Low Drop Voltage Regulator
TLE 4296
Features • • • • • • • • • • • • • • Three versions: 3.0 V, 3.3 V, 5.0 V Output voltage tolerance ≤ ±4% Very low drop voltage Output current: 30 mA Inhibit input Low quiescent current consumption Wide operation range: up to 45 V Wide temperature range: -40 °C ≤ Tj ≤ 150 °C Output protected against short circuit Overtemperature protection Reverse polarity proof Very small SMD-Package PG-SCT595-5 Green product (RoHS compliant) AEC qualified
PG-SCT595-5
Functional Description The TLE 4296 G is a monolithic integrated low drop voltage regulator in the very small SMD package PG-SCT595-5. It is designed to supply e.g. microprocessor systems under the severe conditions of automotive applications. Therefore the device is equipped with additional protection functions against overload, short circuit and reverse polarity. At overtemperature the regulator is automatically turned off by the integrated thermal protection circuit. nput voltages up to 40 V are regulated to VQ,nom = 3.0 V (V30 version) 3.3 V (V33 version) or 5.0 V (V50 version). The output is able to drive a load of more than 30 mA while it regulates the output voltage within a 4% accuracy. To save energy the device can be switched in stand-by mode via an inhibit input which causes the current consumption to drop below 5 µA.
Type TLE 4296 GV30 TLE 4296 GV33 TLE 4296 GV50
Data Sheet
Package PG-SCT595-5 PG-SCT595-5 PG-SCT595-5
1
Marking C3 C2 C1
Rev. 1.1, 2008-04-21
TLE 4296
INH
1 5 GND
GND
2
Ι
3
4
Q
AEP02253
Figure 1 Table 1 Pin No. 1 2 3 4 5
Pin Configuration (top view) Pin Definitions and Functions Symbol INH GND I Q GND Function Inhibit input; high level to turn IC on Ground; connected to pin 5 Input voltage Output voltage; must be blocked by a capacitor CQ ≥ 2.2 µF, 3 Ω ≤ ESR ≤ 10 Ω Ground; connected to pin 2
Data Sheet
2
Rev. 1.1, 2008-04-21
TLE 4296
Temperature Control
Saturation Control and Protection Circuit 4 Q
Ι
3
Band-GapReferenz
+
1 INH
2,5 GND
AEB02312
Figure 2
Block Diagram
Data Sheet
3
Rev. 1.1, 2008-04-21
TLE 4296
Table 2
Absolute Maximum Ratings
-40 °C < Tj < 150 °C Parameter Input Voltage Current Output Voltage Current Inhibit Voltage Current Current Temperatures Junction temperature Storage temperature Thermal Resistances Junction pin Junction ambient1) Symbol Limit Values Min. Max. 45 – 30 – 45 * 5 V mA V mA V µA mA – internally limited – internally limited – * internally limited -0.3 V < VI < 45 V; tp < 1 ms – – measured to pin 5 zero airflow zero heat sink area Unit Remarks
VI II VQ IQ VINH IINH IINH
-42 – -6 – -42 -500 -5
Tj Tstg Rthj-pin Rthja
-40 -50 – –
150 150 30 179
°C °C K/W K/W
1) Worst case regarding peak temperature.
Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.
Data Sheet
4
Rev. 1.1, 2008-04-21
TLE 4296
Table 3 Parameter Input voltage
Operating Range Symbol Limit Values Min. Max. 45 45 45 40 150 V V V V °C TLE 4296 GV30 TLE 4296 GV33 TLE 4296 GV50 – – 4.0 4.0 5.5 Unit Remarks
VI
Inhibit voltage Junction temperature
VINH Tj
-0.3 -40
Data Sheet
5
Rev. 1.1, 2008-04-21
TLE 4296
Table 4
Electrical Characteristics
VI = 13.5 V; VINH > +2.5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter Output voltage V30 version Output voltage V30 version Output voltage V33 version Output voltage V33 version Output voltage V50 version Output voltage V50 version Output current limitation Drop voltage Output capacitor Current consumption Iq = II - IQ Current consumption Iq = II - IQ Quiescent current (stand-by) Iq = II - IQ Quiescent current (stand-by) Iq = II - IQ Load regulation Line regulation Symbol Limit Values Min. Typ. 3.0 3.0 3.30 3.30 5.00 5.00 – 0.25 – 2 110 0 Max. 3.12 3.12 3.43 3.43 5.20 5.20 – 0.30 – 4.5 170 1 V V V V V V mA V µF mA µA µA 1 mA < IQ < 30 mA VI = 13.5 V 2.88 2.88 3.17 3.17 4.80 4.80 30 – 2.2 – – – Unit Test Condition
VQ VQ VQ VQ VQ VQ IQ Vdr CQ Iq Iq Iq
IQ = 10 mA 4 V < VI < 40 V 1 mA < IQ < 30 mA VI = 13.5 V IQ = 10 mA 4.3 V < VI < 40 V 1 mA < IQ < 30 mA VI = 13.5 V IQ = 10 mA 6 V < VI < 40 V
1)
IQ = 20 mA1)
3 Ω ≤ ESR ≤ 10 Ω at 100 kHz
IQ < 30 mA IQ < 1 mA; Tj < 85 °C VINH = 0.4 V; Tj < 85 °C VINH = 0.4 V
Iq
∆VQ
–
0
5
µA
– –
10 5
20 20
mV mV
1 mA < IQ < 25 mA; Tj = 25 °C
∆VQ
VI = (VQ,nom + 0.5 V)
to 36 V IQ = 5 mA; Tj = 25 °C
Data Sheet
6
Rev. 1.1, 2008-04-21
TLE 4296
Table 4
Electrical Characteristics (cont’d)
VI = 13.5 V; VINH > +2.5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter Power-Supply-RippleRejection Logic Inhibit Input Inhibit, Turn-on voltage Inhibit, Turn-off voltage H-input current L-input current Symbol Limit Values Min. Typ. 60 Max. – dB – Unit Test Condition
PSRR
fr = 100 Hz; Vr = 0.5 Vpp VQ > 0.95 VQ,nom VQ > 0.1 V VINH = 5 V VINH = 0 V
VINH, high VINH, low IINH, high IINH, low
– 0.4 – -2
– – 8 –
2.2 – 12 2
V V µA µA
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value.
Data Sheet
7
Rev. 1.1, 2008-04-21
TLE 4296
Typical Performance Characteristics Output Voltage VQ versus Input Voltage VI
10
AED03348.VSD
Current Consumption Iq versus Input Voltage VI
1000
AED03347.VSD
VQ
V 8
VINH = 5 V RL = 1 kΩ
Iq
µA 800
VINH = 5 V
6 GV50 4
600
GV33 GV30
400
RL = 1 kΩ
2
200
RL = 5 kΩ
0
0
2
4
6
8
V 10
0
0
10
20
30
40 V 50
VI
VI
Data Sheet
8
Rev. 1.1, 2008-04-21
TLE 4296
V Q ,nom + 0.5 V to 45 V CΙ 100 nF
Inhibit
Ι
3
4
Q
3.0V / 3.3V / 5.0V
TLE 4296 G
INH
CQ 2.2 µF RQ 3.3 Ω
AES02313
1
2,5 GND
Figure 3
Application Circuit
Application Information In the TLE 4296 G the output voltage is divided and compared to an internal reference of 2.5 V typical. The regulation loop controls the output to achieve a stabilized output voltage. Figure 3 shows a typical application circuit. In order to maintain the stability of the control loop the TLE 4296 G output requires an output capacitor CQ of at least 2.2 µF with an ESR of max. 10 Ω and min. 3 Ω. It is recommended to use tantalum (e.g. the EPCOS 3.3 µF / 16V B45196P3335M209 or 4.7 µF / 10 V B45196-P2475M109) or a multi layer ceramic capacitor with a series resistor in order to cover these limits over the full operating temperature range of -40 °C to 150 °C. At the input of the regulator an input capacitor is necessary for compensating line influences (100 nF ceramic capacitor recommended). A resistor of approx. 1 Ω in series with CI, can damp any oscillation occurring due the input inductivity and the input capacitor.
Data Sheet
9
Rev. 1.1, 2008-04-21
TLE 4296
Package Outlines
O
2.9 ±0.2 (2.2) (1.45) 1.2 +0.1 -0.05
B
(0.3) (0.4) 1)
1.1 MAX. 0.1 MAX.
2.5 ±0.1
0.25 ±0.1 10˚ MAX.
(0.23) 1)
1
2
3
0.3 +0.1 -0.05
+0.1 0.6 -0.05
10˚ MAX.
0.15 +0.1 -0.06 0.2
M
A
0.95 1.9 0.25 M B
A
1) Contour of slot depends on profile of gull-wing lead form
GPW05997
Figure 4
Outline PG-SCT595-5
Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/packages. SMD = Surface Mounted Device Data Sheet 10 Dimensions in mm Rev. 1.1, 2008-04-21
1.6 ±0.1
5
4
(0.13)
TLE 4296
Revision History
Version Rev. 1.1
Date
Changes
2008-04-21 Initial version of RoHS-compliant derivate of TLE 4296. Page 1: AEC certified statement added. Page 1 and Page 10: RoHS compliance statement and Green product feature added. Page 1 and Page 10: Package changed to RoHS compliant version. Page 1: Marking information added. Legal Disclaimer updated 2004-01-01 Final datasheet
Rev. 1.0
Data Sheet
11
Rev. 1.1, 2008-04-21
Edition 2008-04-21 Published by Infineon Technologies AG 81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
很抱歉,暂时无法提供与“TLE4296GV50”相匹配的价格&库存,您可以联系我们找货
免费人工找货