH = CON.PO = 0. SSC_TmgSM
Figure 43
SSC Slave Mode Timing
Data Sheet
179
V1.1, 2009-04
TC1797
Electrical Parameters
5.3.11.4 E-Ray Interface Timing
The timings in this section are valid for the strong / sharp and strong / medium settings of the output drivers, and for both A1 or A2 input pads. The timing parameters are not subject to production test, but verified by design / characterization. Table 32 Parameter E-Ray Interface Timing (Operating Conditions apply), CL = 25 pF Symbol Min. TxDA / TxDB Signal Timing at end of frame Time span from last t60 BSS to FES without the influence of quartz tolerances d10Bit_Tx 1) TxD data valid, from fsample flip-flop txd_reg ⇒ TxDA, TxDB, (dTxAsym) 2) 3) CC 997.75 – 1002.25 ns Limit Values Typ. Max. Unit Notes Conditions
foscdd = 20MHz; foscdd = 40MHz; CL = 25 pF
(TxDA, TXDB) Asymmetrical delay of rising and falling edge (TxDA, TxDB)
|t61 - t62| CC –
–
1.5
ns
RxDA / RxDB Signal Timing at end of frame Time span between last t63 BSS and FES that is properly decoded, without influence of quartz tolerances d10Bit_Rx 1) 4) 5) RxD capture by fsample, RxDA / RxDB ⇒ sampling flip-flop, (dRxAsym) 5)
1) PLL jitter included. 2) Refers to delays caused by the asymmetries of the output drivers of the digital logic and the GPIO pad drivers. Quartz tolerance and PLL jitter are not included. 3) E-Ray TxD output drivers have an asymmetry of rising and falling edges of |tF - tR| ≤ 1 ns.
SR 966
–
1046.1
ns
foscdd = 20MHz; foscdd = 40MHz; CL = 25 pF
(TxDA, TXDB)
|t64 - t65| CC –
–
3.0
ns
Asymmetrical delay of rising and falling edge (RxDA, RxDB)
4)Limits of 966.5 ns and 1046 ns correspond to (30%, 70%) × VDDP FlexRay standard input thresholds. Due to different input thresholds of the TC1797, a correcton of -0.5 ns and +0.1 ns has been applied.
Data Sheet
180
V1.1, 2009-04
TC1797
Electrical Parameters 5)Valid for output slopes of the Bus Driver of dRxSlope ≤ 5 ns, 20% × VDDP to 80% × VDDP, according to the FlexRay Electrical Physical Layer Specification V2.1 B. For A1 pads, the rise and fall times of the incoming signal have to satisfy the following inequality: -1.6 ns ≤ tF - tR ≤ 1.3 ns .
BSS
Byte Start Sequence
Last CRC Byte
FES
Frame End Sequence
TXD t60 tsample TXD t61 BSS
Byte Start Sequence
0.7 VDDP 0.3 VDDP
0.9 VDDP 0.1 VDDP
t62 Last CRC Byte FES
Frame End Sequence
RXD t63 tsample
0.62 VDDP 0.36 VDDP
RXD t64 t65
0.62 VDDP 0.36 VDDP
E-RAY_TIMING_A1
Figure 44
E-Ray Timing
Data Sheet
181
V1.1, 2009-04
TC1797
Electrical Parameters
5.4
Package and Reliability
5.4.1
Package Parameters
Table 33 Device TC1797
Thermal Characteristics of the Package Package P/PG-BGA-416-10 RΘJCT1) 4 RΘJCB1) 6 Unit K/W Note
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: TJ = TA + RTJA × PD, where the RTJA is the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from the upper four partial thermal resistances.
Data Sheet
182
V1.1, 2009-04
TC1797
Electrical Parameters
5.4.2
Package Outline
25 x 1 = 25 A26 A1
25 x 1 = 25
1
AF1 1
(0.56)
0.5 ±0.1
ø0.63 +0.07 -0.13
416x ø0.25 M A B C ø0.1 M C
0.15
2.5 MAX.
C A
(1.17)
20 ±0.2
20 ±0.2 24 ±0.5 27 ±0.2 B
24 ±0.5
Index Marking Index Marking (sharp edge)
PG-BGA-416-4, -10, -13, -14-PO V02
Figure 45
Package Outlines P/PG-BGA-416-10, Plastic (Green) Ball Grid Array
Data Sheet
183
27 ±0.2
V1.1, 2009-04
TC1797
Electrical Parameters You can find all of our packages, sorts of packing and others in Infineon Internet Page.
5.4.3
Flash Memory Parameters
The data retention time of the TC1797’s Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed. Table 34 Parameter Program Flash Retention Time, Physical Sector1)2) Program Flash Retention Time Logical Sector1)2) Data Flash Endurance (64 KB) Data Flash Endurance, EEPROM Emulation (4 × 16 KB) Programming Time per Page3) Flash Parameters Symbol Min. Values Typ. Max. – – years 20 CC Unit Note / Test Condition Max. 1000 erase/program cycles Max. 100 erase/program cycles
tRET
tRETL
CC
20
–
–
years
NE
CC
30 000
–
–
cycles Max. data retention time 5 years cycles Max. data retention time 5 years ms s s –
NE8
CC
120000 –
–
tPR
CC
–
– – – –
5 5 2.5
Program Flash Erase tERP – CC Time per 256-KB Sector Data Flash Erase Time for 2 × 32-KB Sectors Wake-up time
fCPU = 180 MHz fCPU = 180 MHz
–
tERD
CC
– – CC
tWU
4000/fCPU µs + 180
1) Storage and inactive time included. 2) At average weighted junction temperature Tj = 100oC, or the retention time at average weighted temperature of Tj = 110oC is minimum 10 years, or the retention time at average weighted temperature of Tj = 150oC is minimum 0.7 years. 3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes additional 5 ms.
Data Sheet
184
V1.1, 2009-04
TC1797
Electrical Parameters
5.4.4
Quality Declarations
Table 35 Parameter Operation Lifetime1)
Quality Parameters Symbol Values Min. Typ. Max. – – – – Unit Note / Test Condition
tOP
24000 hours –2) 3) 2000 V Conforming to JESD22-A114-B
ESD susceptibility VHBM according to Human Body Model (HBM) ESD susceptibility VHBM1 of the LVDS pins ESD susceptibility VCDM according to Charged Device Model (CDM) Moisture Sensitivity Level MSL
– –
– –
500 500
V V
– Conforming to JESD22-C101-C
–
–
3
–
Conforming to Jedec J-STD-020C for 240°C
1) This lifetime refers only to the time when the device is powered on. 2) For worst-case temperature profile equivalent to: 2000 hours at Tj = 150oC 16000 hours at Tj = 125oC 6000 hours at Tj = 110oC 3) This 30000 hours worst-case temperature profile is also covered: 300 hours at Tj = 150oC 1000 hours at Tj = 140oC 1700 hours at Tj = 130oC 24000 hours at Tj = 120oC 3000 hours at Tj = 110oC
Data Sheet
185
V1.1, 2009-04
www.infineon.com
Published by Infineon Technologies AG