0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLD5098EL

TLD5098EL

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    TLD5098EL - DC/DC Boost, Buck-Boost, SEPIC controller - Infineon Technologies AG

  • 数据手册
  • 价格&库存
TLD5098EL 数据手册
Infineon® Power LED Driver TLD5098EL DC/DC Boost, Buck-Boost, SEPIC controller Datasheet Rev. 1.0, 2010-10-13 Automotive Power TLD5098EL Table of Contents Table of Contents 1 2 3 3.1 3.2 4 4.1 4.2 4.3 5 5.1 5.2 6 6.1 6.2 7 7.1 7.2 8 8.1 8.2 9 9.1 9.2 10 10.1 10.2 10.3 11 11.1 12 13 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 8 9 Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of Analog Dimming: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 27 31 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Datasheet 2 Rev. 1.0, 2010-10-13 DC/DC Boost, Buck-Boost, SEPIC controller TLD5098EL TLD5098EL 1 Features • • • • • • • • • • • • • • • • • • • Overview Wide Input Voltage Range from 4.5 V to 45 V Constant Current or Constant Voltage Regulation Drives LEDs in Boost (B2G), Buck-Boost (B2B) and SEPIC Topology Very Low Shutdown Current: Iq_OFF < 10 µA Flexible Switching Frequency Range, 100 kHz to 500 kHz Synchronization with external clock source PWM Dimming Analog Dimming feature to adjust average LED current PG-SSOP-14 Internal 5 V Low Drop Out Voltage Regulator Open Circuit Detection Short to GND Protection Output Overvoltage Protection Internal Soft Start Over Temperature Shutdown Wide LED current range via simple adaptation of external components 300mV High Side Current Sense to ensure highest flexibility and LED current accuracy Available in a small thermally enhanced PG-SSOP-14 package Automotive AEC Qualified Green Product (RoHS) Compliant Description The TLD5098EL is a LED boost controller with built in protection features. The main function of this device is to regulate a constant LED current. The constant current regulation is especially beneficial for LED color accuracy and longer lifetime. The controller concept of the TLD5098EL allows multiple configurations such as Boost, Buck/Boost and SEPIC by simply adjusting the external components. The TLD5098EL offers the most flexible dimming options. Dimming can be achieved with analog or PWM input.The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLD5098EL features an enable function reducing the shut-down current consumption to Iq_OFF < 10 µA. The current mode regulation scheme of this device provides a stable regulation loop maintained by small external compensation components. The integrated soft start feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments and provides output overvoltage protection, device overtemperature shutdown and short circuit to GND protection. Applications • Automotive Exterior and Interior Lighting Type TLD5098EL Datasheet Package PG-SSOP-14 3 Marking TLD5098 Rev. 1.0, 2010-10-13 TLD5098EL Block Diagram 2 Block Diagram IN 14 Internal Supply LDO Power On Reset EN_INT/ PWM_INT 1 IVCC EN / PWMI 13 On/Off Logic Oscillator Soft Start Power Switch Gate Driver 2 SWO FREQ / SYNC 11 Slope Comp. Thermal Protection Open Load + Short to GND detection Leading Edge Blanking Over Volage Protection 4 3 PWM Generator Switch Current Error Amplifier SWCS SGND 9 OVFB SET COMP 10 Reference Current Generation Feedback Voltage Error Amplifier 6 7 FBH FBL 8 EN_INT/ PWM_INT 12 Dimming Switch Gate Driver 5 PWMO GND Figure 1 Block Diagram Datasheet 4 Rev. 1.0, 2010-10-13 TLD5098EL Pin Configuration 3 3.1 Pin Configuration Pin Assignment IVCC SWO SGND SWCS PWMO FBH FBL 1 2 3 4 5 6 7 exposed Pad 14 13 12 11 10 9 8 PINCONFIG_SSOP-14_5098.SVG IN EN/PWMI GND FREQ/SYNC SET OVFB COMP Figure 2 Pin Configuration 3.2 Pin 1 Pin Definitions and Functions Symbol IVCC Function Internal LDO Output; Used for internal biasing and gate drive. Bypass with external capacitor close to the pin. Pin must not be left open. Switch Output; Connect to gate of external switching MOSFET Current Sense Ground; Ground return for current sense switch Current Sense Input; Detects the peak current through switch PWM Dimming Output; Connect to gate of external MOSFET Voltage Feedback Positive; Non inverting Input (+) Voltage Feedback Negative; Inverting Input (-) Compensation Input; Connect R and C network to pin for stability 2 3 4 5 6 7 8 SWO SGND SWCS PWMO FBH FBL COMP Datasheet 5 Rev. 1.0, 2010-10-13 TLD5098EL Pin Configuration Pin 9 10 Symbol OVFB SET Function Output Overvoltage Protection Feedback; Connect to resistive voltage divider to set overvoltage threshold. Analog Dimming Input; Load current adjustment Pin. Pin must not be left open. If analog dimming feature is not used connect to IVCC pin. Frequency Select or Synchronization Input; Connect external resistor to GND to set frequency. Or apply external clock signal for synchronization within frequency capture range. Ground; Connect to system ground. Enable or PWM Input; Apply logic HIGH signal to enable device or PWM signal for dimming LED. Supply Input; Supply for internal biasing. Exposed Pad; Connect to external heatspreading GND Cu area (e.g. inner GND layer of multilayer PCB with thermal vias). 11 FREQ / SYNC 12 13 14 GND EN / PWMI IN EP Datasheet 6 Rev. 1.0, 2010-10-13 TLD5098EL General Product Characteristics 4 4.1 General Product Characteristics Absolute Maximum Ratings Absolute Maximum Ratings1) Tj = -40 ⋅C to +150 ⋅C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Voltages 4.1.1 4.1.2 4.1.3 4.1.4 IN Supply Input EN / PWMI Enable or PWM Input FBH-FBL Feedback Error Amplifier Differential FBH Feedback Error Amplifier Positive Input Max. 45 45 61 61 V V V V – – The maximum delta must not exceed 61V The difference between VFBH and VFBL must not exceed 61V, refer to Parameter 4.1.3 The difference between VFBH and VFBL must not exceed 61V, refer to Parameter 4.1.3 t < 100ms, VFBH - VFBL = 0.3V – Unit Conditions VIN VEN VFBH-VFBL VFBH -0.3 -40 -40 -40 4.1.5 FBL VFBL Feedback Error Amplifier Negative Input -40 61 V 4.1.6 4.1.7 4.1.8 4.1.9 4.1.10 4.1.11 4.1.12 4.1.13 4.1.14 4.1.15 4.1.16 4.1.17 4.1.18 4.1.19 4.1.20 4.1.21 4.1.22 4.1.23 FBH and FBL current OVFB Over Voltage Feedback Input SWCS Switch Current Sense Input SWO Switch Gate Drive Output SGND Current Sense Switch GND COMP Compensation Input FREQ / SYNC; Frequency and Synchronization Input PWMO PWM Dimming Output SET IVCC Internal Linear Voltage Regulator Output Junction Temperature IFBL,FBH VOVP VSWCS VSWO VSGND VCOMP – -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 1 5.5 6.2 5.5 6.2 5.5 6.2 0.3 5.5 6.2 5.5 6.2 5.5 6.2 45 5.5 6.2 150 mA V V V V V V V V V V V V V V V V °C t < 10s – t < 10s – t < 10s – – t < 10s – VFREQ / SYNC -0.3 -0.3 t < 10s – VPWMO VSET VIVCC -0.3 -0.3 -0.3 -0.3 -0.3 t < 10s – – t < 10s – Temperatures Tj 7 -40 Datasheet Rev. 1.0, 2010-10-13 TLD5098EL General Product Characteristics Absolute Maximum Ratings1) Tj = -40 ⋅C to +150 ⋅C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. 4.1.24 4.1.25 4.1.26 Parameter Storage Temperature ESD Resistivity of all Pins ESD Resistivity of IN, EN/PWMI, FBH, FBL and SET pin to GND Symbol Limit Values Min. Max. 150 2 4 °C kV kV – HBM2) HBM2) -55 -2 -4 Unit Conditions Tstg VESD,HBM VESD,HBM ESD Susceptibility 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Pos. 4.2.1 Functional Range Parameter Extended Supply Voltage Range Symbol Min. Limit Values Max. 451) V 4.5 Unit Conditions VIN VIVCC > VIVCC,RTH,d; Parameter deviations possible 4.2.2 4.2.3 4.2.4 Nominal Supply Voltage Range Feedback Voltage Input Junction Temperature VIN VFBH; VFBL Tj 8 3 -40 34 60 150 V V °C – – – 1) Not subject to production test, specified by design. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Datasheet 8 Rev. 1.0, 2010-10-13 TLD5098EL General Product Characteristics 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Pos. Parameter 1) 2) 1) 3) Symbol Min. Limit Values Typ. 10 47 54 64 Max. – – – – – – – – Unit K/W K/W K/W K/W Conditions – 2s2p 1s0p + 600 mm2 1s0p + 300 mm2 4.3.1 Junction to Case 4.3.3 4.3.4 4.3.2 Junction to Ambient RthJC RthJA RthJA RthJA 1) Not subject to production test, specified by design. 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to ambient temperature). Ta=25°C; The IC is dissipating 1W. 3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu). A thermal via (diameter = 0.3 mm and 25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second outer layer (bottom) of the JEDEC PCB. Ta=25°C; The IC is dissipating 1W. Datasheet 9 Rev. 1.0, 2010-10-13 TLD5098EL Boost Regulator 5 5.1 Boost Regulator Description The TLD5098EL regulator is suitable for boost, buck-boost and SEPIC configurations. The constant output current is especially useful for light emitting diode (LED) applications. The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode controller uses the peak current through the external power switch and error in the output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode controller provides a PWM signal to an internal gate driver which then outputs to an external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over tSS (Parameter 5.2.9) to minimize potential overvoltage at the output. OV FB OVFB 9 VRef = 1.25V H when OVFB >1.25V COMP 8 FBH 6 FBL 7 0 if SET < 1.6V High when IVCC < 4.0V UV IVCC x1 EA gmEA I EA Current Comp High when l EA - I SLOPE - I CS > 0 OFF when H Low when T j > 175 °C R NOR = VRef 4.0V Output Stage OFF when Low R > 1 Gate Driver Supply 1 IVCC 2 SWO & & Q INV 1 Gate Driver SET 10 0 VRef V 1 (SET − 0.1V ) 5 = VRef Soft start I SL O PE & & Q S Q 0.3V Oscillator I Slope Comp PWM-FF Q NAND 2 Current Sense I CS 4 SWCS 3 SGND FREQ/ 11 SYNC t Clock S Error-FF & Figure 3 Boost Regulator Block Diagram Datasheet 10 Rev. 1.0, 2010-10-13 TLD5098EL Boost Regulator 5.2 1) Electrical Characteristics EC Boost Regulator Table 1 VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Regulator: 5.2.1 Feedback Reference Voltage Limit Values Typ. 0.30 Max. 0.31 V Unit Conditions VREF 0.29 refer to Figure 25 VREF= VFBH -VFBL VSET= 5V ILED= 350 mA refer to Figure 25 VREF= VFBH -VFBL VSET= 0.4V ILED= 70mA refer to Figure 17 and Figure 25 VREF= VFBH -VFBL VSET= 0.1V VOUT>VIN refer to Figure 25 VIN = 8V to 19V; VSET = 5V; ILED = 350mA refer to Figure 25 VSET = 5V; ILED = 100 to 500mA VFBH = VFBL = 5V VCOMP = 3.5V Fixed frequency mode Synchronization mode 5.2.2 Feedback Reference Voltage VREF 0.057 0.06 0.063 V 5.2.3 Feedback Reference Voltage Offset VREF_offset – – 5 mV 5.2.4 Voltage Line Regulation (ΔVREF / VREF) / ΔVIN (ΔVREF / VREF) / ΔIBO – – 0.15 %/V 5.2.5 Voltage Load Regulation – – 5 %/V 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 5.2.14 Switch Peak Over Current Threshold Maximum Duty Cycle Maximum Duty Cycle Soft Start Ramp IFBH Feedback High Input Current IFBL Feedback Low Input Current Switch Current Sense Input Current Input Undervoltage Shutdown Input Voltage Startup VSWCS 130 150 93 – 1000 46 21 50 – – 170 95 – 1500 54 27 100 4.5 4.85 mV % % µs µA µA µA V V DMAX,fixed 91 DMAX,sync 88 tSS 350 IFBH IFBL ISWCS VIN,off VIN,on 38 15 10 3.5 – VFB rising from 5% to 95% of VFB, typ. VFBH - VFBL = 0.3V VFBH - VFBL = 0.3V VSWCS = 150mV VIN decreasing VIN increasing 1) Not subject to production test, specified by design Datasheet 11 Rev. 1.0, 2010-10-13 TLD5098EL Boost Regulator Table 1 EC Boost Regulator VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Gate Driver for external Switch 5.2.15 5.2.16 5.2.17 5.2.18 5.2.19 Gate Driver Peak Sourcing Current Gate Driver Peak Sinking Current Gate Driver Output Rise Time Gate Driver Output Fall Time Gate Driver Output Voltage Limit Values Typ. 380 550 30 20 – Max. – – 60 40 5.5 mA mA ns ns V 1) Unit Conditions ISWO,SRC ISWO,SNK tR,SWO tF,SWO VSWO – – – – 4.5 VSWO = 1V to 4V VSWO = 4V to 1V 1) 1) CL,SWO = 3.3nF; VSWO = 1V to 4V 1) CL,SWO = 3.3nF; VSWO = 4V to 1V 1) CL,SWO = 3.3nF; 1) Not subject to production test, specified by design Datasheet 12 Rev. 1.0, 2010-10-13 TLD5098EL Oscillator and Synchronization 6 6.1 Oscillator and Synchronization Description The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an external resistor the following formula can be applied. R FREQ = (141 × 10 [ ])× ( f − 12 s Ω 1 FREQ [1s ]) − 3 . 5 × 10 3 [Ω ] ( ) [Ω ] In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz. FREQ / SYNC 11 Oscillator Clock Frequency Detector Multiplexer PWM Logic Gate Driver 2 SWO VCLK RFREQ Figure 4 Oscillator and Synchronization Block Diagram and Simplified Application Circuit TSYNC = 1 / fSYNC VSYNC 4.5 V VSYNC,H VSYNC,L 0.5 V tSYNC,TR tSYNC,TR tSYNC,PWH t Figure 5 Synchronization Timing Diagram Datasheet 13 Rev. 1.0, 2010-10-13 TLD5098EL Oscillator and Synchronization 6.2 Table 2 Electrical Characteristics EC Oscillator and Synchronization VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Oscillator: 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 Oscillator Frequency Oscillator Frequency Adjustment Range FREQ / SYNC Supply Current Frequency Voltage Synchronization Frequency Capture Range Synchronization Signal High Logic Level Valid Synchronization Signal Low Logic Level Valid Synchronization Signal Logic High Pulse Width Limit Values Typ. 300 – – 1.24 – – – – Max. 350 500 -700 1.32 500 – 0.8 – kHz kHz µA V kHz V V ns Unit Conditions fFREQ fFREQ IFREQ VFREQ fSYNC VSYNC,H VSYNC,L 250 100 – 1.16 250 3.0 – RFREQ = 20kΩ VFREQ = 0V fFREQ = 100kHz – 1) 2) Synchronization 1) 2) tSYNC,PWH 200 1) 2) 1) Synchronization of external PWM ON signal to falling edge 2) Not subject to production test, specified by design Datasheet 14 Rev. 1.0, 2010-10-13 TLD5098EL Oscillator and Synchronization Typical Performance Characteristics of Oscillator Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC 600 500 400 fFREQ [kHz] T j = 25 °C 300 200 100 0 0 10 20 30 40 50 60 70 80 RFREQ/SYNC [kohm] Datasheet 15 Rev. 1.0, 2010-10-13 TLD5098EL Enable and Dimming Function 7 7.1 Enable and Dimming Function Description The enable function powers ON or OFF the device. A valid logic LOW signal on enable pin EN/PWMI powers OFF the device and current consumption is less than Iq_OFF (Parameter 7.2.14). A valid logic HIGH enable signal on enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which ensures that the IC is shut down and the power switch is OFF in case the enable pin EN is left open. In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal on the PWMO pin to an external N-channel enhancement mode MOSFET for PWM dimming an LED load. PWM dimming an LED is a commonly practiced dimming method and can prevent color shift in an LED light source. Moreover the PWM output function may also be used to drive other types of loads besides LED. The enable and PWM input function share the same pin. Therefore a valid logic LOW signal at the EN/PWMI pin needs to differentiate between an enable power OFF or an PWM dimming LOW signal. The device differentiates between enable OFF and PWM dimming signal by requiring the enable OFF at the EN/PWMI pin to stay LOW for the Enable Turn OFF Delay Time (tEN,OFF,DEL Parameter 7.2.6). IN 14 Enable LDO 1 IVCC Microcontroller EN / PWMI 13 Enable / PWMI Logic Enable Gate Driver 2 SWO PWMI Gate Driver 5 PWMO Figure 6 Block Diagram and Simplified Application Circuit Enable and LED Dimming Datasheet 16 Rev. 1.0, 2010-10-13 TLD5098EL Enable and Dimming Function tEN,START TPWMI tPWMI,H tEN,OFF,DEL VEN/PWMI VEN/PWMI,ON VEN/PWMI,OFF t VIVCC VIVCC,ON VIVCC,RTH t VPWMO TFREQ = VSWO 1 fFREQ t t Power ON Normal SWO ON PWMO ON Dim PWMO OFF SWO OFF Normal SWO ON PWMO ON Dim PWMO OFF SWO OFF Normal SWO ON PWMO ON Power OFF Delay Time Power OFF Iq_OFF Figure 7 Timing Diagram Enable and LED Dimming 7.2 Table 3 Electrical Characteristics EC Enable and Dimming VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Enable/PWM Input: 7.2.1 7.2.2 7.2.3 Enable/PWMI Turn On Threshold Enable/PWMI Turn Off Threshold Enable/PWMI Hysteresis Typ. – – 200 17 0.8 400 Max. V V mV – – 1) Unit Conditions VEN/PWMI,ON 3.0 VEN/PWMI,OFF – VEN/PWMI,HYS 50 Datasheet Rev. 1.0, 2010-10-13 TLD5098EL Enable and Dimming Function Table 3 EC Enable and Dimming VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10 7.2.11 7.2.12 7.2.13 Parameter Enable/PWMI High Input Current Enable/PWMI Low Input Current Enable Turn Off Delay Time PWMI Min Duty Time Enable Startup Time PWMO Gate Driver Peak Sourcing Current PWMO Gate Driver Peak Sinking Current PWMO Gate Driver Output Rise Time PWMO Gate Driver Output Fall Time PWMO Gate Driver Output Voltage Current Consumption, Shutdown Mode Current Consumption, Active Mode2) Symbol Limit Values Min. Typ. – 0.1 10 – – 230 370 50 30 – Max. 30 1 12 – – – – 100 60 5.5 µA µA ms µs µs mA mA ns ns V – – 8 4 100 – – – – 4.5 Unit Conditions IEN/PWMI,H IEN/PWMI,L tEN,OFF,DEL tPWMI,H tEN,START IPWMO,SRC IPWMO,SNK tR,PWMO tF,PWMO VPWMO VEN/PWMI = 16.0V VEN/PWMI = 0.5V – – 1) Gate Driver for Dimming Switch: 1) VPWMO = 1V to 4V VPWMO = 4V to 1V CL,PWMO = 3.3nF; 1) 1) VPWMO = 1V to 4V 1) CL,PWMO = 3.3nF; VPWMO = 4V to 1V 1) CL,PWMO = 3.3nF; Current Consumption 7.2.14 7.2.15 Iq_OFF Iq_ON – – – – 10 7 µA mA VEN/PWMI = 0.8 V; Tj ≤ 105C; VIN = 16V VEN/PWMI ≥ 4.75V; IBO = 0mA; VSWO = 0% Duty Cycle 1) Not subject to production test, specified by design 2) Dependency on switching frequency and gate charge of boost and dimming switch. Datasheet 18 Rev. 1.0, 2010-10-13 TLD5098EL Linear Regulator 8 8.1 Linear Regulator Description The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5V and current up to ILIM,min (Parameter 8.2.2). An external output capacitor with ESR lower than RIVCC,ESR (Parameter 8.2.5) is required on pin IVCC for stability and buffering transient load currents. During normal operation the external boost and dimming MOSFET switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switches. Integrated undervoltage protection for the external switching MOSFET: An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets the device in case the output voltage falls below the IVCC Undervoltage Reset switch OFF Threshold (VIVCC,RTH,d Parameter 8.2.7). The Undervoltage Reset threshold for the IVCC pin helps to protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level N-channel MOSFET. IN 14 1 IVCC Linear Regulator EN / PWMI 13 Gate Drivers Figure 8 Voltage Regulator Block Diagram and Simplified Application Circuit Datasheet 19 Rev. 1.0, 2010-10-13 TLD5098EL Linear Regulator 8.2 Table 4 Electrical Characteristics EC Line Regulator VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8 Parameter Output Voltage Output Current Limitation Drop out Voltage IVCC Buffer Capacitor Symbol Min. Limit Values Typ. 5 – – 1 – – – – Max. 5.15 90 0.5 100 0.5 – 4.0 4.5 V mA V µF Ω mV V V 6V ≤ VIN ≤ 45V 0.1mA ≤ IIVCC ≤ 50mA 4.85 51 – Unit Conditions VIVCC ILIM VDR VIN = 13.5V VIVCC = 4.5V VIN = 4.5V IIVCC = 25mA 1) 2) CIVCC 0.47 IVCC Buffer Capacitor ESR RIVCC,ESR – Undervoltage Reset Headroom VIVCC,HDRM 100 IVCC Undervoltage Reset switch OFF Threshold IVCC Undervoltage Reset switch ON Threshold 1) VIVCC,RTH,d 3.6 VIVCC,RTH,i – VIVCC decreasing VIVCC - VIVCC,RTH,d 3) VIVCC decreasing. VIVCC increasing 1) Not subject to production test, specified by design 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. 3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case VGS must be considered. Datasheet 20 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions 9 9.1 Protection and Diagnostic Functions Description The TLD5098EL has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. Additionally the FBH and FBL potential is monitored and in case the LED load short circuits to GND (see description Figure 15) the regulator stops the operation and protects the system. In case any of the six fault conditions occur the PWMO and IVCC signal will change to an active logic LOW signal to communicate that a fault has occurred (detailed overview in Figure 9 and Figure 10 below). Figure 11 illustrates the various open load and open feedback conditions. In case of an overtemperature condition the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C (Tj,SD Parameter 9.2.2). After cooling down the IC will automatically restart. Thermal shutdown is an integrated protection function designed to prevent IC destruction and is not intended for continuous use in normal operation (Figure 13). To calculate the proper overvoltage protection resistor values an example is given in Figure 14. Input Output Overvoltage Open Load Protection and Diagnostic Circuit Output OR Short to GND SWO and PWMO Gate Driver Off Open Feedback Overtemperature Input Undervoltage OR Linear Regualtor Off Figure 9 Protection and Diagnostic Function Block Diagram Datasheet 21 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions Input Condition Overvoltage @ Output Open Load Short to GND @ LED chain Open Feedback Overtemperature Undervoltage @ Input Level* False True False True False True False True False True False True SWO Sw* L Sw* L Sw* L Sw* L Sw* L Sw* L Output PWMO IVCC H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Shutdown H or Sw * Active L Shutdown *Note: Sw = Switching False = Condition does not exist True = Condition does exist Figure 10 Diagnosis Truth Table VBO Open Circuit 3 Output Open Circuit Conditions Open Circuit Condition 1 2 3 4 Fault Condition Open FBH Open FBL Open VBO Open PWMO Fault Threshold Voltage VREF -20 to -100 mV 0.5 to 1.0 V -20 to -100 mV Detected by overvoltage Open Circuit 1 ROVH Overvoltage Compartor OVFB RFB Open Circuit 2 ROVL D1 D2 D3 Feedback Voltage Error Amplifier FBH D4 6 + VREF D5 9 VOVFB,TH VREF FBL D7 D8 D9 D10 Open Circuit 4 TDIM PWMO 5 Min Threshold = 0.5 V Typical V REF = 0.3 V Max Threshold = -20 mV Min Threshold = -100 mV Open FBH Open VBO Figure 11 Open Load and Open Feedback Conditions Datasheet 22 Rev. 1.0, 2010-10-13 Open FBL 7 D6 Max Threshold = 1.0 V TLD5098EL Protection and Diagnostic Functions Startup Normal Thermal Shutdown 1 Overvoltage 2 Open Load / Feedback 3 Shutdown VIVCC VIVCC,RTH,i VIVCC,RTH,d Tj Tj,SD t Tj,SD,HYST 1 VBO VOVFB ≥ VOVFB,TH VOVFB,HYS 2 t VIN VFBH-VFBL VREF,2 tSS 0.3 V Typ VREF,1 tSS 3 t t VPWMO t Figure 12 Open load, Overvoltage and Overtemperature Timing Diagram Datasheet 23 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions VEN/PWMI H L t Tj TjSD TjSO ΔΤ Ta t VSWO t ILED Ipeak t VPWMO t VIVCC 5V t Device OFF Normal Operation Overtemp Fault ON Overtemp ON Fault Overtemp ON Fault Overtemp Fault Figure 13 Datasheet Device overtemperature protection behavior 24 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions example: VOUT,max=40V 1.25mA VOVFB VOVP,max TLD5098 OVFB 9 ROVH 40V ≅ 33.2kΩ 1.25mA Overvoltage Protection ACTIVE VOVFB,TH 1.25V ROVL GND 12 1kΩ 1.25V Overvoltage Protection is disabled t Figure 14 Overvoltage Protection description Short to GND protection for Highside Return Applications (B2B) from Figure 23 The FBH and FBL pins features a Short to GND detection threshold (VFBL,FBH_S2G). If the potential on those pins is below this threshold the Device stops his operation. This means that the PWMO signal changes to inactive state (LOW potential) and the corresponding p-channel (TDIM2) is switched OFF accordingly and protects the LED chain. For the B2B application some external components are needed to ensure a LOW potential during a short circuit event. D1 and D2 are low power diodes (BAS16-03W) and the resistor Rlim (10kOhm) is needed to limit the current through this path. The diode D3 should be a high power diode and is needed to protect the RFB and the FBH and FBL pins in case of an short circuit to GND event. This short circuit detection and protection concept considers potential faults for LED chains (LED Modules) which are separated from the ECU via two wires (at the beginning and at the end of the LED chain). If the short circuit condition disappears, the device will re-start with an soft start. CBO D1 Rlim D2 wire harness LED Module wire harness VFBL,FBH 60V TDIM2 Normal Operation Vbb CIN D3 RFB Dn Short to GND D1 Short to GND LBO DBO ILED ISW TSW VOUT 4.5V VFBL,FBH_S2G TDIM1 PWMO FBH FBL IN SWO SWCS SGND D evice working with parameter deviations Short Circuit detected on FBH/FBL t Figure 15 Datasheet Short Circuit to GND Protection 25 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions 9.2 Table 5 Electrical Characteristics EC Protection and Diagnosis VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Short Circuit Protection 9.2.1 FBH and FBL Short-Circuit fault VFBL,FBH_S2G 1.5 sensing common mode range – 2 V refer to Figure 15 VFBH=VFBL decreasing 1) 1) Limit Values Typ. Max. Unit Conditions Temperature Protection: 9.2.2 9.2.3 Over Temperature Shutdown Over Temperature Shutdown Hystereses Output Over Voltage Feedback Threshold Increasing Output Over Voltage Feedback Hysteresis Over Voltage Reaction Time Over Voltage Feedback Input Current Open Load/Feedback Threshold Open Feedback Threshold Tj,SD Tj,SD,HYST 160 – 175 15 190 – °C °C refer to Figure 13 Overvoltage Protection: 9.2.4 9.2.5 9.2.6 9.2.7 VOVFB,TH VOVFB,HYS tOVPRR IOVFB 1.21 50 2 -1 1.25 – – 0.1 1.29 150 10 1 V mV µs µA refer to Figure 14 1) Output Voltage decreasing Output Voltage decreasing VOVFB = 1.25V Open Load and Open Feedback Diagnostics 9.2.8 VREF,1,3 -100 – -20 mV refer to Figure 11 VREF = VFBH - VFBL Open Circuit 1 or 3 9.2.9 VREF,2 0.5 – 1 V VREF = VFBH - VFBL Open Circuit 2 1) Specified by design; not subject to production test. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Datasheet 26 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming 10 Analog Dimming This pin is influencing the Feedback Voltage Error Amplifier by generating an internal current accordingly to an external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected to IVCC or external > 1.6V supply. Different application scenarios are described in Figure 18. This pin can also go outside of the ECU for instance if a thermistor is connected on a separated LED Module and the Analog Dimming Input is used to thermally protect the LEDs. For reverse battery protection of this pin an external series resistor should be placed to limit the current. 10.1 Purpose of Analog Dimming: 1) It is difficult for LED manufacturers to deliver LEDs which have the same Brightness, Colorpoint and Forward Voltage Class. Due to this relatively wide spread of the crucial LED parameters automotive customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must preselect the LEDs to deliver the requested colorpoint class. Those preselected LEDs are matched in terms of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET at the SET pin. 2) If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one hardware which should be able to handle different load current conditions (e.g. 80mA to 400mA) to cover different applications. To achieve this average LED current adjustment the analog dimming is a crucial feature. 10.2 Description Application Example: Desired LED current = 400mA. For the calculation of the correct Feedback Resistor RFB the following equation can be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6V. I LED = V VREF 0.3V --> RFB = REF --> R = 750mΩ FB = I LED RFB 400mA A decrease of the average LED current can be achieved by controlling the voltage at the SET pin (VSET) between 0V and 1.6V. The mathematical relation is given in the formula below: I LED = V SET − 0 ,1 V 5 * R FB If VSET is 100mV the LED current is only determined by the internal offset voltages of the comparators. For this example ILED = 0A if VSET < 100mV. Refer to the concept drawing in Figure 17. Datasheet 27 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming VREF [V] typ. 300mV 100 mV 1.6V Analog Dimming Disabled VSET [V] I LED = VREF RFB Analog Dimming Feature Enabled V − 0.1V I LED = SET 5 * RFB Figure 16 Voltage VSET versus LED current VREF VOUT RFB FBL 7 6 ILED FBH IFBL R2 VREF_offset IFBH R1 Vint VBandgap = 1.6V + + ISET n*ISET R3 ISET SET 10 + - VSET Feedback Voltage Error Amplifier 100mV COMP 8 12 GND CCOMP RCOMP Figure 17 Datasheet Concept Drawing Analog Dimming 28 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming Multi-purpose usage of the Analog dimming feature 1) A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin of the TLD5098EL. The integrated voltage Regulator (VIVCC) can be used to supply the µC or external components if the current consumption does not exceed 25mA. 2) The analog dimming feature is directly connected to the input voltage of the system. In this configuration the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing (increasing) the switching duty cycle if VIN drops to a lower potential. This is causing an increase of the input current consumption. If applications require a decrease of the LED current in respect to VIN variations this setup can be choosen. 3) The usage of an external resistor divider connected between IVCC (integrated 5V regulator output and gate buffer pin) SET and GND can be choosen for systems without µC on board. The concept allows to control the LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor (Thermistor) to protect the LED loads from thermal destruction can be connected additionally. 4) If the analog dimming feature is not needed the SET pin must be connected directly to >1.6V potential (e.g. IVCC potential) 5) Instead of an DAC the µC can provide a PWM signal and an external R-C filter is producing a constant voltage for the analog dimming. The voltage level is depending on the PWM frequency (fPWM) and duty cycle (DC) which can be controlled by the µc software after reading the coding resistor placed at the LED module. Datasheet 29 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming . 1 D/A-Output 10 +5V CIVCC 1 2 Vbb 14 IVCC SET RSET2 SET IN µC 10 VSET GND 12 VSET RSET1 Cfilter GND 12 3 VIVCC = +5V RSET2 CIVCC 10 1 4 IVCC VIVCC = +5V Rfilter CIVCC 1 IVCC SET GND 12 10 SET GND 12 VSET RSET1 Cfilter VSET ~ VIVCC Cfilter 5 +5V CIVCC PWM 1 IVCC PWM output 10 Rfilter SET µC (e.g. XC866) Cfilter VSET GND 12 Figure 18 Analog Dimming in various applications Datasheet 30 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming 10.3 Table 6 Electrical Characteristics EC Analog Dimming VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Analog Dimming Range 10.3.1 SET programming range Limit Values Typ. – Max. 1.6 V 1) Unit Conditions VSET 0 refer to Figure 16 1) Specified by design; not subject to production test. Datasheet 31 Rev. 1.0, 2010-10-13 TLD5098EL Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. IBO DRV VBATT C1 C2 TSW 2 L1 CIN VIN LBO DBO ISW VBO CBO RFB IN IVCC SWO SWCS VREF 14 Provisional Parts 1 4 D1 RCS D2 ROVH Classic Boost Setup: VOUT > VIN D3 D4 CIVCC VCC or V IVCC SGND PWM PWM - Output 10 3 Rfilter SET OVFB 9 IC2 Microcontroller (e.g. XC866) Output Input Output Cfilter IC1 TLD5098 13 11 8 ROVL D5 D6 D7 D8 EN / PWMI FREQ / SYNC COMP FBH FBL 6 D9 7 ILED TDIM D10 CCOMP PWMO RFREQ RCOMP GND 12 5 Figure 19 LED Low Side Return Application Circuit (Boost to GND, B2G) Part Number LW W5SM SS3H10 EEEFK1H101GP X7R MLCC CCNPZC105KBW X7R Reference Designator D1 - 10 DBO CIN , CBO CCOMP CIVCC IC1 IC2 LBO RCOMP RFB RFREQ ROVH ROVL RCS TDIM,TSW Value White Schottky, 3 A, 100 VR 100 uF, 50V 10 nF 1uF , 6.3V --100 uH 10 kΩ, 1% 820 mΩ, 1% 20 kΩ, 1% 33.2 kΩ, 1% 1 kΩ, 1% 50 mΩ, 1% Dual N-ch enh. (60V, 20A) alternativ: 100V N-ch, 35A Manufacturer Osram Vishay Panasonic EPCOS EPCOS Infineon Infineon Coilcraft Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Infineon Infineon Infineon Type LED Diode Capacitor Capacitor Capacitor IC IC Inductor Resistor Resistor Resistor Resistor Resistor Resistor Transistor Transistor Transistor Quantity 10 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 TLD5098 XC866 MSS1278T-104ML ERJ3EKF1002V ERJ14BQFR82U ERJ3EKF2002V ERJ3EKF3322V ERJ3EKF1001V ERJB1CFR05U IPG20N06S4L-26 IPD35N10S3L-26 BSP318S alternativ : 60V N-ch, 2.6A Figure 20 Datasheet Bill of Materials for LED Low Side Return Application Circuit 32 Rev. 1.0, 2010-10-13 TLD5098EL Application Information Lfilter DRV VBATT C1 C2 CIN VIN L1 CSEPIC DBO ISW L2 SWO SWCS TSW 2 RFB CBO VREF 14 IN Provisional Parts 4 ILED RCS D1 ROVH VCC or V IVCC SGND PWM PWM - Output Rfilter 10 3 SET OVFB 9 IC2 Microcontroller (e.g. XC866) Output Input Output Cfilter IC1 TLD5098 13 11 8 ROVL EN / PWMI FREQ / SYNC COMP FBH FBL 6 Number of LEDs could be variable! This means the following configurations are possible: 1) VOUT < VIN (Buck) 2) VOUT > VIN (Boost) 7 CCOMP IVCC RFREQ RCOMP PWMO GND 12 5 1 BAS1603W DPOL CIVCC RPOL 10kΩ Dn Startup Circuit TDIM Figure 21 SEPIC Application Circuit Value White Schottky, 3 A, 100 VR 3.3 uF, 20V 100 uF, 50V 10 nF 1uF , 6.3V --47 uH alternativ: 22uH coupled inductor Reference Designator D1 - n DBO CSEPIC CIN , CBO CCOMP CIVCC IC1 IC2 L1 , L2 Manufacturer Osram Vishay EPCOS Panasonic EPCOS EPCOS Infineon Infineon Coilcraft Coilcraft Panasonic Infineon Panasonic Panasonic Panasonic Panasonic Panasonic Infineon Infineon Infineon Part Number LW W5SM SS3H10 X7R, Low ESR EEEFK1H101GP X7R MLCC CCNPZC105KBW X7R Type LED Diode Capacitor Capacitor Capacitor Capacitor IC IC Inductor Inductor Resistor Diode Resistor Resistor Resistor Resistor Resistor Transistor Transistor Transistor Quantity variable 1 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 2 TLD5098 XC866 MSS1278T-473ML MSD1278-223MLD ERJ3EKF1002V BAS1603W ERJ14BQFR82U ERJ3EKF2002V ERJ3EKF3322V ERJ3EKF1001V ERJB1CFR05U IPG20N06S4L-26 IPD35N10S3L-26 BSP318S RCOMP, RPOL DPOL RFB RFREQ ROVH ROVL RCS TDIM,TSW 10 kΩ, 1% 80V Diode 820 mΩ , 1% 20 kΩ, 1% 33.2 k Ω, 1% 1 kΩ, 1% 50 mΩ, 1% Dual N-ch enh. (60V, 20A) alternativ: 100V N-ch, 35A alternativ : 60V N-ch, 2.6A Figure 22 Datasheet Bill of Materials for SEPIC Application Circuit 33 Rev. 1.0, 2010-10-13 TLD5098EL Application Information CBO DSC1: Low Power Diode Rlim:10kΩ range DSC2: Low Power Diode VIN DRV VBATT C1 C2 L1 CIN D3 Power Schottky Diode RFB TDIM2 Dn VOUT is always higher than VIN Therefore: Number of LEDs could be variable! Short to GND Short to GND D1 DZ RDIM2 RDIM1 Provisional Parts LBO TDIM1 5 DBO I SW I LED VOUT PWMO SWO SWCS 6 2 4 TSW FBH FBL IN SET SGND OVFB 3 R CS ROVH VCC or V IVCC PWM PWM-Output 7 14 10 9 IC2 Microcontroller (e.g. XC866) Input Output Output Rfilter Cfilter IC1 TLD5098 13 11 ROVL EN / PWMI FREQ / SYNC COMP 8 IVCC 1 C COMP CIVC C RFREQ GND 12 R COMP Figure 23 LED High Side Return Application Circuit (Boost to Vbb, B2B) Reference Designator D1 - n DBO , D3 DSC1 , DSC2 DZ CBO CIN CCOMP CIVCC IC1 IC2 LBO Value White Schottky, 3 A, 100 VR Low Power Diode Zener Diode 100 uF, 80V 100 uF, 50V 10 nF 1 uF, 6.3V --100 uH 10 kΩ, 1% 820 mΩ, 1% 20 kΩ, 1% 33.2 kΩ, 1% 1 kΩ, 1% 50 mΩ, 1% 60V Dual N-ch (3.1A) and P-ch. enh. (2A) alternativ: 100V N-ch (0.37A), alternativ: 60V P-ch (1.9A) Manufacturer Osram Vishay Infineon -Panasonic Panasonic EPCOS EPCOS Infineon Infineon Coilcraft Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Infineon Infineon Infineon Infineon Infineon Infineon Part Number LW W5AP SS3H10 BAS16-03W -EEVFK1K101Q EEEFK1H101GP X7R MLCC CCNPZC105KBW X7R Type Diode Diode Diode Diode Capacitor Capacitor Capacitor Capacitor IC IC Inductor Resistor Resistor Resistor Resistor Resistor Resistor Transistor Transistor Transistor Transistor Transistor Transistor Quantity variable 2 2 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 AppDiagLED _HSR_HSSBOM .vsd TLD5098 XC866 MSS1278T-104ML_ ERJ3EKF1002V ERJ14BQFR82U ERJ3EKF2002V ERJP06F5102V ERJ3EKF1001V ERJB1CFR05U BSO615CG BSP123 BSP171P IPD35N10S3L-26 IPD30N06S4L-23 BSP318S RCOMP, RDIM1, RDIM2, Rlim RFB RFREQ ROVH ROVL RCS TDIM1,TDIM2 TSW N-ch, OptiMOS-T2 100V, 35A alternativ: 60V N-ch, 30A 1 1 1 alternativ : 60V N-ch, 2.6A Figure 24 Datasheet Bill of Materials for LED High Side Return Application Circuit 34 Rev. 1.0, 2010-10-13 TLD5098EL Application Information IBO DRV VBATT C1 C2 SWO 14 2 L1 CIN VIN LBO ISW DBO VBO CBO ILoad constant VOUT RL TSW IN IVCC SWCS 4 Provisional Parts CIVCC VCC or V IVCC PWM 1 RCS 3 SGND 10 ROVH IC2 Microcontroller (e.g. XC866) Input Output Output Rfilter SET OVFB 9 Cfilter 5 PWMO IC1 TLD5098 FBH 6 ROVL RFB1 13 11 8 EN / PWMI FREQ / SYNC COMP FBL 7 RFB2 VREF CCOMP RFREQ RCOMP GND 12 RFB3 Figure 25 Boost Voltage Application Circuit Part Number SS3H10 EEVFK1K101Q EEEFK1H101GP TBD EEFHD0J101R TLD5098 XC886 MSS1278T-104ML_ TBD ERJ3EKF5102V ERJ3EKF1001V ERJ3EKF2002V ERJP06F5102V ERJ3EKF1001V ERJB1CFR05U IPD22N08S2L-50 Reference Designator DBO CBO CIN CCOMP CIVCC IC1 IC2 LBO RCOMP RFB1,RFB3 RFB2 RFREQ ROVH ROVL RCS TSW Value Schottky, 3 A, 100 VR 100 uF, 80V 100 uF, 50V 10 nF 100 uF, 6.3V --100 uH 10 kΩ 51 kΩ, 1% 1 kΩ, 1% 20 kΩ, 1% 51 kΩ, 1% 1 kΩ, 1% 50 mΩ, 1% N-ch, 75 V, 65 mΩ Manufacturer Vishay Panasonic Panasonic TBD Panasonic Infineon Infineon Coilcraft TBD Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Infineon Type Diode Capacitor Capacitor Capacitor Capacitor IC IC Inductor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Transistor Quantity 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 Figure 26 Bill of Materials for Boost Voltage Application Circuit Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Datasheet 35 Rev. 1.0, 2010-10-13 TLD5098EL Application Information 11.1 Further Application Information In fixed frequency mode where an external resistor configures the switching frequency the minimum boost inductor is given by the formula in Figure 27. • • • • LMIN = Minimum Inductance Required During Fixed Frequency Operation VBO = Boost Output Voltage RCS = Current Sense Resistor fFREQ = Switching Frequency V BO [ V ] × R CS [ Ω ] L MIN ≥ ------------------------------------------------------------------–3 106 ×10 [ V ] × f FREQ [ Hz ] Figure 27 Minimum Inductance Required During Fixed Frequency Operation (B2G configuration) In synchronization mode where an external clock source configures the switching frequency the minimum boost inductor is given by the formula in Figure 28. • • • LSYNC = Minimum Inductance Required During Synchronization Operation VBO = Boost Output Voltage RCS = Current Sense Resistor V BO [ V ] × R CS [ Ω ] ----------------------------------------------------------L SYNC ≥ –3 106 ×10 [ V ] × 250kHz Figure 28 • • • Minimum Inductance Required During Synchronization Operation (B2G configuration) Please contact us for information regarding the FMEA pin. Existing App. Note (Title) For further information you may contact http://www.infineon.com/ Datasheet 36 Rev. 1.0, 2010-10-13 TLD5098EL Package Outlines 12 Package Outlines 0.35 x 45˚ Stand Off (1.45) 1.7 MAX. 3.9 ±0.11) 0.1 C D 0 ... 0.1 0.19 +0.06 0.08 C 6 ±0.2 0.65 0.25 ±0.05 2) C 0.64 ±0.25 D 0.2 8˚ MAX. M 0.15 M C A-B D 14x D 8x A 14 8 Bottom View 3 ±0.2 1 7 1 7 B 0.1 C A-B 2x Exposed Diepad 14 8 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion PG-SSOP-14-1,-2,-3-PO V02 2.65 ±0.2 PG-SSOP-14 Figure 29 PG-SSOP-14 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further package information, please visit our website: http://www.infineon.com/packages. Datasheet 37 Dimensions in mm Rev. 1.0, 2010-10-13 TLD5098EL Revision History 13 Revision 1.0 Revision History Date 2010-10-13 Changes Initial Datasheet Datasheet 38 Rev. 1.0, 2010-10-13 Edition 2010-10-13 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
TLD5098EL 价格&库存

很抱歉,暂时无法提供与“TLD5098EL”相匹配的价格&库存,您可以联系我们找货

免费人工找货